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Abstract: New semi-analytic formulas of the power spectral density
(PSD) of single- and cross-channel nonlinear interference (NLI) in coher-
ent optical links for which the Gaussian Noise (GN) model applies are
presented. From the PSD, a new bound on cross-channel NLI power is
obtained. The new formulas are useful to both quickly compute single- and
cross-channel NLI power, and to test the accuracy of numerical routines that
directly solve the double frequency integral in the GN reference formula.
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1. Introduction

The Gaussian Noise (GN) model has recently been shown to effectively predict the system
performance of highly-dispersed coherent optical transmission systems, such as high baud-rate
dispersion-uncompensated (DU) systems [1, 2]. In such a model, the GN reference formula
(GNRF) provides a formally elegant and compact expression of the power spectral density
(PSD) of the received nonlinear interference (NLI). However, the GNRF involves a double
frequency integration which poses non-trivial numerical problems for multi-span wavelength
division multiplexed (WDM) systems. Many of the numerical integration issues have been
already addressed in [2]. Given the practical importance of developing an accurate GNRF nu-
merical evaluator, however, for accuracy testing it proves quite useful to have exact expressions
of the NLI PSD in special realistic cases. The case of rectangular per-channel input spectra
has already served to clarify the integration regions and derive closed-form ’asinh’ NLI PSD
approximations [2], and to obtain improved expressions of received NLI power in the single-
channel/Nyquist-WDM case [3].

In this paper, we derive new exact single-integral expressions of the NLI PSD in the GNRF
for both Nyquist and non-Nyquist WDM systems with input rectangular per-channel spectra.
We provide explicit PSD formulas for both the single-channel interference (SCI) and the cross-
channel interference (XCI) [2]. We formulate the GNRF in a generalized form that applies to
any link configuration, be it with concentrated or distributed amplification, with or without in-
line compensation, and with possibly different spans. All link details are summarized by the
kernel frequency function [4–6]. We verify the derived NLI PSD formulas for rectangular input
spectra against split-step Fourier (SSF) simulations performed according to the key assumptions
of the GNRF, i.e., that every input WDM channel is a low-power complex Gaussian process
[6]. A discussion of how closely the GNRF approximates the NLI with digital input signals
and specific modulation formats is beyond the scope of this paper, and is the topic of on-
going investigations [7,8]. Having verified that NLI PSDs are consistent with SSF simulations,
we next study how SCI and XCI power scales with number of channels, number of spans,
dispersion, signal bandwidth and frequency spacing, so that we can easily discriminate the
dominant nonlinear effect. We finally derive a new upper-bound (UB) to the XCI power and
check its accuracy.

The paper is organized as follows. Sec. 2 summarizes the needed background on the GNRF,
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and introduces the change of integration variables that leads to the new NLI PSD expressions
for rectangular input spectra. Sec. 3 tackles the single-channel and Nyquist-WDM cases and
also discusses the over-estimation when using the zero-frequency value of the NLI PSD to get
the NLI power. Sec. 4 tackles the non-Nyquist XCI NLI and derives the new UB to the XCI
power. Sec. 5 contains numerical examples of NLI scaling with major system parameters. Sec.
6 summarizes the main findings of the paper.

2. The GN reference formula

In dual-polarization transmission with uncorrelated signals with identical spectra on the two
polarizations, the GNRF yields the NLI PSD as GNLI( f ) = 16

27 I( f ), with [1, 2, 5, 6]:

I( f )�
∞̈

−∞

|K ( f1 f2)|2G( f + f1)G( f + f2)G( f + f1 + f2)d f1d f2 (1)

where G( f ) is the PSD of the complex signal field at system input, and the scalar kernel when
higher-order dispersion is neglected is [5, 6]:

K (v)�
ˆ L

0
γ(s)G (s)e− j(2π)2C(s)vds (2)

where L is total system length, γ(z) the fiber nonlinear coefficient, G (s) the power gain from
0 to s, and C(s) � C0 −

´ s
0 β2(s′)ds′ the cumulated dispersion from 0 to s, with β2 the disper-

sion parameter and C0 the pre-compensation; C has here the sign of the dispersion coefficient.
The pre-compensation just contributes a multiplicative phasor term to the kernel and does not
change its magnitude; hence it plays no role in the regime where the GN model applies. Note
that the kernel K in Eq. (1) depends only on the product v ≡ f1 f2. It can be generalized to
include third-order dispersion [5, 9].

Now, for any link with or without dispersion management (DM) for which the GN model
applies, one just has to calculate the link kernel function K and then use (1) to get the NLI
PSD. For multispan links, the kernel factorizes as

K (v) = K (0)χ(v)η1(v) (3)

where χ(v) is the phased-array term [10], and η1(v) is the single-span normalized kernel. In all
numerical examples we will use a terrestrial transmission system with N identical compensated
fiber spans with lumped end-span amplification and uncompensation ratio ζ (ζ = 1 for DU
links, and ζ = 0 for full in-line compensation), and dispersion β2, attenuation α and span
length zA. The kernel at L = NzA is given by (3), where [11]: K (0) = Nγ 1−e−αzA

αzA
,

χ(v) =
1
N

N

∑
k=1

e− j(k−1)β2zAζ (2π)2v, and η1(v) =
1− e−αzA(1− j

β2
α (2π)2v)

(1− e−αzA)(1− j β2
α (2π)2v)

.

Substitution of Eq. (3) into Eq. (1) yields the explicit NLI PSD in [1, 2]. The system function
|K (( f1 − f ) · ( f2 − f ))/K (0)|2 is the four-wave mixing (FWM) efficiency at frequency f for
pumps placed at frequencies f1, f2, and f1 + f2 − f [2, 10, 12].

