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Abstract- This paper provides design guidelines for 
gain-clamped doped-fiber amplifiers in a wavelength divi- 
sion multiplexed networking environment. A simple dy- 
namic model of the doped fiber amplifier allows us to de- 
rive explicit expressions for the small-signal response, which 
help identify and optimize the most critical parameters, 
pump power and laser wavelength, for best dynamic perfor- 
mance. The pump power should be chosen 1-2 dBs above 
its required open-loop value, with all channels present, for 
the required signal gain. The laser wavelength should be 
placed either close to the unity-gain region of the clamped 
gain profile, or at its peak. 

I. INTRODUCTION 

Doped-fiber amplifiers (DFAs) for wavelength division 
multiplexed (WDM) systems have a non-flat gain-versus- 
wavelength profile, which greatly varies because of satura- 
tion when the input power levels are large. In the design 
of optically amplified links for WDM applications, in which 
the number and the power level of the input channels may 
vary randomly in time as in a networking scenario, it is thus 
essential to stabilize the amplifier gain profile. 

One stabilization technique, known as gain clamping, 
uses an all-optical feedback lasing signal sustained by the 
amplifier itself, which clamps the average inversion and thus 
the gain to the desired level [l]. The feedback is either 
obtained by forming a feedback fiber loop, effectively im- 
plementing a fiber ring laser (loop configuration), or by 
placing fiber gratings, acting as mirrors only at the laser 
wavelength, at the active fiber ends (straight-line configu- 
ration). 

While most design works on gain-clamping deal with the 
steady-state analysis, a great deal of studies on the transient 
gain dynamics has recently appeared in the context of all- 
optical networks [2]-[5]. 

This paper addresses the design of gain-clamped doped- 
fiber amplifiers for best dynamic performance, utilizing the 
simplified dynamic model of the open-loop amplifier intro- 
duced in [6]. System theory techniques are used to find 
small signal transfer functions leading to simple selection 
criteria for pump power, laser wavelength and loop loss for 
optimal dynamic performance. 

The paper is organized as follows. Section 11. introduces 
the dynamic nonlinear model of the gain-clamped amplifier 
in loop configuration. Section 111. deals with its steady- 
state analysis. Section IV. introduces the design criteria for 
optimal dynamic performance, and Section V. derives its 
linearized model, providing a clear picture of the dynamics 
inside the gain-clamped DFA, and providing explicit expres- 
sions and selection criteria of the key dynamic parameters. 
Section VI. summarizes the main findings. 
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Fig. 1. Gain-clamped amplifier scheme in loop configuration. 

11. MODEL 
The gain-clamped amplifier under study is cihown in 

Fig. 1. It is composed of a single-section DFA, with a piece 
of standard fiber feeding part of the output to the DFA 
input. 

The positive optical feedback in the figure cau,ses insta- 
bility, and if the DFA gain is initially larger than the loop 
loss, the system starts oscillating at the wavelength selected 
by the narrowband loop filter centered at wavelength XI. 

In the assumption of a two-level system for the dopant 
ions and an homogeneously broadened gain spectrum, and 
neglecting ASE, the DFA can be modeled as a non:.inear dy- 
namic system with a single state variable, nameljr its total 
number of excited ions T, called the reservoir [6]. If T,,, is 
the total number of ions in the DFA, the normalized reser- 
voir x = r/rmax represents the average fraction of excited 
ions in the DFA, known as average inversion. The update 
equation for the reservoir is [6]: 

A 

A where: T is the fluorescence lifetime; Qj, j E S = 
(1 , .  . . , N} are the input WDM signal fluxes [phcitons/sec] 
at wavelengths X j ,  Qp the input pump flux, Q1 the input 
laser flux; G ~ ( T )  = eBjr-Aj is the gain at wavelength X i ,  
where Bj and A .  are non-dimensional wavelengih depen- 
dent coefficients (61. 

We then account for the optical feedback by writing the 
laser input flux as a delayed and attenuated version of the 
output flux: 

being 7-1 the loop propagation delay and 0 5 a 5 1 the loop 
attenuation, both at laser wavelength Al .  

Equations (1)-(2) form the dynamic model of the gain- 
clamped amplifier. 
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Fig. 2. Lower bound on pump power Pk versus average inversion x, 
with input power per channel as a parameter. 

