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Design of Gain-Clamped Doped-Fiber
Amplifiers for Optimal Dynamic Performance

Alberto Bononi and Lorenzo Barbieri

Abstract—This paper provides a detailed analysis of gain-
clamped doped-fiber amplifiers and design guidelines in a wave-
length division multiplexed (WDM) networking environment. A
simple dynamic model of the doped-fiber amplifier allows us to
derive explicit expressions for the small-signal response, which
help identify and optimize the most critical parameters for best
dynamic performance. The most important parameter is the
pump power, which should be chosen 1–2 dB’s above its required
open-loop value, with all channels present, for the required signal
gain. In an all-optical networking scenario with input power per
channel as high as�3 dBm the required pump power may well
exceed 20 dBm. Thus optimization of other parameters such as
laser wavelength and loop loss are important. For best dynamic
performance either the loop loss should be extremely small,
implying a very large laser flux, or the laser gain variation in
response to a perturbation should be large. Accordingly, the laser
wavelength should be placed either close to the unity-gain region
of the clamped gain profile, or at its peak. Finally, the small
signal model for a chain of clamped amplifiers is provided, and it
is shown that long chains are vulnerable to low-frequency input
signal perturbations.

Index Terms—Doped-amplifier gain dynamics, erbium-doped
fiber amplifier (EDFA), gain-clamping.

I. INTRODUCTION

DOPED-FIBER amplifiers (DFA’s) for wavelength divi-
sion multiplexed (WDM) systems have a nonflat gain-

versus-wavelength profile, which greatly varies because of
saturation when the input power levels are large. In the design
of optically amplified links for WDM applications, in which
the number and the power level of the input channels may
vary randomly in time as in a networking scenario, it is thus
essential to stabilize the amplifier gain profile.

Several feedback control techniques have been proposed in
the literature, all more or less explicitly aiming at stablizing
the average inversion of the DFA.

A first class uses some optical measure of inversion at
the output of the amplifier to produce an error signal which
electrically controls the power of either the pump or of an
extra control input laser source [1]–[5].

A second class uses an all-optical feedback lasing signal
sustained by the amplifier itself, which clamps the average
inversion and thus the gain to the desired level [6]–[8]. The
technique is known as gain clamping. The feedback is either
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obtained by forming a feedback fiber loop, effectively imple-
menting a fiber ring laser (loop configuration), or by placing
fiber gratings, acting as mirrors only at the laser wavelength,
at the active fiber ends (straight-line configuration). The laser
plays here the role of the extra control input laser source of
the previous class. Gain clamping has also been successfully
applied to semiconductor optical amplifiers [9], [10] which
notoriously suffer much more than DFA’s from saturation-
induced gain crosstalk in WDM systems.

While most of the above references deal with the steady-
state analysis of gain-clamped amplifiers, a great deal of
studies on their transient gain dynamics has recently appeared
in the context of all-optical networks [11]–[15].

This paper addresses the design of gain-clamped doped-fiber
amplifiers, utilizing the simplified dynamic model of the open-
loop amplifier introduced in [16], [17]. The model essentially
coincides with the one in [11], where a single section is used
for the doped fiber. Such a simple model allows an easy
interpretation of gain clamping, and a simple study of its
dynamics. System theory techniques are used to find small
signal transfer functions leading to simple selection criteria
for pump power, laser wavelength and loop loss for optimal
dynamic performance. Also, a small signal model is developed
for chains of gain-clamped amplifiers.

The paper is organized as follows. Section II introduces the
dynamic nonlinear model of the gain-clamped amplifier in loop
configuration. Section III deals with its steady-state analysis.
Section IV introduces the design criteria for optimal dynamic
performance, and Sections V, VI derive its linearized model,
providing a clear picture of the dynamics inside the gain-
clamped DFA, and providing explicit expressions and selection
criteria of the key dynamic parameters for the optimization of
both isolated clamped DFA’s and chains of them. Section VII
summarizes the main findings. Appendix A extends the key
equations to the straight-line configuration, while Appendix B
defines the range of applicability of the linear model.

