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Abstract : For accurate emulation, pseudo-random sequence lengths need not exceed requirements of Monte-
Carlo theory, scaling like the inverse of the expected bit error rate, even with strong inter-symbol correlations.  

 

Introduction 

When increasing channel bit rate beyond 10Gb/s or 
when operating over fibre lines with sparse or no in-
line dispersion compensation, the transmission 
regime changes into the so-called highly dispersive 
(or pseudo-linear) regime [1, 2]. Thus, each pulse can 
expand over numerous neighbour pulses, and interact 
with them through optical non-linearities. For accurate 
emulation of these interactions, a few numerical 
studies recommend that Pseudo-Random Binary 
Sequences (PRBS) of sufficient length should be 
used [3, 4], with exponential dependence on bit rate 
and accumulated dispersion. For instance, with 
transmission of non-return-to-zero (NRZ) channels at 
40Gbit/s over 7x100km Standard Single Mode Fibre 
(SMF) without inline compensation, but optimized 
dispersion compensation at both ends, the required 
PRBS length should be as large as 239 or 252 bits, 
according to models from Ref. [4] or Ref. [3] 
respectively. Managing such lengths would not only 
take unrealistically long simulation times, but also 
raise serious concerns about the accuracy of lab 
measurements with bit-error rate (BER) test sets. 
However, the expected BERs generally lie between 
10-2 and 10-6 before Forward Error-Correction (FEC), 
which suggests revisiting Monte-Carlo (MC)-like 
protocols to assess system performance. In such 
protocols, it is generally agreed that the required 
number of random noisy bits is about 100/BER [5], 
i.e. 104-108 for a 10% relative error in absence of 
pulse-to-pulse interaction. 

Next, we numerically estimate the required number of 
random, noisy bits using the MC method versus the 
expected BER, in highly dispersive systems where 
pulse-to-pulse interactions are high. Then, we 
determine the actual PRBS length that yields the 
same (sufficient) BER accuracy as the MC method. 

System under study 

In the following, the system under study consists of 
7x100km SMF (17ps/nm/km local chromatic 
dispersion) link with singly periodic dispersion maps 
similar to [6], for a single NRZ channel modulated at 
43Gb/s, with different values of residual dispersion 
per span between 0 (full inline compensation) and 
1700ps/nm (no inline compensation, most dispersive 

regime). For each configuration, we optimize pre- and 
post-dispersion compensation in the terminals, and 
vary the fibre input power, so as to get the power 
corresponding to 1.5dB Optical Signal-to-Noise Ratio 
(OSNR) penalty at a reference BER (either 10-2, 10-3 
or 10-5). This power level, referred to as non-linear 
threshold (NLT) corresponds to a typical upper bound 
of operation in the non-linear regime. At the receiver 
end, noise is added voluntarily to reach the reference 
BER. The receiver is modelled by 0.5nm-bandwidth 
2nd order Gaussian optical filter, followed by a 
photodiode, a 28GHz bandwidth 5th order Bessel 
electrical filter and an ideal decision gate. 

Contrary to PRBS methods associated with analytical 
BER estimation, Monte-Carlo simulations are 
achieved here by randomly drawing bit sequences 
and noise samples. The BER is estimated by error 
counting, once a decision threshold and a decision 
time are set. Let us consider a single-channel binary 
transmission system. The BER is the probability p of 
getting an error on any bit. We define the indicator of 
the error event Ij=1 if an error occurs on the j-th bit, or 
else Ij=0. Naturally, the expected value of Ij is equal to 
p. In absence of correlations between the sampled 
signal and neighbouring bits, the number of noisy bits 
required to estimate a given BER with 10% relative 
error is about 100 /BER [5]. Here, we focus on 
systems where the samples have interacted and 
therefore become correlated across the transmission 
path. In this case, we explain our strategy for 
estimating the required number of noisy bits N. In 
order to get N=LK noisy bits, we perform K 
independent computation runs (thus K independent 
blocks) of L bits each, with L long enough with 
respect to the number of possibly interacting 
neighbours. For the investigated systems, values 
such as 256 bits are enough. For each block k of L 
bits, we then derive an estimator of the BER 
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of the relative error is Np p̂/ˆˆ σε = . The Monte-Carlo 

iterative process consists in repeating new 
simulations of L bits each until the estimation of the 
relative error becomes lower than 10%. 

