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Abstract—We present a theoretical model that fully
supports the recently disclosed generalized droop for-
mula (GDF) for calculating the signal-to-noise ratio
(SNR) of constant-output power (COP) amplified co-
herent links operated at very low SNR. For single-
mode nonlinear COP links we compare the GDF-SNR
to the better known generalized SNR (GSNR) that uses
the Gaussian noise (GN) model for constant-gain (CG)
amplifiers. We find that at all medium to large SNRs the
GSNR well matches with the GDF, while at GSNR below
6dB the GSNR over-estimates the correct GDF-SNR by
more than 0.5dB. Fortunately, the GDF-SNR turns out to
be approximately a simple function of the GSNR, which
allows adaptation of the widespread GSNR also to very
low SNR links. A key finding of this paper is that the end-
to-end model underlying the GDF is a concatenation of
per-span first-order regular perturbation (RP1) models
with end-span power renormalization. This fact allows
the GDF to well reproduce the SNR of highly nonlinear
systems, well beyond the RP1 limit underlying the GN
model. The GDF is successfully extended to the case
where the bandwidth/modes of the COP amplifiers are
not entirely filled by the transmitted multiplex. Finally,
the GDF is extended to CG amplified links and is shown
to improve on known GN models of highly nonlinear
propagation with CG amplifiers.

Index Terms—Optical amplifiers, Signal Droop, Split-
step Fourier method, GN model.

I. INTRODUCTION

R ecent improvements in coherent optical systems
have enabled an increase of the reach of subma-

rine links beyond 15,000km (see, e.g., [1], [2]) and
a decrease of the target signal to noise ratio (SNR)
around 7dB in commercial bids [3]. Also, the ongo-
ing evolution towards Spatial Division Multiplexing
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(SDM) has paved the way to even lower SNR targets
[4], [5]. The submarine systems evolution towards
open cables eventually imposes to accurately model the
performance of the sole cable, even at low SNR [6]–
[8]. Therefore, refining the accuracy of performance
prediction models at low SNR has become of great
importance, and is the basic motivation for this work.

Amplified spontaneous emission (ASE)-induced sig-
nal droop in constant output power (COP) amplifier
chains was studied long ago [9]. Today’s submarine
systems basically all use COP amplifiers, but most
analytical models for single-mode transmission do as-
sume constant-gain (CG) amplifiers, with a few excep-
tions (e.g., [10]). In the context of SDM submarine
transmissions, the term ”droop” was introduced a few
years ago by Sinkin et al. [4], [5], who revived the
droop problem in COP amplified SDM links. Antona
et al. [2], [3] recently proposed a new expression of the
received SNR in very-long haul, low-SNR submarine
links with coherent detection, which we here call the
generalized droop formula (GDF). The formula was
originally conceived for linear low-SNR SDM links,
and it was next applied also to low-SNR nonlinear
single-mode dispersion uncompensated COP-amplified
coherent links, where nonlinear interference (NLI) be-
comes significant. While at standard SNR values the
performance of such COP links is well predicted by the
generalized SNR (GSNR) [6], [7], [11]–[13] in which
NLI variance is usually obtained from the Gaussian
Noise (GN) models for CG amplifiers [14]–[19], it
was shown in [3] that at very low SNR and for COP
amplified links the GDF provides a more accurate SNR
prediction. Besides NLI, extensions of the GDF to
account for other sources of distributed noise in the
transmission fiber were also proposed [2], [3].

This paper (and its conference summary [20]),
for the first time provides a full derivation of the
GDF introduced in [2], [3], and shows its accuracy
against split-step Fourier method (SSFM) simulations
in several case studies. The paper compares the GN-
calculated GSNR for CG amplifiers against the GDF
for two purposes. First, to quantify the SNR values
above which the GSNR for CG-amplified links can be
safely used for predicting the SNR of COP-amplified
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links. Second, the paper derives tight upper and lower
bounds to the GDF which are based solely on the
GSNR. This means that one may appropriately warp
the standard GSNR to get reliable predictions even at
the lowest SNRs.

A fair comparison in a low SNR link of the GDF
against the GSNR calculated with the most appropriate
COP-adapted GN model [10] (which also includes the
nonlinear signal-noise interaction normally ignored by
standard GN models) will be provided. We will show
that the two models yield the same SNR predictions at
small to moderate powers, but the GN-based GSNR is
optimistic at the largest powers because of its under-
lying first-order regular perturbation (RP1) assumption
[21]: it fails to predict the signal depletion operated by
NLI.

The GDF model is instead a concatenation of per-
span RP1 models with end-span power renormaliza-
tion, reminiscent of multi-stage backpropagation [22],
[23]. This fact allows the GDF to well reproduce the
SNR of highly nonlinear systems, well beyond the RP1
limit underlying the GN models [24]–[26]. Inspired by
the GDF, a novel method of assessing when an end-
to-end system is well modeled by an RP1 system is
presented in the appendix.

The GDF theory is then extended to the more general
case where significant out-of-band ASE is present in
the system, yielding a new SNR expression that we call
the COP-GDF. While working out the extended theory,
we found deep connections also with CG amplifier
chains with significant nonlinear signal-ASE interac-
tions, for which extensions of the GN theory are known
[27], [28]. We here propose a new formula, which we
call the CG-GDF. All formulas are checked against
accurate SSFM simulations. In particular, COP-GDF
and CG-GDF always show the best match with SSFM
simulations among known formulas.

The paper is organized as follows. Sections II and III
introduce the system model and derive the additive and
rearrangement droops. Sec. IV derives the basic GDF,
discusses its implications and introduces upper and
lower bounds to the GDF. Sec. V presents numerical
comparisons of theory against simulations, and GDF
against both its approximations and against the GSNR
predicted by the extended GN model (EGN) [10], [16]–
[19]. Sec. VI extends the GDF to the case when ASE
has a larger spectral occupancy than the useful signal.
Sec. VII discusses the CG case and derives the new
CG-GDF expression. Sec. VIII concludes the paper.

Sections from VI onwards contain new material with
respect to that summarized in [20].

Figure 1. (a) Chain of spans with loss L with amplifiers with
constant output power P and ASE equivalent input power δPi.
Gain must be G = L−1χa (see text), with χa < 1 the ASE-
induced power droop. (b) Span power block diagram. (c) Equivalent
diagram with loss factored out. (d) Added block diagram also of
fiber span with redistribution power δPr and renormalization to P
by a redistribution power droop χr < 1.

II. DROOP INDUCED BY POWER ADDITION

Consider the transmission of a mode/wavelength
division multiplexed (M/WDM) signal, composed of
M spatial modes (each corresponding to two orthog-
onal polarizations) each composed of an Nc-channel
Nyquist-WDM system [29] over a total bandwidth
B, along a chain of N identical multi-mode/core
fiber (MF) spans. All spans have loss L < 1 and
are followed by an end-span amplifier having a total
constant output power (COP) equal to P . We assume
the multiplex total launched power is P , and that loss
L and amplifier gain G are the same at all wavelengths
and modes. We also assume the amplifier has a filter
that suppresses all out-of band/mode ASE noise, so
that ASE and signal spectra are flat over the same
bandwidth B. The Nyquist-WDM assumption and the
assumption that ASE and signal exist on the same
spectral range will be relaxed in Section VI.