The trouble with the analytic formula (1) is that it involves a double frequency integration
where the squared kernel |K ( f1 f2)|2 is oscillating in frequency faster and faster as the number
of spans increases because of the phased-array term and poses non-trivial integration problems
[2]. Integration is eased by a suitable change of integration variables. In [2] the change to

#198880 - $15.00 USD Received 3 Oct 2013; revised 25 Nov 2013; accepted 9 Dec 2013; published 19 Dec 2013
(C) 2013 OSA 30 December 2013 | Vol. 21,  No. 26 | DOI:10.1364/OE.21.032254 | OPTICS EXPRESS  32256



hyperbolic coordinates u =− 1
2 ln( f2/ f1), v =

√
f1 f2 was proposed. The rationale was that the

squared kernel is a function of v only, hence at fixed v, integration in the ( f1, f2) plane follows
the constant contour levels of |K ( f1 f2)|2. With a similar rationale, we use here the equivalent
but formally simpler change u = f1, v = f1 f2, whose Jacobian is J = u and whose inverse is
f1 = u, f2 = v/u. With such a change, the double integral I( f ) on the ( f1, f2) plane becomes

I( f ) =
ˆ ∞

0
|K (v)|2

[ˆ ∞

0

1
u

G( f +u)G( f +
v
u
)G( f +u+

v
u
)du

+

ˆ ∞

0

1
u

G( f −u)G( f +
v
u
)G( f −u+

v
u
)du+

ˆ ∞

0

1
u

G( f −u)G( f − v
u
)G( f −u− v

u
)du

+

ˆ ∞

0

1
u

G( f +u)G( f − v
u
)G( f +u− v

u
)du

]
dv (4)

where the four terms in the square bracket correspond to integration over the four quadrants.
When the input WDM signals have rectangular spectra, the square-bracketed integrals in

Eq. (4) can be solved exactly. In the next sections we present single-integral formulas of the
NLI PSD in such a case. These formulas allow to quickly determine whether single- or cross-
channel nonlinearity dominates, and provide a case against which numerical double-integration
routines of Eq. (1) can be checked for accuracy. Starting from these formulas, new simplified
expressions are also derived at zero frequency. We present first the Nyquist-WDM case, and
then the non-Nyquist case.

3. NLI PSD for single-channel and Nyquist-WDM systems

Fig. 1. Domains over which integrand in Eq. (1) is non-zero when input PSD is a gate over
f ∈ [−δ ,δ ]. Integration over domains I through IV yields the four lines in Eq. (4).

We tackle here the rectangular-spectrum single-channel case, or equivalently the WDM case
where no bandwidth gaps are present between neighboring channels. The total power is P and
the input PSD G( f ) = P

2δ rect2δ ( f + δ ) is a rectangular gate centered at f = 0 with total two-
sided bandwidth 2δ . The integrand in Eq. (1) is non-zero only over the shaded domains in
quadrants I through IV shown in Fig. 1 at several values of f . Note that, since |K (v)|2 =
|K (−v)|2 for any kernel, Eq. (2), then the squared kernel is the same over the 4 quadrants,
hence the integral in Eq. (1) over quadrants II and IV has always the same value.

We can now state our main result on SCI. Define the normalized double integral I ( f ) �
I( f )/(P/(2δ ))3, with I( f ) as in Eq. (1). Using Eq. (4), we can prove that I ( f ) can be exactly
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expressed as follows. If | f |< δ :

I ( f ) =
´ ( δ− f

2 )2

0 |K (v)|2 ln

(
δ− f

2 +

√
( δ− f

2 )2−v

δ− f
2 −

√
( δ− f

2 )2−v

)
dv+2

´ δ 2− f 2

0 |K (v)|2 ln
(

δ 2− f 2

v

)
dv

+
´ ( δ+ f

2 )2

0 |K (v)|2 ln

(
δ+ f

2 +

√
( δ+ f

2 )2−v

δ+ f
2 −

√
( δ+ f

2 )2−v

)
dv

(5)
else if δ ≤ | f |< 3δ :

I ( f ) =
´ 2δ (| f |−δ )
(| f |−δ )2 |K (v)|2 ln

(
v

(| f |−δ )2

)
dv+

´ ( δ+| f |
2 )2

2δ (| f |−δ ) |K (v)|2 ln

(
δ+| f |

2 +

√
(

δ+| f |
2 )2−v

δ+| f |
2 −

√
(

δ+| f |
2 )2−v

)
dv

(6)
otherwise I ( f ) = 0. Since sup(|K (v)|)<∞ and each log term in Eqs. (5) and (6) is integrable,
I ( f ) is well defined. For f > 0, the first integral in Eq. (5) corresponds to integration over
domain I in Fig. 1, the second term to integration over domains II+IV, and the last term over
domain III. When δ ≤ f < 3δ only domain III is nonzero. Details of proof are found in [13].
For a 20x100km DU link at various values of the transmission fiber dispersion, Fig. 2(a) shows
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Fig. 2. NLI normalized spectra vs. frequency (normalized to bandwidth 2δ = 28GHz)
for channels with rectangular input PSD at three dispersion values D (ps/nm/km) for
20x100km DU link. Kernel (3) had α = 0.2dB/km, ζ = 1, γ = 1.27(W km)−1. Theory:
cyan, yellow, dark green curves. SSF simulations: blue, red, green curves. (a) GNLI( f )/P3

for single channel, theory Eqs. (5) and (6); (b) GXCI( f )/P3 on central channel for M =15
channels at Δ = 50GHz, theory Eqs.(13) and (14).

the theoretical normalized NLI PSD GNLI( f )
P3 = 16

27I ( f )/(2δ )3 obtained from Eqs. (5) and (6)
and numerically solved with the quadgk integration routine of Matlab. The kernel is given by
Eq. (3). To double-check theory, Monte-Carlo simulated NLI spectra are also shown. They were
estimated by the periodogram method [14] over a window of 217 samples, and were obtained
by using as input signal to the SSF propagator [15] a −40dBm complex Gaussian noise with a
28GHz rectangular spectrum. The periodogram was averaged over 100 realizations.

