Erratum: Single- and cross-channel nonlinear interference in the Gaussian Noise model with rectangular spectra

Alberto Bononi,^{1*} Ottmar Beucher,² and Paolo Serena¹

¹Dip. Ing. Inf., Università degli Studi di Parma, Parma, Italy. ²Fakultät Maschinenbau und Mechatronik, Hochschule Karlsruhe - Technik und Wirtschaft, Karlsruhe, Germany. *alberto.bononi@unipr.it

Abstract: We correct a typo in the key equation (20) of reference [Opt. Express **21**(26), 32254–32268 (2013)] that shows an upper bound on the cross-channel interference nonlinear coefficient in coherent optical links for which the Gaussian Noise model applies.

References and links

- A. Bononi, O. Beucher, and P. Serena, "Single- and cross-channel nonlinear interference in the Gaussian Noise model with rectangular spectra," Opt. Express 21(26), 32254–32268 (2013).
- P. Poggiolini, "The GN Model of Non-Linear Propagation in Uncompensated Coherent Optical Systems," J. Lightw. Technol. 30(24), 3857–3879 (2012).

In section 5 of our manuscript [1], we provided in eq. (20) an upper bound (UB) of the crosschannel interference (XCI) nonlinear coefficient a_{XCI-UB} in coherent optical links for which the Gaussian Noise (GN) model [2] applies. A typo is present in such an equation: the square bracketed term should be the argument of a natural logarithm. Hence the correct equation is:

$$a_{XCI-UB} = \frac{16}{27} \frac{R}{\delta^3} \ln \left[\frac{\Gamma(N_c + 1 + \frac{\eta}{2})\Gamma(1 - \frac{\eta}{2})}{\Gamma(N_c + 1 - \frac{\eta}{2})\Gamma(1 + \frac{\eta}{2})} \right] \int_0^\infty |\mathscr{K}(v)|^2 dv$$

where *R* is the per-channel symbol rate, 2δ is the per-channel bandwidth, the channel spacing is Δ , the bandwidth efficiency is $\eta = 2\delta/\Delta$, the wavelength division multiplexed signal has $N_{ch} = 2N_c + 1$ channels, and the channel under test is the central one. Finally, $\mathcal{K}(.)$ is the link kernel. Note that the square bracketed term [.] is the same as in [2, below eq. (42)], where it gets approximated as $(N_{ch})^{\eta}$. Hence $\ln[.] \sim \eta \ln(N_{ch})$ which immediately shows the scaling law

$$a_{XCI-UB} \propto \frac{1}{(2\delta)^2}$$

at fixed Δ that we proved below eq. (20) of [1] though a different approximation.