As seen in Fig. 1(a), the chain has at each span k
a total input power P , and a total output power P .
Hence in the ideal case of noiseless amplifiers, the
amplifier gain G = L−1 exactly compensates the loss.
The span block diagram for real amplifiers is shown in
Fig. 1(b), where an equivalent input ASE noise power
δPi = MhνFB (where h is Planck’s constant, ν is
the multiplex center frequency, F is the noise figure
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[30], B the amplification bandwidth and M is the
number of modes) is injected in the amplifier, hence
the gain G = L−1χa must decrease by a droop factor
χa < 1 from the ideal case to “squeeze” the transiting
signal and make room for the local ASE noise in the
output power budget P . By shifting back the term L−1
upstream of the addition block (i.e., by “factoring out”
the loss) the block of Fig. 1(b) is seen to be equivalent
to that in Fig. 1(c), from which we read the span input-
output power budget as: (P + δPiL−1)χa = P , and
thus deduce the droop

χa = (1 +
δPiL−1

P
)−1 , (1 + SNR−1a1 )−1 (1)

where δPiL−1 is the output ASE that would be gener-
ated by an end-span amplifier with gain L−1, and we
implicitly defined SNR degraded at the single amplifier
as

SNRa1 ,
P

δPiL−1
. (2)

The droop is in fact the total power gain (in fact,
a loss) of each amplified span, so that the desired
multiplex signal power at the output of the N -th
amplifier is

Ps(N) = P

N∏
k=1

LG = PχNa (3)

which tells us that the desired signal becomes weaker
along the nominally transparent line because of the
accumulation of ASE which reduces the amplifier gain
G because of the COP constraint. The accumulated
ASE at the output of the N-span chain (over all modes
and amplified WDM bandwidth B) is thus

Pa(N) = P − Ps(N) = P (1− χNa ). (4)

By equating (3),(4) we find that signal and ASE
powers become equal at N ∼= ln 2 · SNRa1.

Note that the above analysis remains unchanged if
the amplifiers are noiseless, but an external lumped
crosstalk (e.g., power leaking from a competing opti-
cal multiplex of power P crossing an optical multi-
plexer/demultiplexer together with our multiplex of in-
terest at an optical node before the final optical ampli-
fication, or, e.g., transmitter impairments at the booster
amplifier) of power δPi = αexP is injected in its
place, where αex is the external crosstalk coefficient. In
presence of both ASE and external crosstalk the droop
χa in (1), that we more generally call the addition
droop, uses an added power δPi = MhνFB + αexP ,
where uncorrelation between the two noise sources is
assumed when summing power.

III. DROOP INDUCED BY POWER REDISTRIBUTION

The transmission fiber is indeed not ideal and oper-
ates a power redistribution during propagation because
of several physical mechanisms. Let’s for the moment
concentrate on one of these, namely, the nonlinear Kerr
effect. Focus on Fig. 1(c) where the fiber loss has
been factored out. We now apply a first-order regu-
lar perturbation approximation of the Kerr distortion
generated within span k, called nonlinear interference
(NLI), as in the GN and similar perturbative models
[12], [13], [15]. We then impose that the power in/out
of the fiber be conserved. Thus, we get a power-flow
diagram of the fiber+amplifier block as depicted in
Fig. 1(d), where now the power redistribution during
propagation appears as a new input sub-block in which
a perturbation δPr = αNLP

3 is added to the input
signal P (αNL is the per-span NLI coefficient [31]),
and then a redistribution droop χr forces the perturbed
signal back to power P , namely, (P + δPr)χr = P .
This yields

χr = (1 +
δPr
P

)−1 , (1 + SNR−1r1 )−1 (5)

where we implicitly defined the SNR degraded at the
single amplifier by the redistribution mechanism as

SNRr1 ,
P

δPr
=

1

αNLP 2
(6)

where the second equality holds specifically for the
NLI redistribution mechanism1.

In other terms, we first apply a per-span RP1 pertur-
bation, and then re-normalize signal plus perturbation
power at fiber end, thus reducing at each span the
power-divergence problem intrinsic in the RP1 ap-
proximation [21]. Other redistribution mechanisms for
which the above theory applies verbatim are:

1) the thermally-induced guided-acoustic wave Bril-
louin scattering (GAWBS) [32], for which δPr =
γGAWBS`P , where γGAWBS [km−1] is the GAWBS
coefficient, and ` [km] is the span length;

2) the inter-mode/core linear crosstalk in the MF, for
which δPr = γX`P , where γX [km−1] is the crosstalk
coefficient [33].

Thus including all three (uncorrelated) effects, we
have in (5),(6): δPr = αNLP

3 + (γGAWBS + γX)`P .

IV. SIGNAL TO NOISE RATIO

According to the proposed per-span power-flow di-
agram in Fig. 1(d), the total span power gain seen by

1The model in [20] swaps the addition and multiplication oper-
ations in the power rearrangement sub-block in Fig. 1(d), which
yields Pχr + δPr = P leading to χr = 1 − δPr/P , whose
numerical value in practice coincides with the expression in (5).
Eq. (5), however, leads exactly to the GDF (7).
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the transiting signal, i.e., the overall span droop, is
the product of addition and redistribution droops: χ ,
χrχa. By the same reasoning as in (3),(4), if the launch
power is P , then the desired multiplex signal power at
the output of the N -th amplifier is Ps(N) = PχN and
therefore by the constant output power constraint the
accumulated addition+redistribution noise at the out-
put of the N-span chain (over all modes and amplified
WDM bandwidth B) is Pa(N)+Pr(N) = P (1−χN ).

Hence the optical SNR (OSNR) at the output of
the chain from amplifiers 1 to N, i.e., the ratio of
total multiplex signal power to total noise power at the
output of the N -th amplifier, using (1),(5) is obtained
as,

OSNR =
1[

(1 + SNR−1a1 )(1 + SNR−1r1 )
]N − 1

(7)

which is the generalized droop formula (GDF) pre-
sented for the first time in [2], [3]. Please note a key
assumption of the GDF model: the power additions
expressed by the power block diagram, Fig. 1, tacitly
imply that the noise sources injected at each span are
uncorrelated from all others, and thus, in particular,
assuming an incoherent accumulation of NLI.

The GDF can be re-arranged into the key formula
[2], [3]

1 +
1

OSNR
=

[(
1 +

1

SNRa1

)(
1 +

1

SNRr1

)]N
(8)

which we call the product rule for inverse droop. It
hints at the generalization [2], [3]

1 +
1

OSNR
=

N∏
k=1

(
1 +

1

SNRa1k

)(
1 +

1

SNRr1k

)
(9)

for an inhomogeneous chain, where SNRa1k is the
local ASE-reduced OSNR at amplifier k, and similarly
SNRr1k for redistribution noise. We prove this gener-
alization in Appendix A.