The next 3 subsections are introduced to explore the accuracy of the flat-PSD approximation
used in Poggiolini’s approximations of the NLI power [2].
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3.1. SCI PSD at zero frequency

From Eq. (5), the value at f = 0 is found as:

I (0) = 2
ˆ ( δ

2 )
2

0
|K (v)|2 ln

⎛
⎝ δ

2 +
√
( δ

2 )
2 − v

δ
2 −

√
( δ

2 )
2 − v

⎞
⎠dv+2

ˆ δ 2

0
|K (v)|2 ln

(
δ 2

v

)
dv. (7)

Referring to [2, Fig. 1] or Fig. 1(a), the first term in the above sum corresponds to integration
of |K ( f1 f2)|2 over the triangular domains in the I+III quadrants, while the second term to the
square domains in quadrants II+IV. When the squared half-bandwidth δ 2 is much larger than
the 3-dB bandwidth of the squared kernel |K (v)|2, the triangular domains in quadrants I and III
can be replaced with squared domains as in quadrants II and IV, thus getting the upper-bound

I (0)� 4
ˆ δ 2

0
|K (v)|2 ln

(
δ 2

v

)
dv (8)

that together with Eq. (2) specializes to [4, eq. (6)] for a DU link. The corresponding squared
integration domain in the ( f1, f2) plane matches domain Q in [2, Fig. 24].

3.2. SCI PSD at zero dispersion

When dispersion tends to zero, any kernel becomes frequency-independent: K (v)≡ K (0) at
all v. In this case, it may be verified that Eqs. (5) and (6) tend to:

I ( f ) =

{
3δ 2 − f 2 if | f |< δ
(3δ −| f |)2/2 if δ ≤ | f |< 3δ

(9)

and zero otherwise. Such a result can also be double-checked directly from Eq. (1) by simple
geometric considerations. Equation (9) was plotted in cyan in Fig. 2(a).

3.3. Accuracy of flat-PSD approximation for SCI and Nyquist WDM

For an M-channel Nyquist-WDM system with per-channel power P and bandwidth 2δ , the
NLI PSD is given by GNLI( f ) = 16

27 I( f ), with I( f ) = ( PM
2δM )3I ( f ), and I ( f ) explicitly given

in Eqs. (5) and (6) where we substitute δ →Mδ . After receiver matched filtering with H( f ) = 1
for | f | < δ and zero else (Appendix A), the total NLI power on the reference central channel

can be conveniently written by introducing the average value I � 1
2δ
´ δ
−δ I ( f )d f as:

PNLI =
16
27

(
P
2δ

)3
ˆ δ

−δ
I ( f )d f ≡ 16

27
P3 I

(2δ )2 . (10)

For WDM computations, it is common practice to adopt the flat-PSD approximation, i.e.,
assume instead that I ( f ) is flat at its I (0) value over the receiver bandwidth 2δ , so that
I is replaced by I (0) in Eq. (10) [1–3]. Such an assumption leads to an over-estimation of
the NLI power by an amount O � I (0)/I . For instance, at zero dispersion and assuming a

Nyquist-WDM system with M channels, we get from Eq. (9): I = 1
δ
´ δ

0 (3(Mδ )2 − f 2)d f =
δ 2(3M2 − 1

3 ), and I (0) = 3(Mδ )2, hence

O = 1/(1− 1
9M2 ) (11)

and this result is valid at any WDM bandwidth when dispersion is zero, or equivalently when
bandwidth tends to zero at any nonzero dispersion. The worst over-estimation occurs when

#198880 - $15.00 USD Received 3 Oct 2013; revised 25 Nov 2013; accepted 9 Dec 2013; published 19 Dec 2013
(C) 2013 OSA 30 December 2013 | Vol. 21,  No. 26 | DOI:10.1364/OE.21.032254 | OPTICS EXPRESS  32259



10
−2

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1
M channels, Nx100 km DU system, 2δ=28GHz

Dispersion [ps/nm/km]

O
ve

r−
es

ti
m

at
io

n
 [

d
B

]

M=1

M=3

N=20 N=1

N=20 N=1

17

(a)

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1
M channels, Nx100 km DU system, D=17ps/nm/km

per−channel bandwidth 2δ  [GHz]

O
ve

r−
es

ti
m

at
io

n
 [

d
B

]

M=3

M=1

(b) N=1

N=1

N=20

N=20

Fig. 3. Over-estimation O in an M-channel Nyquist-WDM Nx100km DU system with each
channel having rectangular spectrum of bandwidth 2δ . (a) versus fiber dispersion D at
2δ = 28GHz; (b) versus 2δ , at D = 17ps/nm/km. Blue lines: value at D = 0, Eq. (11).

