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Abstract—We review the fundamentals of the recently pro-
posed Generalized Droop model and highlight its use in power
efficiency optimization of long-haul low-SNR space-division mul-
tiplexed submarine links.
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I. INTRODUCTION

Optical amplifiers in submarine links are normally op-
erated in constant output power (COP) mode [1]. The

capacity of COP submarine links is limited because of the
maximum end-to-end electrical voltage used to feed the am-
plifiers laser pumps from the shores [2], which in turn implies
a limit on the per-amplifier optical pump power, and thus
a limit on the available amplifier total optical output power
(often called saturation power) [3]. This is the major reason
why next generation submarine links will use space division
multiplexing (SDM) [4] to make the best use of the available
amplifiers power, and thus in turn of the available signal power
[5]–[8]. The reason is readily understood from the Shannon
capacity of the link

C = NmNcBc2 log2(1 + ΓSNR) (1)

where: Nm is the number of spatial modes (i.e., parallel 2-
polarization single-mode fibers in a first implementation [9],
[10], or cores in multicore fibers (MCF) in a second phase
[11]–[13]); Nc the number of wavelength division multiplexed
(WDM) channels of bandwidth Bc on each mode; SNR their
received signal to noise ratio; and Γ < 1 is an implementation
SNR-penalty called gap to capacity. Capacity formula (1)
assumes the additive Gaussian mode/wavelength channels are
identical and independent, i.e., there is no multi-input multi-
output processing at the receiver [14].

From (1) we easily see that instead of logarithmically
increasing C by increasing signal power/SNR, it is more
power-efficient to increase C by linearly increasing the number
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Figure 1. Signal power and accumulated ASE power at amplifier output
normalized to amplifier total output power Po (left axis) and SNR (right
axis) versus number of crossed amplifiers (i.e., spans). Solid lines: COP
link, Dashed lines: CG link. Ratio of total amplifier input power to total
equivalent-power of ASE generated at the amplifier: SNR1 = 24.5dB .
Note that, for any SNR1, the SNR gap between CG and COP links becomes
important only at SNR below 6-7 dB .

of parallel channels NmNc [15], [16], by increasing the SDM
channels and enlarging the occupied bandwidth [11].

Therefore future generation submarine SDM links will
likely work at powers on each spatial-mode several dB lower
than the nonlinear-SNR maximizing power [7], [10], such that
fiber nonlinear interference (NLI) will be of minor concern [7],
[8], [17], and amplified spontaneous emission (ASE) noise
will be the dominant impairment, with the modal crosstalk
(XT) in MCF [12], [13], [18] and the guided acoustic-wave
Brillouin scattering (GAWBS) noise [19]–[21] in each spatial
mode being other relevant impairments [22], [23].

It was recently shown that in the low-SNR regime envisaged
for future long-haul SDM submarine COP links the standard
inverse-of-sum-of-inverses accumulation rule valid for the
generalized-SNR (GSNR) [24], [25], [26, eq. (8)] in links
with constant gain (CG) amplifiers (hereafter referred to as CG
links) ceases to be accurate [5], [6], and a new accumulation
rule, known as the generalized-droop (GD) formula, applies
[22], [26]–[31]. The physical reason is the existence of a gain
decrease (a.k.a. droop [5], [6]) at each amplifier triggered
by i) the local injection of ASE (and other noises such as
XT/GAWBS) and ii) the COP amplifying mode [3].

As an example, Fig. 1 illustrates the effect of gain droop
in a link with amplifier saturation power Po on both the
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Figure 2. (a) Generic span k of an SDM submarine link with end-span
COP amplifier; (b) Span power diagram; (c) Equivalent diagram with loss
factored out, and ideal fiber (thick line); (d) ideal fiber in (c) replaced by an
add-and-attenuate block; (e) ideal fiber in (c) replaced by an attenuate-and-
add block. Po: repeater output power (on all modes); A > 1: span loss; χa:
addition droop; χr : redistribution droop.

useful signal and the accumulated ASE power as we increase
the number of crossed amplifiers, both in a COP link (solid
lines) and in a CG link (dashed lines). In the COP link the
accumulated ASE power grows at the expense of the signal
power. In the figure, the gap in SNR between the CG link
(i.e., the GSNR) and the COP link exceeds 0.5dB at GSNRs
below 6 dB (Cfr [29, Fig. 6]). Hence, although gain droop
has been known for a long time [3], it becomes of much
greater concern in modern low-SNR SDM links, which can
properly work thanks to coherent detection and powerful error
correction [6].

The GD formula has been extensively tested for low-SNR
submarine SDM links and compared to experimental results
with proved good accuracy [23], [31]–[34]. This paper will
review the analytical model underlying the GD formula [28]–
[31] and show its use in the optimization of SDM submarine
links.

The paper is organized as follows. Sec. II derives the GD
model and its cascading rule, and explains the minor differ-
ences between the two derivations in [29] and [31]. Sec. III
shows that the GD cascading rule leads to a disaggregation of
SNR effects different than the one routinely used for the GSNR.
Sec. IV derives a new simplified expression of the COP-GD
formula, i.e., the GD SNR formula when not all the amplifier
bandwidth is occupied by signals. Sec. V derives several
new results from the GD formula applicable to optimization
of power efficiency of submarine SDM links. Finally Sec.
VI summarizes our findings. The Appendices contain all the
detailed derivations of the new results in the main text.