111. STEADY-STATE ANALYSIS 
The steady-state is obtained by letting i ( t )  = 0 in (1) 

and Ql(t) = Ql(t - 71) in (2). As a result we get: 

Gf” = l/a 

where Gj3 is shorthand for Gj(rSs) .  From (3a) we get an 
explicit expression for the steady state reservoir 

In order to get physically acceptable solutions, the laser flux 
must be non-negative, so that from (3b) we get: 

Qp [i - G;] 2 Qj [G;” - 11 + k. 
T 

(5) 
jeS 

which we interpret either as a lower bound on pump flux or 
as an upper bound on input fluxes. Given the input fluxes 
{Qj} and the desired reservoir TSS, (5) with the equality 
sign gives the lower bound on pump Q,”, i.e., the pump flux 
needed in an open-loop (non-clamped) DFA to reach the 
desired inversion. Using a pump flux Qp > Q,”, the net 
laser flux in (3b) can be rewritten as 

QfS(l/a - 1) = (Qp - Q:)(l- G;). 

which is independent of laser wavelength. 
Let’s now consider a numerical example, to which we will 
often refer. The erbium DFA (EDFA) parameters used are 
those in [6]. The WDM system is composed of 8 channels 
with equal input power per channel Pin/& at frequencies 
chosen according to the ITU-T standard between 192.8 THz 
(1554.9 nm) and 193.5 THz (1549.3 nm), with 100 GHz (0.8 
nm) spacing. 

Fig. 2 shows the lower bound on pump power Pi = 
hvpQ,” versus normalized steady-state reservoir, with in- 
put power per channel Pin/& as a parameter when all 8 
WDM channels are present. Such a minimum pump is the 
one needed by the open-loop amplifier to guarantee the re- 
quired gain level and profile with all channels present, and 
thus to ensure the existence of the laser oscillation in all 
other possible static configurations of the WDM system. 

A 

The reservoir fixes the gain profile and level, which in the 
middle of the WDM comb has the dB values indicated in 
the upper “Gain” axis. We observe that for a typical inter- 
amplifier loss of 10-15 dB the pump lower bound is below 
10 dB for signal levels of -20 dBm/ch, below 16 dB for - 
10 dBm/ch, and as high as 23 dB for a typical value for 
all-optical networks such as -3 dBm/ch. This means that 
a very large pump value is already required for open-loop 
EDFAs to guarantee the required gain and profile. 

Iv. DESIGN FOR OPTIMAL DYNAMIC PERFORMANCE 

In the design of the gain-clamped amplifier we have speci- 
fications on the number of WDM signals, input signal power 
per channel Pin/&, and signal gain. Considering that the 
major cost is due to the large pump power in the DFA, 
our target is to stabilize a given gain profile, for given input 
channels and required gain level, by minimizing the required 
pump power. 

Since a one-to-one relation exists between gain profile and 
reservoir value, system specifications fix the required value 
for T,, at steady state. Given T,,, laser wavelength X l  and 
loop loss are related by (4). We have one degree of freedom 
in the choice between laser loss and wavelength. Another 
degree is available with the selection of the pump power, 
for which a lower bound to ensure the existence of the laser 
oscillation with all channels present was obtained in the 
previous section. 

Some extra pump power above the lower bound is needed 
to ensure the existence of the laser flux even when all chan- 
nels are active, in order to satisfy specifications on the max- 
imum overshoot on surviving channels during add/drop op- 
er at ions. 

Consider our clamped DFA with average inversion 2 = 
0.6 and loop delay rz = 0.18ps corresponding to 40 m 
of fiber propagation. Starting with all 8 channels active, 
we repeated the abrupt drop of 7 channels with various 
values of the input power per channel, signal gain, laser 
wavelength and pump power, and recorded the maximum 
power excursion from steady-state (or overshoot) on the 
surviving channel. The results are summarized in the dB- 
overshoot contour plots of Fig. 3. We see for instance that 
the laser wavelength XI = 1530 nm gives much lower ex- 
cursions than X I  = 1570 nm, and that with at least 1.5 dB 
extra pump with respect to the lower bound and X I  = 1530 
nm the maximum power excursion can be kept below 0.2 
dB (0.65 dB) for input power per channel Pin/c,, = -10 
dBm (Pineh = -3 dBm), for signal gains up to 18 dB. 

To get indications on which values to use for the key 
system parameters determining the dynamic response of the 
clamped amplifier, we now perform a small-signal analysis, 
leading to simple approximations of the dynamic response. 