We conclude this section with a key observation.
When the dominant part of the power spectral density
(PSD) of each of the above impairments remains flat
as the input signal PSD, then the per-tributary signal to
noise ratio SNR for this flat-loss, flat-gain system will
remain equal to OSNR, since both signal and noises
get filtered over the same tributary bandwidth and
mode. Hence from now on, we will drop the “O” in the
OSNR, and treat P and B as the launched input power
and bandwidth of each tributary. In section VI we will
generalize the per-tributary SNR expression to the case
where ASE occupies a larger bandwidth/number of
modes than the signal multiplex.

SNR approximations

We derive here upper and lower bounds to the GDF.
Define

SNR1 , (SNR−1a1 + SNR−1r1 )−1 (10)

as the SNR degraded by the total noise generated at
a single span. Let x , SNR−11 , which is normally
a very small term. Then, as proposed in [3], the GDF
denominator can be bounded as: χ−N−1 ≥ (1+x)N−
1 ≥ Nx(1 + 1

2(N − 1)x) by expanding to 2nd order
in Taylor. Thus an upper-bound to the GDF is

SNR ≤ SNRs

1 + 1
2(1− 1

N )(SNRs)−1
(11)

where
SNRs ,

1

Nx
≡ SNR1

N
(12)

is the SNR we would calculate with the standard noise
accumulation formula for CG amplifiers. We call it the
standard SNR.

Now let y = 1
2(1− 1

N )Nx ≥ 0. Since (1 + y)−1 ≥
1− y, then we can lower-bound the upper-bound (11)
and luckily get a lower bound to the GDF-SNR as well:

SNR ≥
1− 1

2(1− 1
N )Nx

Nx
= SNRs −

1

2
(1− 1

N
).

(13)
To understand the scope of the above approxima-

tions, Fig. 2(a) shows in black solid line a plot of the
GDF-SNR2:

SNR ∼= ((1 + SNR−11 )N − 1)−1 (14)

versus the standard SNRs ≡ SNR1/N . The figure
also shows its upper-bound (UB) eq. (11) and lower-
bound (LB) eq. (13) (both dash-dotted), and the SNRs
itself (dotted). Fig. 2(b) shows the same as (a), but with
the SNR axis expressed in dB. The curves in Fig. 2
were obtained for N = 100, but they remain essentially
unchanged for any N & 40.

We observe in Fig. 2(a) and can prove analytically
that: i) the LB (13) crosses zero at SNRs = N−1

2N and
becomes negative (not physically acceptable) below
that; ii) the gap from SNRs to GDF (and to all its
approximations) converges for increasing SNRs to
the asymptotic value 1

2(1 − 1
N ), and the gap from

SNRs to GDF exceeds 90% of its asymptotic value
at SNRs > 1.66 (2.2dB) for any N . The constant
gap in linear units translates into a variable gap when
SNR is in dB, i.e., to a small dB-gap at large SNRs
and a large dB-gap at lower SNRs. The dB plot also
does not clearly show the ∼ 1/2 asymptotic linear gap.

2Since SNR−1
a1 and SNR−1

r1 are normally very small, then the
product SNR−1

a1 SNR
−1
r1 is a higher-order negligible term. Hence

the GDF (7) and expression (14) are practically identical.
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Figure 2. (a) Black solid: GDF (14) versus the standard SNR:
SNRs = SNR1/N . Dash-dot: Upper-bound (UB, red) eq. (11)
and Lower-Bound (LB, magenta) eq. (13). Black dotted: SNRS .
Black dashed: approximation (15). (b) Corresponding figure when
SNRs are in dB. Curves obtained for N = 100, but they remain
essentially unchanged for any N ≥ 40.

These observations will be useful when interpreting the
numerical SNR results in Section V.

Our best approximation to the GDF (which also
turns out to be a tighter upper-bound) is shown in
dashed line in Fig. 2, and can be obtained by taking
10 log10(.) of each side of eq. (11) and then linearizing
the logarithm. The resulting expression in dB is:

SNR(dB) ≥ SNRs(dB)−
edB · 12(1− 1

N )

SNRs
(15)

where SNRs without (dB) indicates its linear value,
edB , 10 log10(e)

∼= 4.34, and e is Neper’s number.
To make the physical meaning of the above approx-

imations to the GDF explicit, let’s focus on the case of
single-mode fibers (M = 1), with ASE and NLI only.
Define

β , hνFBL−1 (16)

as the ASE power (per mode) generated at the output
of each amplifier of gain L−1 over the per-tributary
receiver bandwidth B. Then from (10),(2),(6) we get

SNRs ≡
1

N( βP + αNLP 2)
(17)

where in (2) we used δPiL−1 = β, and the αNL
term is, per Fig. 1(d), the single-span NLI coefficient
computed over the same per-tributary bandwidth B
as β. We recognize the standard SNR (17) to be
the widely used GSNR for dispersion-uncompensated
systems with coherent detection in which the end-to-
end NLI coefficient NαNL is routinely obtained by the
GN models for CG amplified links, the most precise of
which is the EGN model [16]–[19] that accounts for
the details of the modulation format. We thus observe
from Fig. 2(a) that the GSNR for CG amplified links
can also be safely used for predicting the SNR of
COP-amplified links, at all SNR values for which its
over-estimation by 1/2 in linear units is tolerable. The
good news is that even at the smallest SNRs, where
the GDF is more accurate for COP amplified links,
the newly obtained GDF upper and lower bounds are
based solely on the value of the GSNR, which means
we may appropriately warp the standard GSNR to get
reliable predictions even at the smallest SNRs.

The above discussion should have convinced the
reader that, although using the GN-calculated GSNR
(for CG amplified links) for comparison with the GDF
(for COP amplified links) is definitely unfair, yet the
comparison has a didactic purpose in the light of
Fig. 2, since from the GSNR we can derive good
approximations to the GDF. A fair comparison of the
GDF with the COP-adapted EGN model in [10] will
be provided and discussed later on in the numerical
results section.

Finally, we note that although the above GDF model
assumes uncorrelated NLI span by span, in numerical
computations we can approximately account for the
NLI span-by-span correlations by first calculating the
NLI coefficient of the entire link (e.g., using the CG
EGN model) and then dividing by N , so that now
the αNL to be used in the GDF is a span-averaged
coefficient and, for RP1 end-to-end links at large SNR
(where COP and CG amplifications are equivalent), the
GDF predicts the same correct SNR as that of the
EGN model. Appendix B provides a more in depth
discussion on this topic.