This paper is an extended version of the invited conference
paper [37].

II. GENERALIZED DROOP MODEL

Fig. 2(a) shows the considered physical SDM COP link
made of Ns identical spans with span loss A > 1 and end-

span frequency-flat amplifier with gain G and COP Po. The
generic span power flow diagram is shown in Fig. 2(b). Here

δPa = Nmhf0BaF (2)

is the amplifier-input equivalent ASE power generated inside
the Nm-mode amplifier of bandwidth Ba ≡ NaBc, with Na
the number of ASE-occupied slots of bandwidth Bc, F the
frequency-flat noise figure, h Planck’s constant and f0 the
WDM central frequency, and χa < 1 is the net span gain,
also called the ASE(-induced) gain-droop. Fig. 2(c) shows an
equivalent block diagram where span loss is “factored-out”.
Droop exists because of the COP constraint, which from Fig.
2 (c) reads as: (Po + δPaA)χa = Po and yields the ASE
gain-droop expression

χa = (1 + SNR−1
1a )−1 (3)

where we defined

SNR1a ,
Po/A

δPa
(4)

as the ratio of total amplifier input power to total equivalent-
power of ASE generated at the amplifier. Once fiber loss is
factored out, the fiber becomes an identity block, indicated by
a thick line in Fig. 2(c). Indeed several power-conserving noise
processes (such as NLI, XT and GAWBS) may take place
during fiber propagation, causing a rearrangement of power
at a constant total power Po. To account for them, Fig. 2(d)
replaces the identity block by an input sub-block where first
a rearrangement perturbation δPr is added to Po and then
multiplication by a rearrangement droop χr < 1 re-scales the
sum to Po, thus conserving power at each span. From diagram
(d) the power-conservation constraint is: (Po + δPr)χr = Po,
which yields [29]:

χr = (1 +
δPr
Po

)−1. (5)

An alternative choice is shown in diagram (e), where one
first attenuates Po by χr and then adds the perturbation δPr,
getting instead [28], [30], [31]:

χr = (1− δPr
Po

). (6)

Let’s define the SNR degraded by δPr generated in a single
fiber span as

SNR1r ,
Po
δPr

. (7)

Since this ratio is normally large (> 30dB), in practice
diagrams (d) and (e) yield the same numerical results. How-
ever, in diagram (d) the rearrangement block is identical to
the amplifier block, which leads to a more elegant SNR
expression. In both diagrams (d) and (e) the net span gain
(i.e., droop) is χ = χrχa.

In the COP link, the received (RX) signal power after
Ns identical spans is Ps(Ns) = Poχ

Ns , and by the COP
constraint the RX ASE plus rearrangement noise power is
Pa(Ns) + Pr(Ns) = Po(1 − χNs). Hence the GD formula
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Figure 3. (Top) Span block diagram with multiple rearrangement sources.
(Bottom) quasi-equivalent scheme where each source has its own COP
rearrangement block.

for the RX SNR is (from now on we will use diagram (d))
SNR = Ps(Ns)/(Pa(Ns) + Pr(Ns)), or explicitly:

SNR =
1

[(1 + SNR−1
1a )(1 + SNR−1

1r )]Ns − 1
. (8)

For example, the signal power, ASE power and SNR curves
in Fig. 1 were obtained by the above formulas when only ASE
is present and SNR1 ≡ SNR1a = 24.5dB.

As long as power, gain and noise figure are uniform over
frequency and modes, and all amplifier modes/channels are
populated by signals (i.e., Na = Nc), the GD-SNR (8) is also
the per-channel RX SNR. The GD formula can be generalized
to non-homogeneous links by the following cascading rule
[27], [29]:

1 + SNR−1 =

Ns∏
k=1

(
1 + SNR−1

1ak

) (
1 + SNR−1

1rk

)
(9)

and in the “large SNR” regime where we can approximate the
above product as 1 +

∑N
k=1(SNR−1

1ak +SNR−1
1rk) we retrieve

the standard SNR cascading formula for CG links.

III. DISAGGREGATION OF EFFECTS

Fig. 3(top) shows the span block diagram according to the
GD model in case that a few rearrangement perturbations
r1, r2, ... (such as NLI, GAWBS and XT) are simultaneously
present and add up in the rearrangement block. A numerically
essentially equivalent scheme is that of the bottom diagram,
where we insert a COP rearrangement block for each per-
turbation. The equivalence is justified by the following tight
upper-bound

1 +
δPr1 + δPr2 + ...

Po︸ ︷︷ ︸
χ−1
r

. (1 +
δPr1
Po

)︸ ︷︷ ︸
χ−1
r1

(1 +
δPr2
Po

)︸ ︷︷ ︸
χ−1
r2

... (10)

since the ratios Po/δPri are normally large (> 30dB). The
bottom scheme is however more revealing, since then the
concatenation of all spans block diagrams in a COP line yields
a total line block diagram that is independent of the order of
collected effects. Mathematically, with the bottom scheme, the
span k inverse rearrangement droop χ−1

rk is the product of the
droops of the individual effects:(

1 + SNR−1
1rk

)
=
(
1 + SNR−1

1r1k

) (
1 + SNR−1

1r2k

)
· . . .

and thus the end-to-end inverse gain droop after Ns spans is
obtained from the GD cascading rule (9) as [26, eq. (10)]:

1 + SNR−1 =

Ns∏
k=1

(
1 + SNR−1

1ak

)
·

·
Ns∏
k=1

(
1 + SNR−1

1r1k

) Ns∏
k=1

(
1 + SNR−1

1r2k

)
· . . .