To verify the reliability of the above procedure, we 
first performed simulations without inline dispersion 
compensation, at the NLT, i.e. 5.8dBm, and 17.1dB 
OSNR/0.1nm at the receiver. This ensures ~10-3 BER 
after propagation. We ran the MC algorithm 100 times 
with different random seeds, and derived a standard 
deviation σ of BER estimates, of 0.8 10-4, and thus 
0.08 error, just below 10%, as shown in Fig.1. This 
confirms the validity of our stopping criterion on ε̂ . 
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Figure 1: histogram 
of BER with MC runs 

Figure 2: NLT @ 10-3 BER for 
MC and PRBS simulations 

Required sequence length 

Next, we compare the requirements of the above MC 
method with the so-called PRBS method. Contrary to 
MC, the PRBS method resorts to pre-defined bit-
sequence and uses semi-analytical BER estimation 
(provided by Karhunen-Loeve [7]). For the 
comparison, we first evaluate the number of bits 
required for an accurate estimation of the BER vs the 
residual dispersion per span (RDPS), i.e. the amount  
of inter-symbol correlation. Fig. 2 represents the NLT 
vs RDPS for MC simulations, and PRBS simulations 
with variable sequence lengths, for a reference BER 
of 10-3. Accurate MC simulations are found to require 
~100/BER whatever the RDPS. In contrast, the PRBS 
lengths required to provide the same accuracy as 
MC’s are much smaller but should increase with 
RDPS. Otherwise, the NLT departs from MC 
predictions in Fig. 2. At this 10-3 BER, the PRBS 
length needs not exceed 8192 bits, despite strong 
inter-symbol interactions. This figure is well smaller 
than the predictions of theories of [3] and [4].  

The work of Fig. 2 has been replicated at reference 
BERs 10-2, 10-3 and 10-5 and the required sequence 
lengths derived. For PRBS simulations, the required 
length was estimated as the minimum length yielding 
the same BER as MC simulations. Fig. 3 summarizes 
the results. It depicts the evolution of the minimum 
required number of bits for MC and PRBS simulations 
versus the RDPS. One remarkable observation is that 
this number is found almost constant for MC 
simulations and close to the expectation from [5], 
regardless of RDPS, and thus inter-symbol 
correlations. In contrast, when RDPS is relatively 
small, it can be seen that PRBS length requirements 

increase with RDPS, in accordance with [4], even 
though slightly smaller. At larger values of RDPS, 
when requirements from models [3] and [4] become 
comparable or higher to MC requirements for an 
expected BER, the PRBS length requirements prove 
to depend also on the expected BER, but stabilize to 
an asymptotic value which is smaller  than MC 
requirements. For instance, with expected (but 
realistic, considering the use of FEC) BER of 10-3, no 
more than 214 bits (16384) are actually required, no 
matter the dispersion regime, far from the 239-252 bits-
predictions of [3-4]. Indeed, the latter overlook the 
finite value of BER and that it needs not be estimated 
with less than 10% accuracy. It should be 
emphasized that this conclusion applies to typical pre-
FEC BERs. From the above results, it can be 
extrapolated that BER estimates or measurements 
with at least 10% accuracy at 10-9 would require more 
than 231 bit lengths in the highly dispersive regime.  
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Figure 3: required number of bits. Comparison 
between models from [3-4] (dashed - solid line), and 
measured requirements at non-linear threshold for 

various reference BERs, using MC or PRBS methods. 

Conclusion 

We demonstrated that the number of bits needed to 
run MC simulations weakly depends on correlations 
between neighbouring bits in non-linear, highly 
dispersive transmission systems. MC theory was 
found to provide a reliable upper bound for sequence 
lengths in FEC-assisted, highly dispersive systems. 
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