V. NUMERICAL CHECKS

We present here three single-mode dispersion-
uncompensated case studies with quasi Nyquist-WDM
signals where we verify the above formulas against
SSFM simulations (unless otherwise stated, the simu-
lation step size was selected to keep a nonlinear phase
per step of 3 · 10−3 rad):

case A) is the 228x78km polarization-division mul-
tiplexed (PDM) quadrature phase-shift keying (QPSK)
WDM link analyzed in [3]. The propagation fiber
was an EX2000TM (loss 0.169 dB/km, fiber nonlinear
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Figure 3. Values in dB of span-averaged NLI coefficient αNL

(mW−2) versus spans N , used in theoretical formulas for the 3
case studies (diamonds case A, squares case B, circles case C).
Also, filled circles show values for Gaussian modulation.

coefficient n2 = 2.5 · 10−20 m2/W, effective area 110
µm², dispersion 20.7 ps/nm/km). Optical amplifiers had
a noise figure F of 8dB. The number of channels was
16, with channel spacing 37.5 GHz and symbol rate
34.17 Gbaud. SSFM simulations were carried out with
a simulated bandwidth 60 times the symbol rate, and
ASE was removed outside the WDM bandwidth. The
number of transmitted symbols was 64800. This case
is representative of a modern ultra-long submarine link
(see, e.g., [1]).

case B) is the 190x78km PDM 16-quadrature am-
plitude modulation (16QAM) link analyzed in [3]. All
data are the same as in case A, except for the number
of spans (now 190) and the modulation format. The
number of transmitted symbols was 216. This case
was selected as it gives a comparably low SNR to
case A and is useful to test the accuracy of the GDF
with a different modulation format, although a 16QAM
format is not efficient at the low SNRs we find.

case C) is the 40x120km PDM-QPSK link analyzed
in [10, Fig. 3]. The propagation fiber was a non-zero
dispersion shifted fiber (NZDSF) (loss 0.22 dB/km,
fiber NL coefficient n2 = 2.6 · 10−20 m2/W, effec-
tive area 70.26 µm², dispersion 3.8 ps/nm/km). Noise
figure F was 5dB. The number of channels was 15,
with channel spacing 50 GHz and symbol rate 49
Gbaud. Again the simulated bandwidth was 60 times
the symbol rate, and ASE was removed outside the
WDM bandwidth. The number of transmitted symbols
was 213. This case was selected since it allows a
fair comparison of the GDF against the most accurate
available EGN model for COP amplified links [10].

We accounted just for ASE and NLI, and the GDF

formula explicitly is

SNR =
1[(

1 + β
P

)
(1 + αNLP 2)

]N
− 1

. (18)

For all 3 cases, we will present results at the stated
number of spans, as well as some results at lower span
numbers, all multiples of 10. Fig. 3 shows the values of
the span-averaged αNL we have used in the theoretical
formulas in the 3 cases (diamonds for case A, squares
for case B, circles for case C), along with the values
for Gaussian modulation (filled circles). We note in
passing that an αNL that grows with N is an indication
of self-nonlinearities becoming more important than
cross-nonlinearities as N increases, which is typical
of small WDM systems [31].

We begin by presenting in Fig. 4 the received SNR
versus transmitted power per channel P for all 3
cases at their maximum distance. In all 3 sub-figures
we report: the GSNR (17) (dashed black) and the
GDF (18) (solid blue), along with their linear and
nonlinear asymptotes (dotted); the SSFM simulations
at constant output power (symbols: diamonds for case
A, squares for case B, circles for case C); the upper
and lower bounds UB (11), LB (13) (both dash-
dotted), and the approximation (15) (dashed). Values
of span-averaged αNL estimated from the CG EGN
model and used in theoretical formulas were: αNL =
[4.34, 4.63, 19.01] × 10−4 (mW−2) for cases A,B,C,
respectively. These can be read from Fig. 3.

We first note in all cases the very good fit of the GDF
with SSFM simulations. As explained in Appendix B,
although the GDF assumes uncorrelated noises at each
span, our use of the span-averaged NLI coefficient αNL
allows us to have good fit also in links where span-by
span correlations are significant, as in our 3 selected
cases where Fig. 3 shows a marked variation of the
span-averaged αNL with span number N .

Next note that the GDF at these low SNRs is always
below the GSNR and its asymptotes have a different
slope than those of the GSNR. As already noted in
Fig. 2, this is an artifact of the dB representation of
the SNR, since the SNR gap between the two curves
is about 1/2 (in linear units) for GSNR above ∼1.66
(2.2 dB).

Finally, we note that UB and LB and approximation
(15) are basically coinciding with the GDF in cases
A and B on the shown scale, and they become visible
only in the tails of the SNR “bell-curve” in case C.
The gap to UB, LB and (15) is quite small, as already
appreciated in Fig. 2. In particular, approximation (15)
is the best among all, and is basically coinciding with
the GDF over most of the shown ranges.
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approximations: Red dash-dotted: upper-bound (UB) (11); Magenta dash-dotted: lower-bound (LB) (13); black dashed: approximation
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Figure 5. Case C) SNR versus launch power when lowering fiber
dispersion D from 3.8 down to 1 ps/nm/km. Symbols: simulations.
Solid: GDF. Dashed blue line is SNR predicted by the COP-EGN
model in [10, Fig. 5, label “Unm.”].

Fig. 5 concentrates on the SNR versus power in
case C and has a twofold purpose. First, it shows not
only the GDF, in blue solid line (same curve as in
Fig. 4 along with the corresponding SSFM simulations
(circles)) but also the predictions of the COP-EGN
model in [10] (dashed blue, Cfr. [10, Fig. 5, label
“Unm.”]). This figure reports a fair comparison of GDF
with the most appropriate EGN model for this link. It
is seen that the low to mid-power portion of the SNR
well matches with the GDF, but then the RP1-based
EGN model becomes optimistic at the largest powers,
where the local-RP1 power-renormalized concatenation
implicit in the GDF is instead able to well reproduce
the SNR even in deep “signal depletion” by NLI
(more discussion about the RP1 limits is provided in
Appendix B).

The second purpose of Fig. 4 is to show the re-

0 2 4 6 8 10

GSNR (dB)

0

0.5

1

1.5

2

2.5

S
N

R
 d

if
fe

re
n

c
e
 (

d
B

)
eq. (15)

Figure 6. Gap GSNR(dB) − SNRGDF (dB) versus
GSNR(dB). Symbols (diamonds for case A, squares case
B, circles for case C): exact gap, as visible in Fig. 4. Dashed:
approximation (15).

silience of the GDF at lower dispersions. We show
the SNR versus power of the system in case C when
the NZDSF fiber dispersion is artificially lowered to
2 and 1 ps/nm/km. We see that the GDF-SNR well
reproduces the simulated SNR over the whole power
range at all considered dispersions.

A. Comparisons with the GSNR

Since the GSNR is the reference formula for nonlin-
ear propagation with coherent detection, it is important
to quantify its gap in performance to the GDF for COP-
amplified links.

SNR gap: We here discuss the gap from GSNR
eq. (17) to SNRGDF eq. (18). The bounds we have
found all hint at a 1-1 relation between the two SNRs.
This is not exactly so, but almost. Fig. 6 plots the gap
GSNR(dB) − SNRGDF (dB) versus GSNR(dB).
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Symbols for the three cases (diamonds for case A,
squares for case B and circles for case C) indicate the
exact gap between the theoretical SNRs (we measure
the gap from Fig. 4 in each case scanning from low to
high power, and report the values in Fig. 6), while the
dashed lines indicate the gap as expressed by the best
approximation (15). Especially for case C (circles) it
is evident that the SNRGDF is not a 1-1 function of
GSNR, but to a good extent we may well approximate
the gap for all systems by eq. (15). The gap does not
exceed 2.5dB for GSNR down to 0 dB.