M = 1 and equals O = 9/8, i.e., 0.51 dB. For M > 1 the dB value may be well approximated
as OdB ∼= 0.5

M2 and very quickly vanishes as M increases.
Figure 3 shows the over-estimation O for an M-channel Nyquist-WDM signaling over an

Nx100 km DU link when the per-channel spectra are rectangular of bandwidth 2δ , plotted
versus (a) fiber dispersion D at 2δ = 28 GHz, and (b) versus 2δ at D = 17ps/nm/km. The top
group of curves refer to single-channel (M = 1), the bottom group of curves to an M = 3 system.
In Fig. 3(a) we see that at small D the over-estimation converges to the analytical value (11)
(reported as a solid blue horizontal line), and as D → ∞ the over-estimation fades to 0 dB. For
M = 1 we get the largest over-estimation OdB

max ∼ 0.78. When we increase the Nyquist-WDM
channels to M ≥ 3 the over-estimation fluctuates around the zero-dispersion value Eq. (11) by
less than 0.054 dB. The negative OdB =−0.06 value at N = 20, D = 2.65 ps/nm/km is due to a
dip at f = 0 of the NLI PSD such that the maximum of the PSD is away from f = 0. The curves
in Fig. 3(b) provide a horizontal-axis rescaling of those in Fig. 3(a) because the NLI PSD Eq.
(1) scales with the parameter Dδ 2. This is due to the fact that the kernel K (v) in Eq. (2) is
a function of the parameter β2v, which is proportional to D f1 f2. The take-away message from
Fig. 3 is that for practical values of M ≥ 3 in Nyquist-WDM DU systems at any dispersion
and per-channel bandwidth we can safely use I (0) in place of the more demanding I when
evaluating the NLI power in Eq. (10).

4. NLI PSD for Non-Nyquist WDM systems

We assume here a WDM system with a reference central channel, Nc channels to its left and
Nc channels to its right on the frequency axis, hence M = 2Nc + 1 channels, with uniform
frequency spacing Δ. The WDM comb has input PSD G( f ) = ∑Nc

k=−Nc
S( f − kΔ), where each

lowpass equivalent channel envelope has power P and a rectangular PSD with bandwidth 2δ ,
namely S( f ) = P

2δ rect2δ ( f +δ ). Channels do not spectrally overlap, hence 2δ < Δ. The domain
of integration in the double-integral in Eq. (1) is the set of islands depicted at f = 0 in Fig. 4
(Cfr. [2, Fig. 3]). Integration over the central red island yields the SCI and can directly be
obtained from Eqs. (5) and (6). Integration over the on-axes yellow islands yields the XCI, and
integration over all off-axes islands yields the multi-channel interference (MCI) [2]. Hence the
NLI PSD may be decomposed as the sum of SCI, XCI, and MCI contributions: GNLI( f ) =
GSCI( f )+GXCI( f )+GMCI( f ). Highly dispersed systems quite effectively suppress MCI (i.e.,
the classical FWM), so that XCI is the relevant cross-nonlinearity, and encompasses both scalar
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Fig. 4. Integration domain in Eq. (1) given at f = 0 by intersection of support of G( f + f2)
(horizontal stripes), G( f + f1) (vertical) and G( f + f1 + f2) (tilted). Red island = SCI.
Yellow islands = XCI. Blue islands = MCI. Red curves: contours of |K ( f1 f2)|2.

cross-phase modulation and cross-polarization modulation [16]. The XCI PSD is obtained from
Eq. (1) as GXCI( f ) = 16

27 IXCI( f ), with IXCI( f ) � 2∑Nc
m=1(Im( f ) + I−m( f )) (the term 2 is the

degeneracy factor), and we defined

Im( f )�
∞̈

−∞

|K ( f1 f2)|2G0( f + f1)Gm( f + f2)Gm( f + f1 + f2)d f1d f2 (12)

with Gm( f ) = S( f −mΔ) the m-th channel PSD. We can now state our main result on XCI.
We can prove that for any integer m > 0 the normalized double integral Im( f ) � (Im( f )+

I−m( f ))/(P/2δ )3 can be written as follows. Define (η ,η+
m ,η−

m ) � (δ −| f |,mΔ+η ,mΔ−η)
and (ε,ε+m ,ε−m )� (δ + | f |,mΔ+ ε,mΔ− ε). Then, if | f |< δ :

Im( f ) =
´ ηε−m

0 |K (v)|2 ln

(
v

ε−m
η+m
2 −

√
(

η+m
2 )2−v

)
dv+
´ ηmΔ

ηε−m
|K (v)|2 ln

(
η

η+m
2 −

√
(

η+m
2 )2−v

)
dv

+
´ ηmΔ

0 |K (v)|2 ln

(
− η−m

2 +

√
(

η−m
2 )2+v

v
ε+m

)
dv+

´ ηε+m
ηmΔ |K (v)|2 ln

(
ηε+m

v

)
dv

+
´ εmΔ

0 |K (v)|2 ln

(
− ε−m

2 +

√
(

ε−m
2 )2+v

v
η+m

)
dv+
´ εη+

m
εmΔ |K (v)|2 ln

(
εη+

m
v

)
dv

+
´ εη−

m
0 |K (v)|2 ln

(
v

η−m
ε+m
2 −

√
(

ε+m
2 )2−v

)
dv+

´ εmΔ
εη−

m
|K (v)|2 ln

(
ε

ε+m
2 −

√
(

ε+m
2 )2−v

)
dv

(13)
else if δ ≤ | f |< 3δ :

Im( f ) =
´ −ηη+

m
−η(ε−m −η)

|K (v)|2 ln

(
ε−m
2 −

√
(

ε−m
2 )2+v

η

)
dv+
´ 2δη+

m
−ηη+

m
|K (v)|2 ln

(
− ε−m

2 +

√
(

ε−m
2 )2+v

v
η+m

)
dv

+
´ −η(ε+m +η)