≡
∏
e

(1 + SNR−1
e ) (11)

where for each impairing effect e = {a, r1, r2, ....} we defined
the associated end-to-end inverse gain droop as

1 + SNR−1
e ,

Ns∏
k=1

(
1 + SNR−1

1ek

)
. (12)

Eq. (11) corresponds to a rearrangement of the blocks in
the line where we lump together all similar effects.

A. Onion Peeling

The relation (11) allows the experimentalist to “peel-off”
the individual effects from the measured inverse droop (1 +
SNR−1). We call this procedure “onion peeling”.

One first removes the ASE contribution, whose SNR1a =
Po

δPaA
= χ−1

a − 1 is easily measurable, thus giving us
an estimate of (1 + SNR−1

a ). Then one removes the NLI
contribution by computing SNR1NLI = Pc

αNLP 3
c

, where
Pc = Po/(NmNc) is the launched power per channel and
αNL(Ns) is the average per-span nonlinear coefficient of the
Ns-span link [29, Appendix B], which we can estimate, e.g.,
from the appropriate GN/EGN model [38], [39]. We thus have
an estimate of (1 +SNR−1

NLI). Then the leftover contribution

1 + SNR−1
r ,

1 + SNR−1

(1 + SNR−1
a )(1 + SNR−1

NLI)
(13)

can be analyzed to see, e.g., if it fits a crosstalk/GAWBS
model, whose crosstalk coefficient γx can be estimated from
the following relation (` is the known span length):

γx` ≡ SNR−1
1r = (1 + SNR−1

r )1/Ns − 1 (14)

when this estimated quantity is power independent. Estima-
tions at every peeling layer must be accurate, or else a left-over
estimation error will be present that might mask the leftover
SNRr (13). Onion peeling was used for instance in [22],
[23], [32] (and likely in [21]) to estimate the GAWBS induced
penalty and the GAWBS coefficient when operating at very
low SNR. More discussion on onion peeling can be found in
[26].

IV. GD EXTENSION TO ANY AMPLIFIER FILL-IN

Assuming that only signal-carrying modes are amplified, the
amplifier fill-in factor is known as bandwidth occupancy [26]
and is defined as ηA , Nc/Na ≤ 1, where Ba = NaBc is the
amplifier bandwidth, spanning Na channel slots of bandwidth
Bc. When this factor is not unity, the per-channel RX SNR is:

SNR = Ps(Ns)/(ηAPa(Ns) + Pr(Ns)) (15)
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since now only the in-band ASE ηAPa matters, and SNR
does not coincide anymore with the GD-SNR (8). We now
need an explicit evaluation of both ASE power Pa(Ns) and
rearrangement power Pr(Ns). The detailed derivation of
the SNR, called the COP-GD formula, is provided in [29].
The derivation is involved because the span-k rearrangement
perturbation δPr,k now depends on the total in-band power
at the end of span k − 1, which decreases down the line.
We next derive a novel, simple approximation to the exact
model, based on the use of a span-independent effective total
in-band power. The resulting modified COP-GD formula is
much simpler than the rigorous COP-GD [29, eq. (23)], but
numerically coincident with it.

A. Simplified COP-GD formula

We tackle here the homogeneous link case for simplicity,
while the inhomogeneous case can be treated as in [29]. From
the block diagram in Fig. 2 and assuming the perturbation δPr
and thus χr are span independent, we get the following update
equations for ASE and rearrangement powers out of span k
[29, eq. (35)]:

Pa(k) = (Pa(k − 1) + δPaAχ
−1
r )χ (16)

Pr(k) = (Pr(k − 1) + δPr)χ (17)

whose solution at zero starting conditions after n spans is

Pa(n) = Po(1− χa)
1− χn

1− χ
(18)

Pr(n) = δPrχ
1− χn

1− χ
(19)

where, from (3),(4) we have χ−1
a = 1 + δPaA

Po
, and thus we

replaced δPaAχa with Po(1− χa) in (18).
Now, the “effective” power that generates the rearrangement

perturbation at span n is saturation power minus out of band
power at span n− 1: Po− (1− ηA)Pa(n− 1). If, for the sole
computation of such effective power, we upper-bound

Pa(n) ≤ Po(1− χna) (20)

(which amounts to pretending that ASE in (18) is drooped by
χa instead of the true χ = χaχr, a quite reasonable approxi-
mation for ASE power, hence we expect the bound to be tight),
then the effective total power is Po(1− (1− ηA)(1−χn−1

a )).
Hence the effective per-channel power generating perturbation
at span n is lower-bounded by 1

Pe(n) ≥ Pc(1− (1− ηA)(1− χn−1
a )) (21)

where Pc = Po/(NmNc) is the per-channel launch power,
and equality holds at ηA = 1 since Pe cannot be larger than

1In [29] we defined β , δPaA/Na/Nm as the per-channel generated out-
put ASE power when the gain equals A, which by (3) is β = PcηAχa/(1−
χa). Hence (21) becomes: Pe(n) ≥ Pc − βχa( 1

ηA
− 1)

1−χn−1
a

1−χa
, which is

eq. (25) in [29], except that βχa here was erroneously replaced by β there,
without numerical consequences since χa ∼= 1.