Optimal power at max SNR: The optimal power
Po at maximum SNR is obtained in the GN model
[12] by setting the derivative of GSNR w.r.t. P to
zero, yielding the condition β = 2αNLP

3
o (i.e., ASE

is twice the NLI at Po) and the explicit optimal GN
power PoGN = (β/2/αNL)1/3.

Similarly, the GDF-SNR is maximum at the power
Po that makes the total droop χ(Po) closest to 1,
leading to the condition β = 2

χ(Po)
αNLP

3
o , i.e., ASE

is slightly more than twice the NLI at Po. This leads
to Po = PoGNχ

1/3 . PoGN , since the droop per span
χ = χaχr is always practically very close to 1. Thus
the optimal Po for the GDF is in practice the same as
in the GN case,

Spectral efficiency per mode: A lower-bound on the
capacity per mode of the nonlinear optical channel
for dual-polarization transmissions is obtained from
the equivalent additive white Gaussian noise (AWGN)
Shannon channel capacity, i.e., by considering the NLI
as an additive white Gaussian process independent of
the signal. Hence a lower-bound on spectral efficiency
per mode is [5], [6], [15]: SE = 2 log2(1 + SNR)
[b/s/Hz]. Its top value SEo is achieved at Po using its
corresponding top SNR.

For fixed distance, symbol rate, and noise figure, the
GDF-SNR and the GSNR just depend on the NLI per-
span parameter αNL. The span-averaged αNL values
for the AWGN capacity-achieving Gaussian modula-
tion are reported with filled circles in Fig. 3 for both
the EX2000 and the NZDSF links.

Fig. 7(a) reports (a lower-bound to) the top SE0

versus span number N when using in the spectral effi-
ciency formula either the GSNR (dashed curve, SEGN )
and GDF-SNR (filled circles, SEGDF ) obtained for the
EX2000 and the NZDSF links with Gaussian modula-
tion. The figure shows that a noticeable departure of
the correct SEGDF from the SEGN occurs only at
SEGN values below 5 b/s/Hz.

It is simple to prove that the SE gap from GN to
GDF ∆SE , SEGN − SEGDF is well approximated
at large N and at all powers (not only at top) by

∆SE ∼=
2

ln(2)

GSNR

1 + 2GSNR+ 2GSNR2
(19)
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Figure 7. (a) (lower-bound to) top spectral efficiency SE0 (b/s/Hz)
versus span number N , obtained for the EX2000 (case A/B) and the
NZDSF (case C) links with Gaussian modulation. Dashed: SEGN

that uses the GSNR. Filled circles: SEGDF that uses the GDF-
SNR. (b) Filled circles: gap SEGN−SEGDF versus SEGN . Solid:
UB (20). Dashed: approximation (19).

and upper bounded by

∆SE ≤ 1

ln(2)(GSNR+ 1/2)
(20)

which are plotted in Fig. 7(b) versus SEGN in dashed
and solid line, respectively, together with the exact gap
(filled circles). Curve (19) can be taken as a good
approximation to all shown cases. From the figure,
it is seen that using the standard GSNR we over-
estimate SE by less than 0.35 [b/s/Hz] at SEGN above
4 [b/s/Hz], and over-estimate SE by between 0.6 and
0.9 [b/s/Hz] at SEGN = 2 [b/s/Hz].

VI. LIMITS OF THE GDF

Unfortunately, when the amplified modes Ma and
amplified bandwidth Ba exceed the signal modes M
and signal occupied bandwidth B = NcBrx (possible
gaps between WDM channels are not counted), the



JOURNAL OF LIGHTWAVE TECHNOLOGY 9

-5 0 5

Launch Power  (dBm/ch)

0

1

2

3

4

5

6

7

8

9

S
N

R
 (

d
B

)

case A) 228x78km PDM-QPSK

GDF
GN

COP-GDF

COP sim

Figure 8. Case A) SNR versus launch power when amplifier
bandwidth is Ba = 60Brx, Brx = 34.17 GHz, and ASE unfiltered.
16 PDM-QPSK channels, spacing ∆f = 37.5 GHz. Symbols:
simulations with COP saturation power 16Pt. We show: the GSNR
(17) and the raw GDF (18) (where B → Brx and P → Pt); and
the COP-GDF, eqs. (23), (26).

GDF ceases to be accurate, and the amplifier fill-in
efficiency:

ηA ,
MNc

MaNa
(21)

with Na , Ba/Brx, plays a major role in setting
performance.

As a numerical example, we consider the 228x78km
16-channel single-mode (M = Ma = 1) PDM-QPSK
case study A, but now ASE is present over the whole
amplified (and simulated) bandwidth Ba = 60Brx,
with Brx = 34.17 GHz. In this system we have
ηA = 0.266. This small number should be checked
against the value ηA = 0.91 for case A in Fig. 4, where
ASE is filtered over the WDM bandwidth and the basic
GDF very well matches simulations.

Fig. 8 shows the per-tributary SNR versus launch
power per tributary Pt (saturation power is in general
P = MNcPt). Symbols are SSFM simulations. We
also see in solid line the GSNR (17) and the raw GDF
(18) (where in the referenced equations we set B →
Brx and P → Pt). We note that with a low ηA the GDF
ceases to well match the simulations. This is mostly
due to the fact that, because of the relevant out-of-band
ASE, the actual ASE-droop is larger and the actual
NLI-droop is smaller than what the GDF predicts. The
next sub-section explains the tricks necessary to modify
the basic GDF to cope with such a scenario.

A. The COP-GDF

Let Ps(N), Pa(N), Pr(N) be the total cumulated
signal, ASE and NLI redistribution power from the link

input up to the output of span N . Assuming equal per-
tributary powers, at the per-tributary receiver the SNR
is:

SNR = (
Ps(N)

MNc
)/(

Pa(N)

MaNa
+
Pr(N)

MNc
)

=
Ps(N)

Pa(N)ηA + Pr(N)
(22)

where we assumed that NLI is the same at all trib-
utaries and exists only over the same modes/spectral
range as the signal multiplex. It is evident from (22)
that SNR evaluation, differently from the basic GDF
(7), now requires a separate evaluation of both Pa(N)
and Pr(N). These can be calculated explicitly as
shown in (36) in Appendix A, yielding

SNR =

∏N
m=1 χm∑N

k=1[(χ
−1
a − 1)χ−1rk ηA + χ−1rk − 1]

∏N
m=k χm

(23)
which requires an explicit evaluation of the ASE droop
χa (30) and of the redistribution droop χrk (32).

Specifically, regarding χa = (1+SNR−1a1 )−1, this is
span-independent, since δPi = MaNahνFBrx, so that

SNRa1 ,
P

δPiL−1
=

MNcPt
MaNahνFBrxL−1

= ηAPt/β (24)

where we used definition of β (eq.(16) where B →
Brx), and the definition of ηA (21).

Regarding the NLI droop χrk = (1+SNR−1r1k)
−1 in

eq. (32), this is now span-dependent because, due to the
COP constraint, the out-of-band/mode ASE (O-ASE)
reduces the effective tributary power Pe that generates
NLI, more and more as the spans increase.