−ηη−
m

|K (v)|2 ln
(

v
−ηη−

m

)
dv+

´ 2δη−
m

−η(ε+m +η)
|K (v)|2 ln

(
v

η−m
ε+m
2 −

√
(

ε+m
2 )2−v

)
dv

(14)

#198880 - $15.00 USD Received 3 Oct 2013; revised 25 Nov 2013; accepted 9 Dec 2013; published 19 Dec 2013
(C) 2013 OSA 30 December 2013 | Vol. 21,  No. 26 | DOI:10.1364/OE.21.032254 | OPTICS EXPRESS  32261



otherwise Im( f ) = 0. Since sup(|K (v)|) < ∞ and each log term in Eqs. (13) and (14) is
integrable, Im( f ) is well defined. The details of the proof can be found in [13]. For a 15-
channel WDM system with rectangular signal spectra over a 20x100km DU link, Fig. 2(b)
shows GXCI( f )

P3 = 16
27 IXCI( f ) obtained from Eqs. (13) and (14), at various values of the trans-

mission fiber dispersion D (ps/nm/km). SSF simulated XCI spectra are also shown to double-
check theory. They were obtained by separate-field SSF propagation (which does not account
for MCI [15]) of 15 input Gaussian processes with −40dBm power and 28GHz rectangular
spectra spaced by Δ = 50GHz, with the self-phase modulation operator deactivated on the cen-
tral channel. Figure 2(b) shows that the XCI PSD at typical dispersions is flatter over the signal
bandwidth than the corresponding SCI PSD in Fig. 2(a).

4.1. XCI PSD at zero frequency and new upper-bound

As a corollary, the value at f = 0 is found from Eq. (13) as follows.
Define Δ+

m � mΔ+δ and Δ−
m � mΔ−δ . Then,

Im(0) = 2{´ δΔ−
m

0 |K (v)|2 ln

(
v

Δ−m
Δ+m
2 −

√
(

Δ+m
2 )2−v

)
dv+

´ δmΔ
δΔ−

m
|K (v)|2 ln

(
δ

Δ+m
2 −

√
(

Δ+m
2 )2−v

)
dv

+
´ δmΔ

0 |K (v)|2 ln

(
− Δ−m

2 +

√
(

Δ−m
2 )2+v

v
Δ+m

)
dv+
´ δΔ+

m
δmΔ |K (v)|2 ln

(
δΔ+

m
v

)
dv}.

(15)

Fig. 5. (a) The four integration domains in the ( f1, f2)-plane whose integration yields the
four v-integral terms in Eq. (15) in the order they appear (see also [13, Fig. 10]). Dashed
curves are hyperbolas. (b) Domain D delimited by hyperbola v = f1 f2 = δΔ−

m passing at
point A, approximating squared kernel integral over domain D1, and also D3.

Figure 5(a) shows a geometric interpretation of the 4 terms in the curly bracket in (15) as
the integral of |K ( f1 f2)|2 over the shown domains D1 through D4 in the ( f1, f2) plane, in the
order they appear in Eq. (15). Of these, the dominant integrals are over D1 and D3, which can
both be approximated as the integral over domain D in Fig. 5(b), and thus

Im(0)∼= 4
¨

D
|K ( f1 f2)|2d f1d f2 = 4

ˆ δΔ−
m

v=0

ˆ v/Δ−
m

u=v/Δ+
m

|K (v)|2 1
u

dudv= 4ln(
Δ+

m

Δ−
m
)

ˆ δΔ−
m

0
|K (v)|2dv

(16)
with the usual change of variables u = f1, v = f1 f2 as in Eq. (4). Therefore, whenever the prod-
uct δΔ is far larger than the 3dB bandwidth of the squared kernel |K (v)|2, we may substitute
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δΔ−
m → ∞ in the top integration limit, so that an upper bound to Eq. (16) is

Im(0)� 4ln

(
1+ η/2

m

1− η/2
m

)ˆ ∞

0
|K (v)|2dv (17)

where we introduced the bandwidth efficiency η � 2δ
Δ .

4.2. Zero dispersion XCI PSD and flat-PSD approximation

At D = 0, integration over every XCI island (Cfr Fig. 4) produces the same result, hence the
XCI PSD is just 4Nc times the SCI PSD in Eq. (9). Thus the estimation error of XCI power
at D = 0 is again given by expression (11). If we define IXCI( f ) � IXCI( f )/(P/2δ )3, similar
conclusions regarding the use of IXCI(0) instead of I XCI in the flat-PSD approximation (Cfr.
Eq. (10)) apply.

5. Single- and cross-channel NLI scaling properties

As briefly recalled in Appendix A, the NLI power obtained from the GNRF Eq. (1) enters in
the calculation of the signal to noise ratio (SNR) for detection of digitally-modulated signals.
Only input signal spectra matter in the GNRF, and not the modulation format [7, 8].