V. SMALL-SIGNAL ANALYSIS 
The nonlinear system described by (1) and (2) has two 

state variables, namely the reservoir T and the laser input 
flux Q l ,  which reach steady state under continuous wave 
(CW) signals. In this section we slightly perturb the state 
equilibrium point to obtain explicit expressions of the sys- 
tem response to any signal/pump perturbation which causes 
a small perturbation of the state. Since the clamped DFA 
is normally saturated by the laser flux [5], neglecting ASE 
in the model is not a limitation. 
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Fig. 3. Contour plots of maximum dB-excursion on surviving channel for a 7 out of 8 channel drop. Y-axis: Q,/Q," (dB); X-axis: surviving 
signal gain (dB). Roundtrip delay = 0.18ps. Contour levels spaced by 0.05 dB. 

A .  Reservoir Filter 
A Let the perturbed reservoir be r ( t )  = rS8 + Ar( t )  and the 

perturbed input fluxes be Qj( t )  = Qj"" + AQj(t) ,  j E 
{ S , p , l } .  Assuming that max {Bj}Ar( t )  << 1, 

we approximate the gain as Gj(r( t ) )  = G;seBjAr(t)E 
G;" [1+  BjAr(t)] .  Using the above expressions in (l), and 
neglecting the cross-products AT AQj , we obtain: 

A 

jc tS,p,l) 

where F is the set of input fluxes (3 = { S , p }  for the un- 
clamped DFA, and 3 = { S , p , l }  for the clamped DFA), 
and 

Taking the Laplace transform of both sides of (7) we get 
a linear relation between the Laplace transform AR(s)  of 
Ar(t)  and the transform AQj(s) of AQj(t):  

s + - AR(s)  = c ( 1  - G;")AQj(s).  (9) ( :o) j E 7  

Equation (9) can be rewritten as 

AR(s)  = K(s )Ho(s )  (10) 

where K ( s )  = c(1- Gj")AQj(s) ,  and 
A 1  j E 7  

Ho(s)  = - 

is the transfer function of a lowpass filter of 3-dB bandwidth 
l/ro and DC value r0. In the absence of optical feedback, 
the open-loop filter H , ( j w )  passes the low frequency com- 
ponents of the signal/pump flux variations to the reservoir. 

The open-loop 3-dB bandwidth increases with the input 
fluxes. 

When optical feedback is present, AQl(s) is a function of 
AR(s) .  To find such function, we start from equation (2), 
with the previous expansion of the gain term, to get the 
laser input flux variation: 

AQl(t)  = AQI(t - 71) + Qf%BlAr(t - 71). (12) 
where again we neglected the cross-product ArAQ! . Taking 
Laplace transforms, and using a first-order Pad(! rational 
approximation for the delay term e--rr8 cz -E [9] we 
pat: 
0- -  

Using (13) in (9) and the fact that Gf" = l / a ,  we get an 
expression for AR(s)  of the same form as (lo),  whrsre H o ( s )  
is replaced by the closed-loop transfer funct,ion 

(14) 
A S 

HAS) = Q*'Bi 
s2 + *s + ($ - 1) "7, 

where 
I- 

The denominator in (14) is a second-order polynomial and 
can be written as [7][8]: s2 + 25flns + fli= (s + s ~ ) ( s  + S Z ) ,  

where 

A is the natural system angular frequency, < = .& the 
damping factor, and SI and s2 the roots, with Is11 = 
Is21 = Rn. The underdamped case < < 1 gives oscilla- 
tions in the natural system response and complex conju- 
gate roots s1,2 = -I? f j Q ,  where I? = & is the decay rate 
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Fig. 4. top: Reservoir filter magnitude, clamped IHc(jw)l and open- 
loop IHo(jw)l. Data: z = 0.6, q = 0.18ps, XI = 1530 nm, 
Pi,,/& = -10dBm, pump power 13.9 dBm for clamped DFA and 
12.4 dBm for unclamped DFA. Solid line: 8 channels at steady- 
state; dashed: 1 channel. 

and R = R,dm the relaxation-oscillation angular fre- 
quency. When e < 1, H,(jw) is a bandpass selective filter, 
taking peak value T~ at w = R,, and with 3-dB bandwidth 