To find the correct per-tributary effective power
Pe(k) generating NLI at span k we reason as follows.
At each span k = 1, .., N , the total power that
effectively contributes to the NLI generation is not
P = MNcPt, but P minus the O-ASE power entering
span k, PASE,O(k), which we now calculate.

The locally generated output O-ASE at each ampli-
fier is β′ = βNa(Ma − M) + β(Na − Nc)M , i.e.,
the sum of the whole ASE over non-signal modes
and the out-of-band ASE on signal modes. With our
definitions, this simplifies to β′ = β( 1

ηA
− 1)MNc.

Hence the cumulated (and drooped) O-ASE up to span
k is

PASE,O(k) , β′(χ2 · ·χk−1+χ3 · ·χk−1+ ..+χk−1+1)

where the final 1 is due to the O-ASE generated at
amplifier k−1 which is not drooped. By approximating
each droop as just the ASE droop: χj ∼= χa we
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Figure 9. Case C) SNR versus launch power Pt, Cfr. Fig.
4 (15-channel 49Gb PDM-QPSK 40x120km NZDSF link with
ηA = 0.98). ASE filtered on WDM bandwidth, but now channel
spacing has doubled to ∆f = 100 GHz, yielding an amplifier
fill-in efficiency ηA = 0.49. Symbols: simulations with COP
saturation power 15Pt. We show: the basic GDF (18) where
B → Brx = 49GHz and P → Pt, and the COP-GDF, eq.
(23),(26).

thus finally get the effective power and the single-span
nonlinear SNR as{

Pe(k) = P−PASE,O(k)
MNc

∼= Pt − β( 1
ηA
− 1)1−χ

k−1
a

1−χa

SNRr1k = P
δPrk
≡ Pt

αNLPe(k)3
.

(25)
In summary, the resulting improved SNR formula,

which we call the COP-GDF, is calculated by eq. (23),
where using (24) and (25) we have{

χ−1a = 1 + β/(ηAPt)

χ−1rk
∼= 1 + αNLP

2
t

(
1− β

Pt
( 1
ηA
− 1)1−χ

k−1
a

1−χa

)3 .

(26)

For case study A, Fig. 8 also reports the COP-GDF
and shows that it well matches simulations. Similar
results are obtained for case B and are not reported.

We show in Fig. 9 for case study C what happens
when channel spacing is doubled to 100 GHz with
respect to Fig. 4, and thus the amplifier fill-in efficiency
is halved to ηA = 0.49. We see that the basic GDF
formula badly fails, but the COP-GDF well matches
the SSFM simulations.

VII. THE CONSTANT-GAIN CASE

For CG amplifiers, the extension of the GN model
to include the nonlinear signal-noise interaction, and
its induced signal power depletion, was tackled in [28]
with a rigorous end-to-end RP1 model (which inspired
the COP-amplifier end-to-end RP1 model in [10]), and
heuristically in [27]. While the RP1 model in [28] has
the same intrinsic inability as the model in [10] to
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Figure 10. Case A) SNR versus launch power Pt when amplifier
bandwidth is Ba = 60∆f , ∆f = 37.5 GHz, and ASE unfiltered,
as in Fig. 8. Symbols: simulations for both CG and COP. We show:
the GSNR (black dash); the T1 and T2 formulas, eq. (27),(28) (blue
dash-dot); and the CG-GDF, eq. (23),(29) (purple, solid).

cope with the NLI-induced droop at large power, the
heuristic models in [27] do go beyond the RP1 limits.
We next review such models, and introduce our new
contribution, namely the CG-GDF, that uses the Turin’s
group physical intuitions [27] to extend the COP-GDF
ideas and yield a very accurate SNR estimation formula
even for the CG case.

The CG-SNR formulas in [27] are the following:
T1 formula: it calculates SNR = Pt

Nβ+PNLI
with

PNLI = αNL

N−1∑
n=0

(Pt + nβ)3 (27)

that approximately accounts for ASE-signal nonlinear
interaction by suitably modifying the estimated NLI
variance [27, eq. (5)]3. Note that this formula assumes
that the ASE useful for nonlinear calculations is the one
over the signal bandwidth, since O-ASE is ineffective
for CG amplifiers.

T2 formula: it calculates

SNR =
Pt − PNLI
Nβ + PNLI

(28)

as first proposed in [34], with PNLI as in (27).
For case study A), Fig. 10 reports the tributary

SNR versus launch power Pt for both CG and COP
amplifiers, when amplifier bandwidth is Ba = 60Brx
and ASE is unfiltered, same as in Fig. 8. Symbols
are the simulations for both CG and COP amplifiers,
the dashed curve is the GSNR, the dash-dotted curves
are the T1 and T2 formulas eq. (27), (28), and the

3Summation in [27] runs 1 to N , but in our simulations the
launched power is without ASE, hence we sum 0 to N − 1.
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solid curve is the new CG-GDF formula that we will
describe below.

Regarding SSFM simulations, we first note a shift
of the CG SNR with respect to the COP SNR, much
in line with the results in [3, Fig 2(b)]. The low-power
SNR of the CG case is larger than the COP case
because it does not experience ASE-induced droop;
the high-power SNR of the CG case is smaller than
the COP case because of the span-by-span increase of
power in CG that generates nonlinearity.

Regarding the T-formulas (T1, T2), we note that
T1 overestimates the simulated CG SNR, while T2
with depletion under-estimates the CG SNR. All the
CG curves (simulations, T-formulas, CG-GDF) at low
powers tend to coincide with the theoretical GSNR
curve, as they should.

A. The CG-GDF

The trouble with the T-formulas is that they try to
model a strongly nonlinear system with an amended
end-to-end RP1 system. The amendments, however, do
contain the correct physical intuition. So the key to
the new CG-GDF is to use the intuition [27] about
the effective power for NLI generation, eq. (27), but
with a re-normalized RP1 per-span model instead of
the end-to-end RP1 GN model.

In CG mode we can consider only the ASE and NLI
on the per-tributary bandwidth (O-ASE does not affect
the SNR). The power-flow diagram is again given by
Fig. 1(d), where now we have χa = 1, i.e., no ASE
droop, and δPiL−1 ≡ β. As in (27), we now let δPrk =
αNL(Pt + (k − 1)β)3.

The new SNR formula, which we call the CG-GDF,
is thus calculated by eq. (23), where we now use χk =
χrk, ηA = 1, and replace{

(χ−1a − 1)→ β/Pt
χ−1rk → 1 + αNLP

2
t (1 + (k − 1) βPt

)3.
(29)

In the example of case A), Fig. 10 shows an excellent
match between CG-simulations and the CG-GDF. A
similarly good match is obtained in the remaining cases
B and C.

VIII. CONCLUSIONS

In this paper, we presented a new analytical model
to fully theoretically support the GDF disclosed by
Antona et al. in [2], [3], which includes various fiber
power-redistribution mechanisms such as Kerr nonlin-
earity, GAWBS, and internal and external crosstalk. We
verified the GDF against simulations in three published
case studies drawn from [3], [10].