II. M ODEL

The gain-clamped amplifier under study is shown in Fig. 1.
It is composed of a single-section DFA, with a piece of
standard fiber feeding part of the output to the DFA input. We
will concentrate on the analysis of such loop configuration,
although a straight-line configuration is also possible, and
pertinent results discussed in Appendix A.

The positive optical feedback in the figure causes instability,
and if the DFA gain is initially larger than the loop loss,
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Fig. 1. Gain-clamped amplifier scheme in loop configuration.

the system starts oscillating at the wavelength selected by the
narrow-band loop filter centered at wavelength

In the assumption of a two-level system for the dopant ions
and an homogeneously broadened gain spectrum, the DFA can
be modeled as a nonlinear dynamic system with a single state
variable, namely its total number of excited ions called
the reservoir [16]. If is the total number of ions in
the DFA, the normalized reservoir represents the
average fraction of excited ions in the DFA, known asaverage
inversion. The update equation for the reservoir, including
self-saturation induced by the amplified spontaneous emission
(ASE) noise is [17], [11]

(1)

where is the fluorescence lifetime
are the input WDM signal fluxes [photons/s] at wavelengths

the input pump flux, the input laser flux
is the output ASE flux, a function of the average inversion in
the approximation of constant inversion [18], [17];

is the gain at wavelength where and are
nondimensional wavelength dependent coefficients given by

where is the erbium
concentration, the core effective area, the DFA length,

and the emission and absorption cross sections at
and the overlap factor.

We interpret (1) as the balance between the amplifier’s input
and output photon fluxes, being the net contribution of that
balance the reservoir’s variation per unit time.

We then account for the optical feedback by writing the laser
input flux as a delayed and attenuated version of the output
flux, to which the ASE term passed by the feedback
filter is added

(2)

being the loop propagation delay and the loop
attenuation, both at laser wavelength

Equations (1)–(2) form the dynamic model of the gain-
clamped amplifier. The number of state variables is now two,
the second being the laser flux .

III. STEADY-STATE ANALYSIS

We first give an intuitive explanation of gain clamping.
Fig. 2 gives an example of the DFA gain in dB,

Fig. 2. Amplifier gain in dB versus average inversionx
�
= r=rmax and

wavelength.

plotted against wavelength and inversion. For a fixed
value of the reservoir or equivalently of inversion we
have the well-known gain-versus-wavelength profile due to
the wavelength dependence of the coefficientsand . It
is the variation of caused by the input power variations
that causes the undesired profile changes. The dB gain has a
linear dependence on i.e., the surface in Fig. 2 is composed
of straight lines with slope depending on wavelength. The
optical feedback fixes the average inversion and thus the gain
profile to a desired value as follows: the loop filter passes only
wavelength , i.e., selects the straight line corresponding to
the laser gainshown on the surface. The horizontal contour
line on the surface marks the level corresponding to theloop
loss at wavelength (the loop loss at all other wavelengths
is infinity). The laser flux grows until its gain equals the loop
loss, thus fixing the desired inversion. The desired inversion
can be changed by either changing the loop loss for fixed
(thus moving along thelaser gain line), or by changing
for fixed loss (thus moving along theloop losscontour). The
equilibrium point at the intersection of the loop loss contour
and the laser gain line is stable. In fact, if some channels are
dropped, less reservoir ions are consumed,tends to increase,
and so does the laser gain and the laser flux, which grows to
consume the excess reservoir ions and bringsback to its
clamped value. If some channels are added, more reservoir
ions are consumed, tends to decrease, and so does the laser
gain and the laser flux, which consumes less reservoir ions
and brings back to its clamped value.

Analytically, the system steady state is obtained by letting
in (1) and in (2). As a result

we get:

(3a)

(3b)

where is shorthand for If the ASE term in the
feedback filter bandwidth is much smaller than the steady state
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laser flux, the second equation in (3b) can be approximated as

(4)

which gives an explicit expression for the steady state reservoir

(5)

Equation (4) is the well-known Barkhausen criterion for steady
state oscillation in a feedback noiseless system [19].1 Since
the ASE power in the feedback filter bandwidth can be made
small enough by appropriately choosing the filter bandwidth,
in the following we will use (5) to get the steady-state reservoir
solution. Note that (5) is the equation of theloop losscontour
shown in Fig. 2.