Fig. 4(top) shows Bode plots of the magnitude of both 
the open-loop H,,(jw) and closed-loop Hc(jw) reservoir fil- 
ters for the same average inversion x = 0.6, =-lo 
dBm, XI = 1530 nm (loop loss 11.85 dB), TI = 0.18ps, 
closed-loop pump Pp = 13.9 dBm. To get the same inver- 
sion in the open-loop case, a pump of value P i  is used. 
Solid lines correspond to a steady state with all 8 channels 
present; dashed lines to a steady state with only one channel 
present. For the same inversion, the top magnitude of the 
open loop filter is always larger than that of the closed-loop 
one, since T~ > T,, although the values are comparable, and 
so are the 3-dB bandwidths (this is not immediately clear 
in the log-log Bode plot). Also, both filters roll off as 1/w 
for large frequencies, i.e., at a rate of -10 dB/decade. The 
closed-loop filter does not transmit the low-frequency sig- 
nal/pump fluctuations to the reservoir; such fluctuations 
are instead passed by the open-loop filter. This means for 
example that all the low-frequency relative intensity noise 
of a cheap pump can effectively be neutralized by clamping. 
On the other hand, no low-frequency pump overtones can 
be transmitted to the reservoir and hence impressed on the 
transiting signals for link monitoring. Moreover, when the 
steady-state total input power is decreased, as in the figure, 
the laser flux increases and so does the natural frequency, 
as per (16). The shift in natural frequency in the example 
is about 20 kHz. Such strong shift does not allow transmis- 
sion of pump overtones at the natural frequency, as this is 
strongly input-signal dependent. 

B. Step Response and Choice of Laser Wavelength 
If the signals undergo an add/drop discontinuity at time 

zero: AQj(s) = %, then by inverse Laplace transform- 
ing AR(s) the explicit reservoir variation when 5‘ < 1 is 
obtained as: 

1/.c. 

e-rt 
R Ar(t) = K-sinQt (17) 

where IC = CjE{S,p)(l - Gj””)AQj. 
This is a damped sinusoid, with decay rate r and fre- 

quency E. 
The time behavior of Ar(t) is important, since the dB- 

power excursion e on any “surviving” channel s after the 
step variation depends linearly on it as: 

€ = A loLog,o { PsOUt(rss  4- = 4.34B8Ar(t). (18) 
p:ut ( r a s  

p 
= 20 _l---_--l-_-_--l__-_--~------l------l----- , 

l__-_--l-_---_l---_--l------l---- 

~ 

i o  :- 1 
;.52 1.54 1.56 1.58 1.6 1.62 

laser waveleng!h grn) 

Fig. 5. Maximum dB-power excursion on surviving channel emaz, 
relaxation oscillation frequency Sl and decay rate I‘ versus laser 
wavelength XI for a step response to a drop of 7 out of 8 channels. 
Data: Pp = 13.9 dBm, P,,,/ch = -10 dBm, z = 0.6; q = 0.18 ps. 

The maximum reservoir variation, or overshoot, is 
reached in such resonant systems very close to the point 
where the argument of the sine term is n/2:  Arm,, 

exp(-i$).  For strongly resonant systems (i.e. for stan- 
dard loop loss values larger than a few dBs) the exponential 
term is close to unity and R E R,, so that 

i.e., the reservoir overshoot is roughly inversely proportional 
to  the natural frequency. 

Using (6) and the definitions, we rewrite 

fin = d % ( ~ ~  - Q , L > ( ~  - G ~ I  

(20) 
This shows that R, depends on laser wavelength only 
through the factor BI,  while J? through the factor F 
BI e. F should be large for fast oscillation decay. Max- 
imizing BI maximizes the laser gain variation induced by 
a given reservoir variation while minimizing the loss maxi- 
mizes the input laser flux in photons/s as per (3b): in both 
ways the laser reaction to  the add/drop, coming from a 
decrease/increase of the ions consumed in the reservoir, is 
improved in speed. 

Fig. 5 shows the dependence of the overshoot emaz, R and 
I‘ on XI for a pump of 18 dBm (black) and 13.9 (grey). From 
the figures and from (20) we see that increasing the pump 
increases R (more oscillations), increases I’ (faster decay), 
and consequently decreases e (less overshoot). On the graph 
of R (Cfr. [5], Fig. 4) we have superposed the graph of R, 
in dashed line and the two curves almost exactly overlap 
on most of the laser range shown, except when XI is close 
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to 1511 nm, where the roots tend to merge and the system 
loses its high resonance. The dashed lines on the graph of 
cmos represent (18) with approximation (19), and we see 
that emor is in practice inversely proportional to R,, and 
reaches its minimum where R, has its maximum, i.e., where 
231 is maximum. This implies that at high resonance the 
most effective laser wavelength to minimize emas for a given 
pump is the wavelength maximizing B1 , typically around 
1530 nm. We also note from (20) that l? tends to infinity 
when a tends to one, i.e. close to the critical damping 
and away from strong resonance. Thus another interesting 
option for the laser placement is near 1511 nm where the 
loop loss is close to 1 and laser flux is largest. Although 
in the loop configuration such low loss is not feasible, the 
straight-line configuration with large mirror reflectivity at 
the laser wavelength can get close to that. 