Pc. The span-independent effective power is defined as the
average of the (tight) lower-bound (21) over n ∈ {1, .., Ns}:

P e , Pc

[
1− (1− ηA)

(
1− 1− χNs

a

Ns(1− χa)

)]
. (22)

Finally, the XT/GAWBS and NLI perturbations are com-
puted as

δPXT = γx`P e (23)

δPNLI = αNLP
3

e (24)

where: if XT is the crosstalk (dB/km), then the crosstalk
coefficient is γx , 10XT/10(1/km), with ` (km) the span
length; and αNL is the average per-span nonlinear coefficient
of the Ns-span link [29, Appendix B].

Using now (18),(19) in (15), after some algebra (Appendix
1) we get the simplified COP-GD formula as

SNR =
1[

ηA + (1− ηA)χ
−1
r −1
χ−1−1

]
(χ−Ns − 1)

(25)

where χ = χaχr, χ
−1
a = 1 + δPaA

Po
, and χ−1

r = 1 +
δPXT +δPNLI

Pc
. We verified that Eq. (25) numerically coincides

to several decimal digits with the exact COP-GD [29, eq. (23)]
in all the cases tested in [29], but is much easier to evaluate.

Using the same average effective power trick, Appendix
2 shows how to simplify also the CG-GD formula [29, eq.
(29),(23)] with numerically coinciding results, reproducing,
e.g., the CG-GDF curve in [29, Fig.10]. So we now also
have a simple closed-form SNR expression for CG links with
ASE+NLI that improves on the low-SNR heuristic model in
[40].

Unfortunately Eq. (25) does not satisfy the GD cascading
rule (9). However Appendix 1 shows that the GD cascading
rule still applies if we use instead the following tight upper-
bound to the COP-GD SNR

SNRUB =
1

χ−Ns
r

(
1 + ηA(χ−Ns

a − 1)
)
− 1

(26)

which is exact at ηA = 1 for all Ns, and at Ns = 1 for all ηA.
Eq. (26) amounts to isolate the in-band contribution of ASE
induced droop, then to use the GD formula in the channel
band. The approximation error SNRUB/SNR is worst when
Ns is large and ηA is small, at fixed SNR1a (4) and SNR1r

(7). The larger the SNR1’s, the smaller the error. SNR1a

is more critical than SNR1r (i.e., if one of the two must be
small, better be SNRr1). The error in dB decreases linearly
with Ns. For example, at SNR1a = 25dB (on the small side,
cfr. Fig. 1) and SNR1r = 30dB (typical), we get an error
0.36dB at ηA = 0.5 and Ns = 300 spans. When both SNR1

are 30dB the error goes down to 0.22dB at (ηA = 0.5, Ns =
300) and to 0.11dB at (ηA = 0.5, Ns = 150). So overall
the error is quite small, and eq. (26) can be taken as a safe
cascadable GD SNR formula at all practical amplifier fill-in
factors ηA ≥ 0.5.
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Figure 4. SNR versus launch power per channel Pc in 40x120km NZDSF
link of Case C in [29], at COP saturation power Po = NcPc. Main data:
Nc =15 PDM-QPSK channels, Bc =49GHz, span loss A = 26.4dB, noise
figure F = 5dB. ASE filtered on WDM bandwidth, channel spacing ∆f =
100GHz, yielding ηA = 0.49. We show: the basic GD at ηA = 1, eq.
(8); the COP-GD eq. (25); and the COP-GD-UB eq. (26). Symbols: SSFM
simulations. Dashed line: standard GSNR for CG link, where amplifiers have
constant gain G = A.

B. Numerical examples

A first example with a single-mode link with ASE and NLI
only is provided in Fig. 4. The figure shows the RX SNR
vs. launch power per channel Pc in a Ns = 40 span non-
zero-dispersion shifted (NZDSF) single-mode link with span
length `=120km with Nc =15 polarization division multi-
plexed - quadrature phase shift keying (PDM-QPSK) channels
at Bc =49GHz (Case C in [29]). ASE is filtered on the
WDM bandwidth, and the channel spacing is ∆f = 100GHz,
yielding ηA = 0.49. We show: the basic GD eq. (8) at ηA = 1;
the COP-GD eq. (25); and the COP-GD-UB eq. (26). Symbols:
Split-Step Fourier Method (SSFM) simulations (all details
in [29]). Dashed line: standard GSNR for CG link, where
amplifiers have constant gain G = A. We see that the GD
formula (8) at ηA = 1 (same as (25) at ηA = 1) over-estimates
the SNR at low powers (the regime of interest in submarine
SDM) and under-estimates the SNR at high-power because
for NLI evaluation it uses Pc instead of the lower effective
power P e (22). We note that the “cascadable” COP-GD-UB
is almost undistinguishable from the exact COP-GD even at
this low bandwidth occupancy. We also report in dashed line
the standard GSNR for ASE+NLI, to show how far it is from
simulations at these low SNRs.