The NLI power can be expressed as PNLI � aNLP3. We show next how the NLI coefficient aNL

scales with the main system parameters, since aNL determines the scaling of both Q-factor [17]
and nonlinear threshold [18]. In all the following figures, all analytical curves use the flat-PSD
approximation (Sec. 3.3). Since SCI, XCI and MCI PSDs add up, the nonlinear coefficient is
the sum of SCI, XCI and MCI contributions: aNL = aSCI + aXCI + aMCI . It is reported in all
subsequent figures with the label “WDM”. For single-channel NLI we use

aSCI =
16
27

R
(2δ )3 I (0) (18)

where I (0) is given by Eq. (7) for the SCI (green solid line in all figures), and by Eq. (8)
for the SCI UB (green dashed line). As explained in Appendix A, for matched-filter detection
of digital signals with rectangular spectra, R plays the role of the signal symbol-rate, and may
differ from the matched-filter bandwidth 2δ . The flat-PSD approximation for XCI yields

aXCI =
16
27

R
(2δ )3 2

Nc

∑
m=1

Im(0) (19)

and uses Im(0) in Eq. (15) (in all figures in red solid line). Using instead the UB in Eq. (17)
we get our new XCI UB (red dashed line) as

aXCI−UB =
16
27

R
δ 3

[
Γ(Nc +1+ η

2 )Γ(1− η
2 )

Γ(Nc +1− η
2 )Γ(1+

η
2 )

]ˆ ∞

0
|K (v)|2dv (20)

where Γ(z) is the Gamma function. The ratio in square brackets is the closed-form of the sum

∑Nc
m=1 ln(

1+ η/2
m

1− η/2
m

), which simplifies to ln(2Nc + 1) when η = 1. A good approximation to the

above sum at small η is η ∑Nc
m=1

1
m , with a worst-case error of 9% at (Nc,η) = (1,1). Using

such an approximation in place of the square-bracketed expression in Eq. (20) reveals both
the XCI scaling with 1/(2δ )2 at fixed Δ, and the scaling with log(Nc) at large Nc when η is
small [19, 20]. The XCI UB Eq. (20) depends on span number N through the squared-kernel
integral. Appendix B provides a general formula linking this integral to the power-weighted
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dispersion distribution [21], proves that the squared-kernel integral exactly scales linearly with
N for all DU links, and gives its exact expression for lumped end-span amplification and finite
span length.

5.1. Scaling with symbol-rate
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Fig. 6. NLI coefficient [dB(mW−2)] versus channel bandwidth 2δ ≡ R [GHz] for SMF
DU link with N = 20 spans, span length zA = 100km, M = 81 channels, at a bandwidth
efficiency η = 2δ

Δ = 1 (a); and η = 0.56 (b). Crosses: [2, eq. (13),(22)].

Figure 6 shows the NLI coefficient versus channel bandwidth 2δ ≡ R for a 20x100 km DU
link over standard single-mode fiber (SMF) with D = 17 ps/nm/km, for an M = 81 channel
WDM system at a bandwidth efficiency η = 2δ

Δ = 1 (Nyquist-WDM, Fig. 6(a)) and η = 0.56
(e.g., Δ = 50GHz at R = 28Gbaud, Fig. 6(b)). Fixing η implies increasing the channel spacing
Δ as R is increased [16]. We see that the NLI coefficient is always decreasing with R, and a
decrease as 1/R2 is forecast by the XCI UB (20). Besides the SCI, the SCI UB, the XCI and
the XCI UB (whose color code was already introduced), we also report in blue solid line the
approximation aNL

∼= aSCI + aXCI (label XCI+SCI). In the Nyquist-WDM case, Fig. 6(a), the
WDM aNL coefficient is analytical (circles) and is obtained from Eq. (18) using for I (0) Eq. (7)
where δ is replaced by Mδ . In the non-Nyquist case we do not have an exact analytical WDM
formula. Thus in Fig. 6(b) at η = 0.56 the WDM aNL curve (squares) was obtained through a
fast-Fourier-transform (FFT) based direct numerical evaluation of the double frequency integral
(1) that yields the whole NLI PSD [9]. The XCI+SCI curve lays slightly above the WDM
squares at larger R because of the flat-PSD over-estimation in Eqs. (18) and (19), and increases
to match the WDM square at R= 5Gbaud because MCI starts to be important at smaller R. Blue
and green crosses report the closed-form ’asinh’ expressions for WDM and single-channel
[2, eq. (13),(22)], obtained by using an effective bandwidth BWDM = 2δM2δ/Δ, and we note
the excellent match with the XCI+SCI curve. In the Nyquist-WDM case, Fig. 6(a), the effect
of MCI is more clearly visible because of the noticeable difference of the theoretical WDM
(circles) and XCI+SCI curves at symbol-rates below 10Gbaud. Crosses again report the closed-
form ’asinh’ expressions [2, eq. (13),(22)] with an almost perfect match with the exact WDM
circles. From Fig. 6 we learn that in this large WDM system on a 20x100km SMF DU link
the XCI always dominates the SCI. We also note that the SCI UB over the shown range is
always within 0.5dB from the true SCI value (the ’asinh’ approximation is here poor below
20GHz [2]), while the XCI bound for Nyquist-WDM is within 0.5dB of the true XCI value at
symbol-rates above 23Gbaud, and above 16Gbaud for the non-Nyquist η = 0.56 system.

#198880 - $15.00 USD Received 3 Oct 2013; revised 25 Nov 2013; accepted 9 Dec 2013; published 19 Dec 2013
(C) 2013 OSA 30 December 2013 | Vol. 21,  No. 26 | DOI:10.1364/OE.21.032254 | OPTICS EXPRESS  32264



5.2. Scaling with bandwidth efficiency
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Fig. 7. NLI coefficient [dB(mW−2)] vs. channel spacing Δ [GHz], at fixed channel band-
width 2δ ≡ R, for 120×50km SMF DU link, and M = [1,11,81] channels. Crosses: [2, eq.
(13),(22)].