In order to get physically acceptable solutions, the laser flux
must be nonnegative. From (3a) and (4), we get

(6)

so that the condition gives:

(7)

which we interpret either as a lower bound on pump flux or as
an upper bound on input fluxes [21]. With the sign of equality,
(7) represents a hyperplane bounding the limit values of the
variables and For instance, given the input
fluxes and the desired reservoir (7) with the equality
sign gives the lower bound on pump i.e., the pump flux
needed in an open-loop (nonclamped) DFA to reach the desired
inversion. Using a pump flux the net laser flux in
(6) can be rewritten as

(8)

which is independent of laser wavelength.
Let us now consider a numerical example, to which we will

often refer. The erbium DFA (EDFA) parameters used are:
pump wavelength nm; fluorescence time
ms; erbium concentration ions/m3; overlap
factor effective core area
m2; EDFA length m; cross-section values taken
from fitted Lorentzian curves in [[22], Table 4.2, p. 299] with

m2 and m2. The
WDM system is composed of eight channels with equal input
power per channel at frequencies chosen according to
the ITU-T standard between 192.8 THz (1554.9 nm) and 193.5
THz (1549.3 nm), with 100 GHz (0.8 nm) spacing.

Fig. 3 shows the lower bound on pump power
versus normalized steady-state reservoir, with input power per
channel as a parameter when all eight WDM channels
are present. Such a minimum pump is the one needed by
the open-loop amplifier to guarantee the required gain level
and profile with all channels present, and thus to ensure the

1The oscillation condition on the signal phase is neglected here since the
lasing modes form a continuum, because the loop delay�l is usually more
than six orders of magnitude larger than the mode period.

Fig. 3. Lower bound on pump powerPL
p versus average inversionx; with

input power per channel as a parameter.

existence of the laser oscillation in all other possible static
configurations of the WDM system. The reservoir fixes the
gain profile and level, which in the middle of the WDM comb
has the dB values indicated in the upper “Gain” axis. We
observe that for a typical interamplifier loss from 10 to 15 dB
the average inversion is around 0.63. The pump lower bound
is below 10 dB for signal levels of 20 dBm/ch, below 16
dB for 10 dBm/ch, and as high as 23 dB for a typical value
for all-optical networks such as3 dBm/ch. This means that
a very large pump value is already required for open-loop
EDFA’s to guarantee the required gain and profile.

In the next section we will show that a pump a few dBs
larger than the lower bound must be provided to sustain the
laser oscillation even when all channels are present, in order
to get a satisfactory dynamic response.

IV. DESIGN FOROPTIMAL DYNAMIC PERFORMANCE

In the design of the gain-clamped amplifier, we have a con-
straint on the required gain level and gain-versus-wavelength
profile for the WDM channels, of which we know the number
and the input power level . Once the profile is stabilized
by gain clamping, gain equalization can optionally be achieved
by using a suitable passive optical filter [23]. Considering that
the major cost is due to the large pump power in the DFA,
our target is to stabilize a given gain profile, for given input
channels and required gain level, byminimizing the required
pump power.

Since a one-to-one relation exists between gain profile and
reservoir value, system specifications fix the required value
for at steady state. Given laser wavelength and
loop loss are related by the Barkhausen criterion (5). We have
one degree of freedom in the choice between laser loss and
wavelength.

Another degree is available with the selection of the pump
power, for which a lower bound to ensure the existence of the
laser oscillation with all channels present was obtained in the
previous section.
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(a)

(b)

Fig. 4. (a) Laser and (b) surviving channel output power time response to
a seven out of eight channel add–drop sequence, withPin=ch = �10 dBm,
x = 0:6; �l = 1530 nm, �l = 0:18 �s.