A second example with a single-mode link with ASE and
XT only is provided in Fig. 5. The figure shows the RX SNR
vs. launch power per channel Pc in the 133x60km EX2000 link
in [31], at several crosstalk levels. The main data are: Nc = 60
channels (modulation format is unimportant since here we do
not have NLI), Bc = 70GHz, span loss A = 9.24dB, noise
figure F = 5dB. ASE is filtered on the WDM bandwidth,
with channel spacing ∆f = 140GHz, yielding ηA = 0.5. We
show: (solid) the COP-GD eq. (25); and (dotted) the COP-
GD-UB eq. (26). Symbols are SSFM simulations. We see that
the COP-GD has an excellent match with simulations, and the
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Figure 5. SNR versus launch power per channel Pc in 133x60km EX2000
link in [31], at several crosstalk levels and COP saturation power Po = NcPc.
Main data: Nc = 60 channels, Bc = 70GHz, span loss A = 9.24dB,
noise figure F = 5dB. ASE filtered on WDM bandwidth, channel spacing
∆f = 140GHz, yielding ηA = 0.5. We show: (solid) the COP-GD eq. (25);
and (dotted) the COP-GD-UB eq. (26). Symbols: SSFM simulations.

COP-GD-UB becomes distinguishable from the COP-GD only
at the lowest powers and at the largest XT=-45dB/km.

V. POWER EFFICIENCY OPTIMIZATION

One key parameter for the optimization of submarine SDM
systems is the power efficiency (PE). It may be defined as
in Sinkin et al. [6]: PES , C/(NsPo) where the repeater
output optical power Po equals the total signal launched power.
It may also be defined as in Downie et al. [8], [33], [34] as
PED , C/(NsPp) where Pp is the (electrical) repeater pump
power, which is a function of the line feed voltage [7], [12],
[35], [36]. We elaborate here on the PE maximization results
in [6], [8], [10], [31], [32] and report a few original extensions
derived with our GD/COP-GD formulas.

A. Sinkin’s power efficiency

When Ns is large (in practice Ns & 30), by following the
derivations in [6], [31], we show in Appendix 3 the following
results.

1) any ηA, ASE only: With ASE only at any fill-in ηA,
using the COP-GD we have:

PES ∼= ηAK log2(1 + ΓSNR) ln(1 + (ηASNR)−1) (27)

with
K , 2/(hf0 F AN

2
s ). (28)

Note that the shape of the PES vs. SNR curve is distance
independent (for Ns & 30), with just a “vertical” scaling with
Ns due to the K factor. The distance-independent maximum
of PES occurs exactly at

SNR∗(dB) = (ηdBA + ΓdB)/2 (29)

with ηdBA , −10 log10(ηA) and ΓdB , −10 log10(Γ), inde-
pendently of any other system parameter. At ηA = 1 this result
first appeared in [32], while eq. (29) is new.
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Figure 6. PES (Tb/s/W) versus received SNR (dB) [eq. (27) , thick lines]
for 8000km EX2000 link [31] at various fill-in factors ηA = [0, 1, 3]dB.
Gap to Shannon Γ=1. Dashed (AWGN) and dotted (O-DROOP) curves are
the “AWGN” and “Original Droop” PE curves in [31, Fig. 4b]. Triangles
are SSFM simulations. Filled circles are the location of the maxima at the
predicted value (29).

Fig. 6 shows in solid line PES eq. (27) vs. RX SNR for
the same 8000km EX2000 link [31] at various values of ηA.
The ηA = 0dB curve is the same as the “GD model” curve
in [31, Fig. 4b]. Also shown are the “AWGN” (dashed) and
“Original Droop” (dotted) PE curves in [31, Fig. 4b], which
were obtained at full amplifier fill-in ηA = 0dB by using either
the standard cascading SNR formula or Sinkin’s drooped SNR
[6, eq.(3)], respectively . Triangles are SSFM simulations,
which double-check the accuracy of the analytical formula
(27). The maximum is confirmed to be exactly at ηdBA /2 (here
ΓdB = 0), as shown by the filled circles. Sinkin’s original
droop model would predict an optimum at SNR∗ = 2.36dB,
which is closer to typical experiments [10] than the true
optimum at 0 = ΓdB . An explanation of this fact is deferred
to the next section. The whole PES curve is seen to decrease
when decreasing ηA. Note that when SNR is large, the curves
for all ηA tend to converge to the ηA = 1 standard case because
ASE saturation is less and less important.

2) at ηA = 1, ASE+XT: With ASE and XT at ηA = 1,
using the GD SNR, Appendix 3 proves that:

PES ∼= K log2(1 + ΓSNR)
ln(1 + SNR−1)−Nsγx`

1 + γx`
(30)

with K as in (28). Now we see that increasing the spans
Ns changes also the shape of the PES vs. SNR curve,
hence there ceases to be a universal optimum SNR∗ for
all distances. While the maximum without XT is reached at
SNR∗ = 1/

√
Γ, analysis of the derivative with respect to

SNR reveals that the more the crosstalk or the span count,
the more the optimal SNR∗ is reached before 1/

√
Γ.

Fig. 7 shows (lines) PES eq. (30) vs. RX SNR for the same
8000km EX2000 link [31] at various values of XT. Triangles
are SSFM simulations, which double-check the accuracy of
the analytical formula (30). We see that XT has the effect of
lowering PE and its optimum SNR.

-5 0 5 10

SNR (dB)

0

5

10

15

20

25

P
E

 (
T

b
/s

/W
)

no XT

XT=-45dB/km

A
=0dB

=0dB

-55

-50

Figure 7. Power efficiency PES (Tb/s/W) eq. (30) versus received SNR
(dB) for 8000km EX2000 link [31, Fig. 7]. Solid: no XT; Dashed: XT=-
55 dB/km; dotted: XT=-50 dB/km; dash-dotted: XT=-45 dB/km. Triangles:
SSFM simulations. Circles: PE maxima. Data: ηA = 0dB, Γ = 0dB.