Figure 7 illustrates the use of the analytical formulas to quickly determine the dominant
nonlinear effect in a very long 120x50km SMF DU link with either 11 or 81 WDM channels,
as the symbol-rate is fixed to 28 Gbaud and the channel spacing ranges from 28GHz (Nyquist-
WDM case) up to 50GHz. While the SCI is independent of Δ, the XCI clearly decreases as the
spacing Δ is increased. We see that at Δ = 50GHz (η = 0.56) and 11 channels the SCI is the
dominant effect (Cfr [16, Fig.1], where the number of channels was M = 11 at R ≥ 15Gbaud),
but as the channel count is increased to 81 the SCI and XCI give equal nonlinear contributions.
For the Nyquist-WDM case Δ = 50GHz, XCI is the dominant effect at both channel counts.
Again, note the tightness of the XCI UB, which improves at increasing channel count. We
also reported both the XCI+SCI (blue curve) and the WDM (blue squares) obtained by the
FFT-based numerical integrator [9] that calculates the whole NLI PSD. The XCI+SCI curve is
within 0.3dB of the WDM ’true value’ (blue squares) because of the flat-PSD approximation in
Eqs. (18) and (19) and not because of the presence of MCI, as we could verify by removing the
flat-PSD approximation and using the complete analytical NLI PSD calculated through Eqs.
(5) and (6) and Eqs. (13) and (14). We verified that the flat-PSD approximation only gives an
over-estimation of the SCI curve (shown as the M = 1 curve in Fig. 3 ), while the XCI curve has
essentially no over-estimation. As predicted in Section 3.3, the over-estimation disappears in the
Nyquist-WDM case, as confirmed by the coincidence of the WDM square with the analytical
WDM value that uses Eq. (18) (blue circles at Δ = 28GHz in Fig. 7). Blue and green crosses
also report the closed-form ’asinh’ expressions [2, eq. (13),(22)].

5.3. A flat input spectrum is optimal

Figure 8 illustrates the use of the new analytical formulas to quickly verify that the best sup-
porting pulse in a digital optical transmission is the one that achieves the broadest input spec-
trum [22] (Cfr discussion at end of Appendix A). Figure 8(a) shows the input spectrum for
a WDM transmission with fixed per-channel power, with channel spacing Δ = 50GHz, per-
channel symbol-rate R = 5Gbaud, and a variable pulse bandwidth (i.e., per-channel PSD band-
width), ranging from the symbol-rate (2δ = R, green PSD), up to the no-spectral overlap limit
(2δ = Δ, red PSD). Figure 8(b) shows the NLI coefficient versus channel bandwidth 2δ over
the range delimited by the two extreme cases (green, red) depicted in Fig. 8(a). We observe
that both SCI and XCI monotonically decrease as the channel bandwidth increases up to its top
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Fig. 8. (a) Input WDM spectra at increasing per-channel bandwidth 2δ . (b) NLI coefficient
vs. channel bandwidth 2δ , at fixed symbol-rate R = 5Gbaud, for SMF 20x100km DU link,
M = 81 channels, Δ = 50GHz spacing. Blue circle at Nyquist-WDM case 2δ = 50GHz
gives the analytical WDM value.

limit Δ. Hence we conclude that in order to minimize nonlinearity and thus maximize signal-to-
noise ratio one needs to choose 2δ = Δ, i.e., a flat input WDM spectrum (red spectrum in Fig.
8(a)). As the channel bandwidth is increased, we also note that XCI decreases more slowly than
SCI, since clearly the gap between channels is decreasing to zero thus favoring XCI. However,
notwithstanding closer channel spectra, the frequency enlargement of per-channel input PSD
brings about a global decrease also for XCI; from Eq. (20) it is clear that at fixed spacing Δ and
symbol-rate R, the XCI power decreases almost as aXCI−UB ∝ 1/(2δ )2. For all realistic kernels
we find a minimum when a flat input WDM spectrum is achieved. Although our numerical
study is based on rectangular spectra, a simple theoretical explanation of the optimality of a flat
input spectrum is proposed in [9]. As a last observation, please note the excellent accuracy of
both the SCI and XCI upper-bounds in this numerical experiment.

5.4. Scaling with number of spans

Finally, Fig. 9 illustrates the use of the analytical formulas to explain the different accumulation
rates of SCI and XCI as the number of spans N increases [18, 20]. As in [18], we consider
transmission of a 19-channel WDM system with per-channel bandwidth/symbol-rate 2δ = R =
28Gbaud over an N ×50km SMF DU link. The top row of figures refers to the Nyquist-WDM
case (η = 1) with channel spacing Δ = 28GHz, and the bottom row to the case Δ = 50GHz
(η = 0.56). The left-column figures show the NLI coefficient aNL[dB(mW−2)] versus N (in log
scale), while blue and green crosses report the closed-form ’asinh’ expressions for WDM and
single-channel, respectively [2, eq. (13),(22)]. The right-column figures show the local slope
(1+ ε) [dB/dB] of the left-column aNL curves [2, 18]. An explicit formula of the SCI slope
parameter ε can be derived from the aNL formula for DU links in [11] as

ε =
1

ln(N)+ 1
2 ln( 4μ√

5
(αzA)2 |β2|

α R2)
(21)

with a (baud-rate dependent [11]) fitting factor μ = 13. In Figs. 9(b)–9(d) the formula is plot-
ted in dashed line, while crosses report the ε formula in [2, eq. (22)]. We observe from the
figure that SCI has a larger slope (i.e., accumulation rate) than XCI, and that the overall slope
(that of the XCI+SCI curve, which in the Nyquist-WDM case is also verified to be practically
coincident with the exact WDM case) is a weighted average of SCI and XCI slopes [20]. The
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Fig. 9. (a),(c): NLI coefficient versus spans N (log scale) at fixed bandwidth/symbol-rate
2δ = R = 28Gbaud, for SMF DU link with span length zA = 50km, and M = 19 channels.
(b),(d): local slope [dB/dB] of log-log plots in (a),(c) versus N. Dash-dotted: average slope.
Black dashed: ε-fit Eq. (21). Crosses: [2, eq. (13),(22)].