We provided upper and lower bounds to the GDF.
Using the tightest upper-bound we provided analytical

expressions of the SNR gap from the GSNR to the
GDF-SNR, and the corresponding Shannon spectral
efficiency (SE) gap. We showed that the gaps can be
effectively expressed only in terms of the GSNR and
its corresponding SE, SEGN . We showed that the SE
gap (per mode) is bounded between 0.6 and 0.9 b/s/Hz
when SEGN is as low as 2 b/s/Hz, and it decreases as
SEGN increases, e.g., it is less than 0.2 b/s/Hz when
the SEGN is above 6 b/s/Hz.

We extended the GDF to the case where ASE
has larger bandwidth/mode occupancy than the signal.
The resulting COP-GDF equation depends only on
the amplifier fill-in efficiency ηA, eq. (21), and was
found to very well match simulations in all considered
cases. Finally, we extended the GDF theory to include
constant-gain amplifier chains, and we derived the new
CG-GDF SNR expression that matches simulations
better than any other previously known formula.

One of the key theoretical results is that the end-
to-end model underlying all GDF expressions is a
concatenation of per-span RP1 models with end-span
power renormalization. This fact allows the GDFs to
well reproduce the SNR of highly nonlinear systems
even at very low SNR, well beyond the RP1 limit
underlying the GN model based on which the GSNR
is calculated. Appendix B provides a novel analytical
method (inspired by the GDF) of monitoring when a
given transmission line ceases to be well modeled by
an RP1 system.

APPENDIX A: GDF FOR INHOMOGENEOUS SPANS

The generalization of the GDF model to the inhomo-
geneous case goes as follows. The k-th span now has
input power Pk−1, fiber span loss Lk < 1 and an end-
span amplifier operated in COP mode with fixed output
power Pk, k = 0, ..., N (where P0 is the launched
power) and a gain Gk which, in absence of ASE-
induced droop, would be Gk = Pk/(Pk−1Lk). With
ASE droop the gain is smaller by a factor χak < 1.
The power flow diagram for the inhomogeneous case is
similar to the homogenous case of Fig. 1, where i) all
quantities are span-k dependent; ii) the multiplicative
output factor in diagrams (c), (d) is now χakPk/Pk−1
instead of only χa; iii) in diagram (d) the input sub-
block has input/output power Pk−1, while the output
sub-block has Pk−1 in and Pk out.

From the modified diagram (d) we thus derive:
1) the power balance at the output sub-block:

(Pk−1 + δPikL−1k )χak
Pk

Pk−1
= Pk, which yields

χak = (1 +
δPikL−1k
Pk−1

)−1 , (1 + SNR−1a1k)
−1 (30)
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where we implicitly defined the SNR degraded by ASE
at the single amplifier as

SNRa1k ,
Pk−1

δPikL−1k
. (31)

2) the power balance at the input sub-block: (Pk−1+
δPrk)χrk = Pk−1, which yields

χrk = (1 +
δPrk
Pk−1

)−1 , (1 + SNR−1r1k)
−1 (32)

where we implicitly defined the SNR degraded by
power redistribution at the single amplifier as

SNRr1k ,
Pk−1
δPrk

. (33)

Define the span total droop as the product of addition
and redistribution droops: χk , χrkχak. The power
block diagram of the k−th span in (modified) diagram
(d) shows that the total span power-gain seen by the
transiting signal is (Pk/Pk−1)χk, hence the desired
multiplex signal power at the output of the N -th
amplifier is

Ps(N) = P0

N∏
k=1

(Pk/Pk−1)χk = PN

N∏
k=1

χk

so that the total noise power after N spans is Pa(N)+
Pr(N) = PN (1−

∏N
k=1 χk).

Hence the OSNR at the output of the chain from
amplifiers 1 to N , i.e., the ratio of total multiplex signal
power to total noise power at the output of the N -th
amplifier, is obtained as

OSNR =
1[∏N

k=1(1 + 1
SNRa1k

)(1 + 1
SNRr1k

)
]
− 1

(34)
which leads to the general product rule for inverse
droops, eq. (9) in the main text.

For the calculation of the per-tributary SNR it is
necessary instead to have the individual expression of
Pa(N), Pr(N), as seen in eq. (22) in the main text.
It is possible to read off the modified diagram (d) the
update rule for useful signal, additive and redistribution
noise at any span k as:

Ps(k) = Ps(k − 1)χk(Pk/Pk−1)

Pa(k) = (Pa(k − 1) + δPikL−1k χ−1rk )χk(Pk/Pk−1)
(35)

Pr(k) = (Pr(k − 1) + δPrk)χk(Pk/Pk−1)

with initial conditions: Ps(0) = P0, Pa(0) = Pr(0) =
0. The second and third recursions are of the kind:
u(k) = (u(k−1)+bk)ak, whose general solution when
u(0) = 0 is: u(N) =

∑N
k=1 bk

∏N
m=k am.

Hence, using δPikL−1k ≡ Pk−1(χ
−1
ak −1) and δPrk ≡

Pk−1(χ
−1
rk −1) from (30),(32), the formal solutions are

Ps(N) = PN

N∏
m=1

χm

Pa(N) = PN

N∑
k=1

(χ−1ak − 1)χ−1rk

N∏
m=k

χm (36)

Pr(N) = PN

N∑
k=1

(χ−1rk − 1)

N∏
m=k

χm

Although this closed-form solution is pleasing, the
recursion (35) is the one we use for calculations.

APPENDIX B: ON THE SPAN-AVERAGED NLI
COEFFICIENT

In this appendix we discuss the use in the GDF
of the span-averaged NLI coefficient in place of the
single-span coefficient αNL, as a trick to approximately
include NLI span-by-span correlations that would oth-
erwise be completely neglected by the intrinsically
incoherent GDF model i.e., the block diagram in Fig.
1d.

Consider a homogeneous link composed of N iden-
tical spans. When power P and number of spans N are
“sufficiently small” (and this statement will be made
precise in section B.2 of this appendix), the end-to-
end link is well described by an RP1 model, and the
end-to-end NLI coefficient aNL(N) can be analytically
calculated by, e.g., the EGN formula [16]–[19]. Such
a coefficient is not merely N times the single-span co-
efficient αNL (again possibly calculated by the EGN),
because of span correlations. The span-averaged NLI
coefficient is defined as αNL , aNL(N)/N and is
larger than αNL.

Consider now the GDF model. Each span is mod-
eled as an RP1 system with end-span power renor-
malization. When the end-to-end link behaves as an
RP1 system and the SNR is large enough (such that
COP and CG amplifications are equivalent), using the
span average NLI coefficient in the GDF (i.e., in the
NLI perturbation δPr = αNLP

3 used to define the
nonlinear droop χr) gives the same correct SNR as
that predicted by the EGN model. This is the main
reason for choosing αNL in place of αNL in the GDF.