B. Downie’s power efficiency, ASE only.

Power efficiency may also be defined as in Downie et al.
[8], [33], [34] as PED = C/(NsPp) where Pp is the (multi-
mode or multi-fiber) repeater pump power.

Assume for simplicity we have only ASE, and that as in
[8], [35] the repeater output power is described by a diode-
like affine law Po = max(0, η(Pp − Pp0)), where Pp0 is a
“transparency” pump value below which the repeater is off,
and η is the electrical-to-optical power conversion efficiency.
Since SNR1 depends on Po as per (4), then an affine law is
induced on SNR1 as

SNR1 = max(0, SNR1o −∆SNR1) (31)

with SNR1o =
ηPp

δPaA
our “free variable”, and ∆SNR1 =

ηPp0

δPaA
a “wasted SNR1”. Hence we can scan the free vari-

able SNR1o at fixed ∆SNR1, and obtain: 1) the induced
SNR1 = SNR1o −∆SNR1; 2) the received SNR = ((1 +
SNR−1

1 )Ns−1)−1; and 3) the capacity C = 2BcNc log2(1+
ΓSNR). Thus we have

PED ∝ f = ln(1 + ΓSNR)/SNR1o (32)

and we plot it versus SNR to find its maximizing SNR∗.
Except for an irrelevant vertical scaling, the PED vs. SNR
curve just depends on the three parameters ∆SNR1, Γ, and
Ns, which summarize all remaining system parameters, such
as fiber type, span loss, span length, etc.

Fig. 8 shows (solid lines) the optimum SNR∗ versus
number of spans Ns at several values of ∆SNR1, for Γ = 0dB
(same as [32, Fig. 2(right)]). We note the important depen-
dence of the optimal RX SNR on the span number Ns when
the “wasted SNR1” becomes large. When ∆SNR1 = 0 we
retrieve the optima of Sinkin’s PES since now it is propor-
tional to PED. All curves converge to the ∆SNR1 = 0 ideal
case as Ns → ∞, but at greatly different speed depending
on ∆SNR1. When the gap to capacity is increased to ΓdB ,
in practice all curves almost shift up by ΓdB/2. When Ns is
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large (in practice Ns & 30) , Appendix 4 derives the following
perturbative approximation to SNR∗ :

SNR∗ ∼=
1√
Γ

1 +
r

2
[ √

Γ
1+
√

Γ

(
1

ln(1+
√

Γ)
+ 1
)
− 1
]
 (33)

where
r =

1
Ns

ln(1+
√

Γ)∆SNR1
+ 1

. (34)

Approximation (33) is plotted in Fig. 8 in dotted lines and is a
very good lower-bound to the true SNR∗ whenever r ≤ 0.25,
i.e., at

Ns ≥ 3 ln(1 +
√

Γ)∆SNR1 (35)

which ensures an error in SNR∗ less than 0.1dB. From
observation of the curves in Fig. 8 we now understand that the
experimentally observed optimal SNR values around 2.36dB
[10] as in Sinkin’s original droop model are indeed also found
by the optimization of Downie’s PED when using the GD
model.

VI. SUMMARY AND CONCLUSIONS

We reviewed two recently published almost-identical GD
models [29], [31]. We reviewed the extension of the GD
formula (the COP-GD formula [29]) to the case where the
WDM signals do not entirely occupy the COP amplifier
bandwidth. We finally showed the use of the GD formula in
optimizing the power efficiency in SDM submarine links.

New results in this paper are: 1) a simplified GD formula
for COP links at non-full bandwidth fill-in, eq. (25) and the
corresponding simplified SNR formula for CG links, eqs.
(41),(42); 2) an approximate cascading formula for COP-
GD, eq. (40), and the corresponding COP-GD SNR upper-
bound, eq. (26); 3) the large-span expression of Sinkin’s power
efficiency PES at full bandwidth fill-in with ASE+XT, eq.
(27), and at lower than 1 fill-in and ASE only, eq. (30); 4)
the optimum SNR maximizing PES = C/(NsPo) at lower
than 1 fill-in with ASE only, eq. (29); 5) the perturbation-
approximation (33) of the optimum SNR that maximizes

Downie’s PED = C/(NsPp) when an affine model of Po
versus Pp holds.

Please note that, as seen in Fig. 8, the power efficiency
optimization leads to per-channel SNRs of a few dB, in the
so-called deeply linear regime [21], which implies submarine
systems with a very large number of SDM paths and thus of
amplifiers and transponders. One should be aware that techno-
economic analyses that also account for hardware cost, based
on today’s technology, hint at using fewer SDM paths than
the power-efficiency optimal number and thus larger SNRs,
just ~1.5-2 dB below the maximum nonlinear SNR [7], [10].
If significant cost reductions by SDM integration will be
achieved in the future, then the cost-optimal number of SDM
paths per cable will increase [7, Fig. 10] and thus SNRs will
be lowered more and more towards the deeply linear regime.