To understand the effect of choosing the pump level very
close to its lower bound (see Fig. 3) on the dynamic response
of the clamped amplifier, we note that in this case the laser
level approaches zero. Starting with all channels present, when
a channel drop occurs a long “switch on” transient takes place,
giving a slow response and large overshoots on the surviving
channels. This effect is shown in Fig. 4. Fig. 4(a) refers to
a system with average inversion
dBm, nm, and pump power dBm
corresponding to its lower bound. The loop delay is

s corresponding to 40 m of fiber propagation. The figure
shows a double transient: before time 0 there is only one active
channel, and at time 0.05 ms the remaining seven channels are
added. The transition is abrupt, i.e., takes place in zero time,
which gives a worst-case dynamic behavior [12]. Being the
pump power at its lower bound, when all channels are present
the laser switches off. After some fraction of ms the laser
power is negligible compared to the WDM channels and does
not influence the dynamics of the surviving channel anymore.
At time 0.7 ms the seven channels are dropped. Clearly, since
the laser is essentially off, a long (0.1 ms) switch-on transient
occurs, and large (1.2 dB) power excursions show up on the
surviving channel, with a long ringing. It takes more than 1
ms for the system to settle to the new steady-state. Fig. 4(b)

shows what happens if the pump is chosen 1.5 dB above the
lower bound, dBm. In such case an output laser
oscillation (6.5 dBm) is present at the next steady-state after
the seven-channel add, so that the subsequent seven-channel
drop causes a transient in the system that settles after a little
more than 0.4 ms, with a maximum power excursion on the
surviving channel of only 0.1 dB. We note that the maximum
dB-excursion is larger at the drop, with ringing (also known as
relaxation oscillations [24]) at higher frequency with respect
to the add, but with comparable decay rates [15].

From this we learn that extra pump is a key factor in the
dynamic step response of the system. Other important factors
are the gain on the surviving channel (or equivalently the
average inversion), the input power per channel, and the laser
wavelength. We repeated the add–drop experiment by varying
the above parameters, and recorded the maximum dB-power
excursion at the drops. The results are summarized in the
contour plots of Fig. 5. We see for instance that the laser
wavelength nm gives much lower excursions than

nm, and that with at least 1.5 dB extra pump
and nm the maximum power excursion can be
kept below 0.2 dB (0.4 dB) for input power per channel

dBm dBm) in our eight channel
WDM system, for signal gains up to 18 dB.2.

To get an understanding of the key system parameters
determining the dynamic response of the clamped amplifier,
we now perform a small-signal analysis, leading to simple
approximations of the dynamic response. For example, we
give in Appendix B an analytic approximation of the above
contour plots.

V. SMALL -SIGNAL ANALYSIS

The nonlinear system described by (1) and (2) has two state
variables, namely, the reservoirand the laser input flux
which reach steady state under continuous-wave (CW) signals.
In this section we slightly perturb the state equilibrium point
to obtain explicit expressions of the system response to any
signal/pump perturbation which causes a small perturbation
of the state. We carry on the analysis neglecting ASE, as the
clamped DFA is normally saturated by the laser flux [15]. The
accuracy of the linear model is discussed in detail in Appendix
B.

A. Reservoir and Laser Filters

Let the perturbed reservoir be and the

perturbed input fluxes be
Assuming that we approximate
the gain as
Using the above expressions in (1) we obtain

(9)

where is the set of input fluxes for the
unclamped DFA, and for the clamped DFA),

2With our EDFA parameters, signal gains of [6, 8, 10, 12, 14, 16, 18] dB
correspond to average inversions [0.52, 0.55, 0.59, 0.62, 0.66, 0.69, 0.73]
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Fig. 5. Contour plots of maximum dB-excursion on surviving channel for a seven out of eight channel drop.Y -axis: Qp=QL
p (dB); X-axis: surviving

signal gain (dB). Round-trip delay�l = 0:18 �s. Contour levels spaced by 0.05 dB.

and

(10)

Neglecting with respect to one, we can take the Laplace
transform of both sides of (9) to get a linear relation between
the Laplace transform of and the transform

of

(11)

Equation (11) can be rewritten as

(12)

where and

(13)

is the transfer function of a lowpass filter of 3-dB bandwidth
and DC value In the absence of optical feedback, the

open-loopfilter passes the low-frequency components
of the signal/pump flux variations to the reservoir. The open-
loop 3-dB bandwidth increases with the input fluxes, i.e., with

the saturation level, and for large fluxes is almost independent
of the fluorescence time [25].