We divide the rest of this appendix into two parts.
The first shows how the “incoherent” GDF (i.e., using
αNL) performs compared to the “coherent” GDF that
uses αNL as in the main text (in the main text we
used the same symbol αNL also for the span-averaged
value). The second discusses when power P and num-
ber of spans N can be considered “sufficiently small”
for the end-to-end link to behave as an RP1 system,
which sets a limit to the validity of the RP1 assumption.
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Figure 11. SNR versus power P for the 40x120km PDM-QPSK
system (Cfr. case C in main text) for: (solid blue, label NN):
homogeneous NZDSF line using span-averaged NLI coefficient in
GDF (same curve as in Fig. 5); (dashed blue, label “Incoh NN”):
same as previous but using the single-span NLI coefficient in GDF;
(red solid, label “SN”) line with 20 SMF spans + 20 NZDSF
spans, using span-averaged NLI coefficient in GDF; (dashed red,
label “Incoh SN”): same as previous but using the single-span
NLI coefficients for NZDSF and SMF in GDF; (purple solid, label
“NS”) line with 20 NZDSF spans + 20 SMF spans, using span-
averaged NLI coefficient in GDF. Circles with corresponding colors
denote checks by SSFM simulations.

B1. “Incoherent” vs “Coherent” GDF

We first concentrate on homogeneous links, i.e.,
those with identical spans. For the 40-NZDSF-span
line with 15 PDM-QPSK channels at 49 Gbaud and
50 GHz spacing of case C in the main text, Fig. 11
shows in blue solid line the SNR calculated with the
GDF using the span-averaged NLI coefficient, same
curve as in Fig. 4 and Fig. 5 in main text. The
corresponding “incoherent” GDF using the single-span
NLI coefficient is shown in blue dashed line in Fig. 11
(label “Incoh NN”). We note how off the “incoherent”
GDF predictions are, and thus how effective the trick of
using the span-averaged coefficient is. Similar results
are obtained in the homogeneous links of cases A and
B in Fig. 4, but not reported.

Next we consider how the trick of using the
span-averaged NLI coefficient in the GDF works for
inhomogeneous links. As a variation of case C, we
considered various arrangements of the 40 spans where
the fiber type for each span could be either NZDSF
or single-mode fiber (SMF) with loss 0.22 dB/km,
fiber NL coefficient n2 = 2.5 · 10−20 m2/W, effective
area 80 µm², dispersion 17 ps/nm/km. We present
the case of 20 SMF spans followed by 20 NZDSF
spans (label “SN”) and the opposite arrangement
“NS”, where we found the largest discrepancy of the
“coherent GDF” with simulations. For both the SN
and NS cases the number of SSFM symbols was

increased to 25600. Solid red and magenta curves
in Fig. 11 show the corresponding GDF curves with
span-averaged NLI coefficient (αNL = 1.03 · 10−3

mW−2 for NS and αNL = 1.28 · 10−3 mW−2

for SN ), which even in this worst case show a
reasonable match with their corresponding SSFM
simulations (circles). The largest discrepancy with
simulations is in the NS case, and is 0.2dB at most.
The dashed red curve shows instead the “incoherent”
GDF for both SN and NS cases, given by SNR =

(
[(

1 + β
P

) (
1 + αNL,NP

2
)1/2 (

1 + αNL,SP
2
)1/2]N−

1)−1, with αNL,N = 7.29 · 10−4 and
αNL,S = 1.25 · 10−4 mW−2 the single-span NLI
coefficients for NZDSF and SMF, respectively. As
seen, again such “incoherent” GDF is far off the
corresponding SSFM simulations.

In conclusion, the trick of the span-average NLI
coefficient makes the GDF work well in homogeneous
links and in some inhomogeneous links, although more
investigation about inhomogeneous links is necessary.

B2. Monitoring the end-to-end RP1 assumption

How small should the power and the number of
spans be for the RP1 assumption to hold?

The end-to-end NLI coefficient aNL obtained by
the EGN formula can be verified by split-step Fourier
method (SSFM) simulations when ASE is absent (note
that without ASE, COP amplifiers behave exactly as
CG amplifiers). The theoretical SNR at the end of the
link should be according to the EGN model

SNR =
1

aNLP 2
. (37)

The estimated âNL is routinely obtained from the
samples of the received constellation scatter diagram.

We ran SSFM simulations of the homogeneous
PDM-QPSK system in [3], case A. Fig. 12 shows
with stars the estimated span-averaged NLI coefficient4

αNL(P ), i.e., âNL/N , plotted versus P for various
span numbers N . We note that the estimated αNL(P )
sharply increases with power P , while according to the
RP1 theory it should be power independent. Indeed,
its asymptotic low power value does coincide with
the αNL value obtained analytically from the EGN
model. However, a marked difference of the estimated
αNL(P ) from the low-power value is a symptom
of the failure of the RP1 assumption: higher-order
perturbations are setting in.

4Please note the use of boldface, to distinguish αNL(P ) which
is P dependent, from the span-average coefficient αNL which is
power independent.
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Figure 12. dB-value of span-averaged power-dependent NLI coef-
ficient αNL(P ) [mW−2] in eq. (39) versus launch power P (thick
solid) and its estimate from SSFM simulated scatter diagrams in
absence of ASE (crosses). SSFM step-size with nonlinear phase
5 · 10−4(rad). EGN values of span-average NLI coefficient used
in (39): αNL =[-34.44, -34.07, -33.87, -33.72, -33.62] (dB) for
N =[50, 100, 150, 200, 230] spans.

The analytical solid curves in Fig. 12, which well
match simulations, plot instead an analytical for-
mula for the power-dependent span-averaged coeffi-
cient which we derive below, based on the GDF model
(which, as stated, goes beyond the end-to-end RP1
range of validity).

According to the NLI-only GDF, the received SNR
is

SNR =
PχNr

P (1− χNr )
,

1

NαNL(P )P 2
(38)

with χr = (1+αNLP
2)−1, and we force it to be equal

to an EGN-like SNR using a power-dependent span-
averaged NLI coefficient, whose explicit expression
thus is

αNL(P ) =
(1 + αNLP

2)N − 1

NP 2
(39)

and is our novel analytical formula for the power-
dependent span-averaged coefficient. We may use it to
specify the range of validity of the RP1 assumption, as
follows.

While the “RP1” SNR (37) plotted versus P is
a straight line with slope -2 in a dB-dB scale, the
GDF (38) forecasts without ASE a more than linear
decrease. We may declare the largest power P ∗ below
which the RP1 assumption holds to be that power
at which αNL(P ∗) = 1.1αNL (using, e.g., a 10%
increase from RP1 value). Such a power approximately
is P ∗ ∼=

√
0.2

(N−1)αNL
. So the RP1 assumption well

holds if (N − 1)P 2 . 0.2/αNL and the bound just
depends on the theoretical span-averaged coefficient

αNL. As a numerical example, refer to the 40-span
homogeneous case C shown in Fig. 5, where the SNR
predicted by both GDF and the RP1 COP-EGN model
in [10] are shown in blue lines. The span-average
coefficient was αNL = 1.83e − 3, so that P ∗ ∼=2.24
dBm, which is where roughly the COP-EGN curve
significantly departs from the more correct GDF,
exactly because of the failure of the end-to-end RP1
assumption.
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