XCI slope for the DU link is always close to 1. The reason is the uncorrelation of the spans
NLI contributions [2,11] and is well explained by the XCI UB (20) and the already-mentioned
linear scaling with N of the squared-kernel integral for DU links.

6. Conclusions

We provided new semi-analytic formulas of the PSD of the received nonlinear interference in
coherent optical links for which the GN model applies. These formulas can be used to both
discriminate single- and cross-channel nonlinearity, and to check the accuracy of numerical
routines that solve the GNRF double frequency integral (1). Such numerical routines are useful
for instance in mixed-fiber links where simple ’asinh’ formulas [2] do not exist. A novel bound
for XCI was obtained that clearly reveals the major XCI scaling laws, and can find use in path
routing in future elastic optical networks. We tested in numerical case studies the accuracy of
both the bound and the ’asinh’ formulas [2] against the new exact analytical formulas.

Appendix A

Assume that the generic digitally modulated optical signal field (in units of
√

W ) is s(t) =
∑n Ing(t − nT ), with i) In the zero-mean dimensionless complex modulating symbol at slot n,
with E[|In|2] = 1; symbols at different slots are independent; ii) T = 1/R [sec] the symbol time
and R the symbol rate; iii) g(t) [

√
W ] the supporting pulse with Fourier transform g̃( f ).
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The PSD of the cyclostationary signal s(t) is G( f ) = R|g̃( f )|2 [ W
Hz ] [23]. Signal power is

P. Hence
´ ∞
−∞ |g̃( f )|2d f = P

R . If at the receiver we use a matched filter with response H( f ) =

g̃∗( f ), then
´ ∞
−∞ |H( f )|2d f = P

R , and the matched filtering of pulse g(t) at the best sampling

time t = 0 gives the pulse energy E = P/R. If N0
2 is the amplified noise white PSD, and the NLI

is also white with PSD GNLI(0), then the SNR at matched filter sampled output is

SNR =
E 2

(N0
2 +GNLI(0))P

R

=
P

(N0
2 +GNLI(0))R

(22)

i.e., the NLI power in the SNR formula [17, 24] is PNLI = GNLI(0)R for every supporting pulse
shape, provided that matched filtering is used. Playing with the pulse shape g(t), or equivalently
with the per-channel spectrum G( f ), however, changes the NLI PSD GNLI(0) given by (1). Thus
the NLI power, at a given per-channel power P and symbol rate R, can be minimized by the
most appropriate pulse choice, thus maximizing SNR and performance [22].

Appendix B

In this Appendix we wish to provide the exact value of the integral
´ ∞

0 |K (v)|2dv for a DU
terrestrial link with N identical spans of length zA, and transmission fibers with nonlinear coef-
ficient γ , attenuation α and dispersion β2. Let’s define w � 2πv, and the normalized kernel as

η̃(w)� K ( w
2π )

K (0) , where K (0) is a real quantity related to the nonlinear phase as ΦNL = PK (0)

(see [11], Appendix 4). The power-weighted dispersion distribution (PWDD) J(c) is the (real)
“time-domain” Fourier transform of the “frequency-domain” Hermitian function η̃(w) [11,21].
Hence from Parseval:

´ ∞
−∞ |η̃(w)|2dw =

´ ∞
−∞ J2(c)dc. Also |K (v)|2 is even in v. Hence

I∞ �
ˆ ∞

0
|K (v)|2dv =

1
2

ˆ ∞

0
|K (

w
2π

)|2 dw
2π

=
K (0)2

2

ˆ ∞

−∞
J2(c)

dc
2π

. (23)

This is a general formula that allows the calculation of I∞ starting from the link PWDD.
Now, consider a DU link with identical spans of length zA and dispersion β2. let K1(0)

and J1(c) the kernel and PWDD of the single span, respectively. Then K (0) = NK1(0), and
( [11, eq. (33)]): J(c) = 1

N ∑N
k=1 J1(c− (k − 1)β2zA). Without in-line compensation, the span

contributions J1(c− (k−1)β2zA) are non-overlapping and thus we very simply have
ˆ ∞

−∞
J2(c)

dc
2π

=
1

N2

N

∑
k=1

ˆ ∞

−∞
J2

1 (c− (k−1)β2zA)
dc
2π

=
1
N

ˆ ∞

−∞
J2

1 (c)
dc
2π

.

Hence substitution in Eq. (23) yields

I∞ = N
K1(0)2

2

ˆ ∞

−∞
J2

1 (c)
dc
2π

≡ N
ˆ ∞

0
|K1(v)|2dv. (24)

For end-span lumped amplification we have K1(0) = γ 1−e−αzA
α and ( [11]):

J1(c) =

⎧⎪⎨
⎪⎩

e
α c

β2

(1−e−αzA )
α
|β2| for

{
0 < c <−zAβ2 if β2 < 0

−zAβ2 < c < 0 if β2 > 0

0 else

hence finally

I∞ = N
( γ

α )
2(1− e−αzA)2

2

[
α

4π|β2|
1− e−2αzA

(1− e−αzA)2

]
= N

γ2

8π
1− e−2αzA

α|β2| . (25)
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