When optical feedback is present, is a function of
. To find such function, we start from (2), with the

previous expansion of the gain term, to get the laser input flux
variation

(14)

Again neglecting with respect to one, taking the Laplace
transform of both sides of this equation, and using a first-
order Pad́e rational approximation for the delay term

[26] we get

(15)

Using (15) in (11) and the fact that we get an
expression for of the same form as (12) where
is replaced by the closed-loop transfer function

(16)
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(a)

(b)

Fig. 6. (a) Reservoir filter magnitude, clampedjHc(j!)j and open-loopjHo(j!)j and (b) laser filter magnitudejHl(j!)j: Data:x = 0:6; �l = 0:18�s,
�l = 1530 nm, Pin=ch = �10 dBm, pump power 13.9 dBm for clamped DFA and 12.4 dBm for unclamped DFA. Solid line: eight channels at
steady-state; dashed: 1 channel.

where

(17)

The denominator in (16) is a second-order polynomial and can
be written as [19], [20]:
where

(18)

is the natural system angular frequency, the
damping factor, and and the roots, with

The underdamped case gives oscillations in
the natural system response and complex conjugate roots

where is the decay rateand

the relaxation-oscillation angular frequency.
When is a bandpass selective filter, taking peak
value at and with 3-dB bandwidth

Fig. 6(a) shows Bode plots of the magnitude of both the
open-loop and closed-loop reservoir filters
for the same average inversion , dBm,

nm (loop loss 11.85 dB), s, closed-
loop pump dBm. To get the same inversion in
the open-loop case, a pump of value is used. Solid lines
correspond to a steady state with all eight channels present;
dashed lines to a steady state with only one channel present.
For the same inversion, the top magnitude of the open-loop
filter is always larger than that of the closed-loop one, since

although the values are comparable, and so are the
3-dB bandwidths (this is not immediately clear in the log-
log Bode plot). Also, both filters roll off as for large
frequencies, i.e., at a rate of10 dB/decade. The closed-
loop filter does not transmit the low-frequency signal/pump

fluctuations to the reservoir; such fluctuations are instead
passed by the open-loop filter. This means for example that
all the low-frequency relative intensity noise of a cheap pump
can effectively be neutralized by clamping. On the other hand,
no low-frequency pump overtones can be transmitted to the
reservoir and hence impressed on the transiting signals for
link monitoring. Moreover, when the steady-state total input
power is decreased, as in the figure, the laser flux increases and
so does the natural frequency, as per (18). The shift in natural
frequency in the example is about 20 kHz. Such strong shift
does not allow transmission of pump overtones at the natural
frequency, as this is strongly input-signal dependent.

With clamping, the signal/pump low-frequency fluctuations
are not transmitted to the reservoir since the laser flux takes
them on. In fact, from (12) and (15), we have

where the laser filter is

(19)

which corresponds to a second-order low-pass filter, as shown
in Fig. 6(b).

To check the dependence of the roots on laser wavelength,
Fig. 7 shows the root locus on the complex plane, as
the laser wavelength is swept from nm up to

nm. The figure was obtained with all eight channels
present at steady state, dBm, clamped inversion

loop delay s. Since inversion is clamped,
at each point the loss changes according to (5) and the values
are shown for the marked points. Two different loci are shown
for pump power 18 and 13.9 dBm. We note that for loss values
larger than 0.16 dB the roots are complex conjugate, i.e.,
and for reasonable loop loss larger than 1 dB
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Fig. 7. Root locuss1;2 of the small-signal characteristic equation as�l is
swept across its allowed range, forPin=ch = �10 dBm, x = 0:6 and two
pump values: (black) 18 dBm; (gray) 13.9 dBm.

nm) the system is strongly resonant, i.e., so
that In fact, the dashed 45lines, at which real and
imaginary absolute values are equal, mark the limit at which
ringing becomes significant [20].

B. Step Response and Choice of Laser Wavelength

If the signals undergo an add–drop discontinuity at time zero
then by inverse Laplace transforming

the explicit reservoir variation when is obtained
as

(20)

where
This is a damped sinusoid, with decay rateand frequency

From Fig. 7 we see that the fastest settling time in the
step response is obtained by choosing coincident real roots,
but this requires an unrealistically low loss (0.16 dB) at 18
dBm pump, and even less with a pump of 13.9 dBm.