It has been pointed out in [lo] that the best noise figure 
is obtained for lowest input laser flux, giving maximum in- 
version at the input. This corresponds to largest laser loss, 
and thus 1530 nm is a good choice for both noise figure 
and dynamic response. However, the principal noise fig- 
ure degradation in a clamped DFA comes from the WDM 
signal loss at the input coupler, which should therefore be 
minimum. According to where the laser is placed, either we 
can live with a large loop loss and use for example a cheap 
input 90/10 coupler, or we must use a laser well out of 
band, so that a wavelength multiplexer can be used, which 
introduces minimum input signal loss, without too much in- 
crease in the laser loop loss. Also, note that a gain-clamped 
amplifier can only degrade the noise figure with respect to 
its open-loop counterpart, since without clamping the in- 
version is always larger when not all WDM channels are 
present (the laser consumes the extra inversion in the ab- 
sence of some of the WDM channels). 

Finally, a key factor for the choice of laser wavelength is 
spectral hole burning due to inhomogeneous broadening [5], 
an effect which is not captured by our model. In essence, 
the laser wavelength should not be too far from the signals 
to avoid steady state gain offsets from the desired level. 
In this regard, 1530 nm is better than 1511 nm, although 
it is still very far from the signals, usually located in the 
1540-1550 nm band. 

VI. SUMMARY AND CONCLUSIONS 

Starting from a simple state-space model of the DFA, we 
have provided a detailed analysis of the dynamic behavior 
of gain-clamped DFAs in a WDM networking environment. 

We have provided criteria for the optimal selection of 
pump power, laser wavelength and laser cavity loss for the 
design of a gain-clamped DFA with specifications on the 
number of WDM signals, input signal power per channel, 
and signal gain. A lower bound on the necessary pump 
power is given in Fig. 2, and the amount of extra pump 
needed to satisfy specifications on the maximum overshoot 
on surviving channels during add/drop operations is given 
in the contour plots in Fig. 3. From such plots we con- 
clude that the pump power should be chosen 1-2 dBs above 
its required minimum value. For example, consider a gain- 
clamped DFA with 8 WDM channels, -3 dBm input signal 
power per channel, and 12 dB required signal gain. From 
the graphs we find that a pump power of 20+1.5=21.5 dBm 
and a laser placed at 1530 nm ensure a worst-case overshoot 

less than 0.25 dB. The required pump value could be ob- 
tained using two or more lower power pumps. 

While the above plots were derived from the nonlinear 
model, a linearized analysis lead to  simple filters giving the 
reservoir frequency response to input signal,lpumFl flux per- 
turbations. From these we learned that: 

1) in open loop DFA only the low-frequency signal/pump 
fluctuations are passed to the reservoir arid hence to the 
gain; in clamped DFAs only the fluctuations in a narrow 
frequency range around the natural system frequency (of 
the order of some tens of kHz) are passed to the reservoir 
(Cfr Fig. 4); 

2) gain-clamped amplifiers can tolerate pump diodes with 
large low-frequency relative intensity noise (Cfr Fig. 4) ; 

3) no low-frequency overtones can be in1press.d on the 
channels by modulating the pump; overtontts at the natural 
frequency cannot be used, as this is strongly input-power 
dependent (Cfr Fig. 4); 

4) the laser wavelength giving minimum overshoot for loss 
values larger than a few dBs (hence practical fo: the loop 
configuration) is the one maximizing the gain slope Bj , and 
is usually close to 1530 nm (Cfr Fig. 5); 

5) the laser wavelength giving maximum relaxation os- 
cillation damping is the one giving a laser cavitjr loss very 
close to 1 (hence interesting for the straight-line configura- 
tion), thus having an extremely large laser flux inside the 
cavity. Such wavelength is close to  1511 nm (Cfr Fig. 5); 

The most serious limitation of the model i s  its assumption 
of homogeneous broadening. Placing the 1 aser wavelength 
too far from the signals may cause offsets in the planned 
steady-state gain due to spectral hole burning, so  that our 
conclusions on the optimal placement of laser wavelength 
must be weighed against such inhomogeneous eflects [5]. 
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