We close with a word of caution about two known limita-
tions of the GD model:

1) In classical CG links where nonlinear interference is
important we know that if we have for example a type 1 fiber
in the first half of the link, followed by a type 2 fiber in the
rest of the link (we call this a T1-T2 line), then the end-to-end
performance in presence of NLI is different from that of the
T2-T1 line. However, the intrinsic commutativity of the GD
model blocks would incorrectly imply they are equivalent for
COP links. To make the GD model work correctly and yield
the same SNR value as the GSNR in high-SNR CG links,
we use the following trick, discussed at length in [29, App.
B]. We first compute the end-to-end NLI coefficient aNL over
the link Ns spans, and then use the average αNL = aNL/Ns
as the NLI coefficient within each span. This way, the GD
model yields the correct SNR values [29, App. B, Fig. 11].
So, the commutativity of the GD model blocks for NLI is only
an apparent artifact. Hence one should not try and infer from
the GD model the structure of a possible NLI compensator.
Compensators do need also information on the field phase,
which is not retained by the GD model.

2) The GD model is intrinsically scalar and does not
discriminate the two polarizations of each spatial mode, it
just considers their lumped power. Therefore any polarization
effects, such as polarization mode dispersion and polarization
dependent loss, cannot be captured by the GD model,
although they are mostly suppressed by the coherent receiver.
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APPENDIX 1: THE SIMPLIFIED COP-GD

We show here how to derive the simplified COP-GD equa-
tion (25). Substituting (18),(19) and also Ps(Ns) = Poχ

Ns in
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(15) we get:

SNR =
Poχ

Ns

[ηAPo(1− χa) + δPrχ] 1−χNs

1−χ

=
χNs[

ηA(1− χa) + (χ−1
r − 1)χ

]
1−χNs

1−χ

=
1[

ηA − ηA(1−χ)
1−χ + ηA(1−χa)

1−χ + (χ−1
r −1)χ
1−χ

]
(χ−Ns − 1)

where in the second line we used δPr = Po(χ
−1
r − 1), and in

the third line we added and subtracted ηA. So

SNR =
1[

ηA − ηA(−χ+χa)
1−χ χ−1χ+ (χ−1

r −1)χ
1−χ

]
(χ−Ns − 1)

=
1[

ηA − ηA(χ−1
r −1)

1−χ χ+ (χ−1
r −1)χ
1−χ

]
(χ−Ns − 1)

which leads to eq. (25). This “exact” expression does not yield
a cascading form. However,

1 + SNR−1 =
Ps(Ns) + ηAPa(Ns) + Pr(Ns)

Ps(Ns)

=
Po − (1− ηA)Pa(Ns)

Ps(Ns)

≥ Po − Po(1− ηA)(1− χNs
a )

Poχ
Ns
a χNs

r

= χ−Ns
r

(
1 + ηA(χ−Ns

a − 1)
)

(36)

where in the third line we used the upper-bound (20). Now,

χ−Ns
r = 1 + SNR−1

r (37)

is the RX SNR formula for the r-noise-only case. Also,

χ−Ns
a − 1 = SNR−1

GD,a (38)

is the GD-SNR formula with only ASE, namely SNRGD,a ,
Ps(Ns)
Pa(Ns) . If we consider the per-channel RX SNR with only

ASE: SNRa , Ps(Ns)
ηAPa(Ns) , then we see that SNRa =

SNRGD,a/ηA, hence from the GD-SNR ηA(χ−Ns
a − 1) =

SNR−1
a , and therefore(

1 + ηA(χ−Ns
a − 1)

)
= 1 + SNR−1

a . (39)

Thus finally using (37),(39) in (36) we get the approximate
cascading formula for the ηA < 1 case:

1 + SNR−1 ≥
(
1 + SNR−1

a

) (
1 + SNR−1

r

)
(40)

which leads to the upper bound (26).

APPENDIX 2: THE SIMPLIFIED CG-GD

Using the same idea as in Appendix 1, we can also simplify
the CG case with NLI induced saturation in the highly nonlin-
ear regime. In [29] we claim that again [29, eq. (23)] applies
with the substitutions: ηA → 1; (χ−1

a −1)→ β/Pc; χk → χrk;
χ−1
rk → 1 + αNLPe(k)3/P , where Pe(k) = Pc + (k − 1)β,

where β , δPaA/(NaNm) = hf0FABc. So using now the
link-averaged effective power

P e = Pc + β
1

Ns

Ns∑
k=1

(k − 1) = Pc +
β(Ns − 1)

2

in place of Pe(k) we get from [29, eq. (23)]:

SNRCG−GD =
1

[1 + β
Pc

χ−1
r

χ−1
r −1

](χ−Ns
r − 1)

(41)

with

χ−1
r = 1 +αNL

P
3

e

Pc
= 1 +αNLP

2
c

(
1 +

β(Ns − 1)

2Pc

)
. (42)

We verified that this simplified CG-GD formula for the cases
A, B, C in [29] numerically coincides with the rigorous CG-
GD formula in [29] up to several decimal digits.

APPENDIX 3: SINKIN’S POWER EFFICIENCY

Sinkin et al. [6] defined the power efficiency as the ratio
of capacity to total power out of all repeaters in the line:
PES = C/(NsPo), with C as in (1). We wish to study PES
versus the per-tributary RX SNR and find the optimal SNR
maximizing PES . We will restrict the analysis to the “deeply
linear” regime [21] where NLI can be neglected.

A. General fill-in ηA, ASE only

The COP-GD formula (25) with ASE only (χr = 1) gives:
SNR = (ηA(χ−Ns

a − 1))−1, hence using (3)

(1 + (ηASNR)−1)1/Ns = χ−1
a ≡ 1 +

δPaA

Po

thus

NsPo =
NsδPaA

(1 + (ηASNR)−1)1/Ns − 1
(43)

hence using (2) in (43), and capacity as (1) we get for power
efficiency:

PES = ηAK log2(1+ΓSNR)Ns((1+(ηASNR)−1)
1

Ns −1)
(44)

where
K(Ns) ,

2

hf0 F AN2
s

. (45)

Since for any a it is limN→∞N((1+a)1/N −1) = ln(1+a),
then for large Ns we have

PEs → ηAK log2(1 + ΓSNR) ln(1 + (ηASNR)−1) (46)

where convergence for any ηA ≥ 0.5 and SNR > 0dB is
practically achieved for Ns & 30.

Call x the SNR. To find the optimal SNR we set to zero
the derivative of PES ∝ f(x) = ln(1 + Γx) ln(1 + (ηAx)−1)
namely:

f ′(x) = Γ
ln(1 + (ηAx)−1)

1 + Γx
− ln(1 + Γx)

ηAx2(1 + (ηAx)−1)
= 0 (47)

whose solution by inspection is when (ηAx)−1 = Γx, i.e.,
when x = 1/

√
ΓηA.
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B. ηA = 1 and ASE+XT

At ηA = 1 with ASE and XT we use the GD cascading rule
(9) to get

1 + SNR−1 =

(
1 +

δPaA

Po

)Ns

(1 + γx`)
Ns

hence
NsPo =

NsδPaA
(1+SNR−1)1/Ns

1+γx`
− 1

. (48)

Using (2) in (48), and capacity as (1) we get for power
efficiency:

PES = K log2(1 + ΓSNR)Ns(
(1 + SNR−1)1/Ns

1 + γx`
− 1)

(49)
with K(Ns) as in (45). Again for large Ns we get

PES → K(Ns) log2(1 + ΓSNR)
ln(1 + SNR−1)−Nsγx`

1 + γx`
.

(50)
We note that PES with XT becomes non-physical (negative

values) at “large” SNR, when ln(1 + SNR−1) < Nsγx`.
or equivalently in the non-asymptotic formula when(
1 + SNR−1

)1/Ns ≤ 1 + γx`, which implies
SNR ≥ ((1 + γx`)

Ns − 1)−1. This is clear, since the
SNR cannot be higher than that due only to XT. That’s the
maximum possible SNR in presence of XT.

APPENDIX 4: PROOF OF EQS. (33)-(34)

Let SNR = x. We wish to get the maximum of PED ∝
f(x) = ln(1 + Γx)/SNR1o . We need to zero out the
following derivative f ′(x) ≡ ∂f

∂x = ∂f
∂SNR1

1
∂x

∂SNR1

, where we
compute

∂x

∂SNR1
=
∂
(
(1 + SNR−1

1 )Ns − 1
)−1

∂SNR1

= M
x

SNR1

1 + x

1 + SNR1
(51)

and
∂f

∂SNR1
=

1

SNR1o

[
Γ

1 + Γx

∂x

∂SNR1
− ln(1 + Γx)

SNR1o

]
(52)

so that

SNR1of
′(x) =

Γ

1 + Γx
− ln(1 + Γx)

SNR1o

SNR1

Ns · x
1 + SNR1

1 + x
.

Now we notice that NsSNR−1
1 = Ns((1+x−1)1/Ns−1)→

ln(1+x−1) as Ns →∞, with convergence already at Ns & 30
for any meaningful SNR x. Thus at “large” Ns we zero out
the derivative and get the equation

Γ

1 + Γx
− ln(1 + Γx)

ln(1 + x−1)

1

x2(1 + x−1)
(1− r) = 0 (53)

where we set 1− r , 1+SNR1

SNR1o
so that r ∼ ∆SNR1

SNR1o
� 1.

Now, when r = 0, eq. (53) equals eq. (47) at ηA = 1,
whose solution is xo = 1/

√
Γ. So the strategy is to assume a

perturbed solution x = xo + δx, substitute into (53), discard

all terms of order smaller than δx and relate the solving
perturbation δx to r. To that aim, we note that by the same
above limit we get

r → 1
Ns

ln(1+x−1
o )∆SNR1

+ 1
(54)

where we replaced x with xo. Also, for x = xo + δx we get
to first order in δx :

1 + Γx = (1 +
√

Γ)(1 +
Γδx

1 +
√

Γ
) (55)

1 + x−1 ∼= (1 +
√

Γ)(1− Γδx

1 +
√

Γ
) (56)

x2 ∼=
1

Γ
(1 + 2

√
Γδx) (57)

ln(1 + Γx) ∼= ln(1 +
√

Γ)

[
1 +

Γ

1 +
√

Γ

δx

ln(1 +
√

Γ)

]
(58)

ln(1 + x−1) = ln(1 +
√

Γ)

[
1− Γ

1 +
√

Γ

δx

ln(1 +
√

Γ)

]
.

(59)

Now substitute x = xo + δx into (53) and use (55)-(59),
cancel common terms, keep constant terms and terms in δx,
and throw off everything else, obtaining:

δx =
r

2
√

Γ
[ √

Γ
1+
√

Γ

(
1

ln(1+
√

Γ)
+ 1
)
− 1
]

so that the perturbed optimum is SNR∗ = xo + δx, with r
given in (54).
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