The time behavior of is important, since the dB-
power excursion on any “surviving” channel after the step
variation depends linearly on it as:

(21)

The maximum reservoir variation, or overshoot,
is reached in such resonant systems very close to
the point where the argument of the sine term is

For strongly
resonant systems (i.e., for standard loop loss values larger
than a few decibels) the exponential term is close to unity
and so that

(22)

i.e., the reservoir overshoot is roughly inversely proportional
to the natural frequency.

Fig. 8. Maximum dB-power excursion on surviving channel�max; relax-
ation oscillation frequency
 and decay rate� versus laser wavelength�l

for a step response to a drop of 7 out of 8 channels. Data:Pp = 13:9 dBm,
Pin=ch = �10 dBm, x = 0:6; �l = 0:18 �s.

Using (8) and the definitions, we rewrite

(23)

This shows that depends on laser wavelength only through

the factor while through the factor
should be large for fast oscillation decay.

Maximizing maximizes the laser gain variation induced
by a given reservoir variation while minimizing the loss
maximizes the input laser flux in photons/s as per (6): in
both ways the laser reaction to the add–drop, coming from
a decrease/increase of the ions consumed in the reservoir, is
improved in speed.

Fig. 8 shows the dependence of the overshoot and
on for a pump of 18 dBm (black) and 13.9 (gray).

Such curves for and were given implicitly in the root
locus of Fig. 7. From the figures and from (23) we see that
increasing the pump increases(more oscillations), increases

(faster decay), and consequently decreases(less overshoot),
in accord with our previous observation in Fig. 4. On the
graph of (cf., [15, Fig. 4]) we have superposed the graph of

in dashed line and the two curves almost exactly overlap
on most of the laser range shown, except whenis close
to 1511 nm, where the roots tend to merge and the system
loses its high resonance. The dashed lines on the graph of

represent (21) with approximation (22), and we see that
is in practice inversely proportional to and reaches

its minimum where has its maximum, i.e., where
is maximum. This implies that at high resonance the most
effective laser wavelength to minimize for a given pump
is the wavelength maximizing typically around 1530 nm.
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Fig. 9. Same add–drop transient as in Fig. 4, but with a laser wavelength
�l = 1511:3 nm, corresponding to a loop loss of 0.27 dB.

We also note from (23) that tends to infinity when tends
to one, i.e., close to the critical damping and away from
strong resonance. Thus, another interesting option for the laser
placement is near 1511 nm where the loop loss is close to 1
and laser flux is largest. Although in the loop configuration
such low loss is not feasible, the straight-line configuration
(Appendix A) can get close to that. To test the goodness of
this choice even in the large signal regime, the same double
transient obtained in Fig. 4 with nm, was repeated
in Fig. 9 for nm, where the loop loss is 0.27 dB.
We note that although is slightly larger than in Fig. 4,
still damping is much stronger, and oscillations die out more
quickly.

It has been pointed out in [27] that the best noise figure is
obtained for lowest input laser flux, giving maximum inversion
at the input. Lowest input laser flux corresponds to largest laser
loss, and thus 1530 nm is a good choice for both noise figure
and dynamic response. However, the principal noise figure
degradation in a clamped DFA comes from the WDM signal
loss at the input coupler, which should therefore be minimum.
According to where the laser is placed, either we can live
with a large loop loss and use for example a cheap input
90/10 coupler, or we must use a laser well out of band, so
that a wavelength multiplexer can be used, which introduces
minimum input signal loss, without too much increase in the
laser loop loss. Also, note that a gain-clamped amplifier can
only degrade the noise figure with respect to its open-loop
counterpart, since without clamping the inversion is always
larger when not all WDM channels are present (the laser
consumes the extra inversion in the absence of some of the
WDM channels).

Finally, a key factor for the choice of laser wavelength is
spectral hole burning due to inhomogeneous broadening [15],
an effect which is not captured by our model. In essence, the
laser wavelength should not be too far from the signals to
avoid steady state gain offsets from the desired level. In this
regard, 1530 nm is better than 1511 nm, although it is still
very far from the signals, usually located in the 1540–1550
nm band. Moreover, optical filters at the EDFA output are
often used to prevent the major ASE components at 1530

nm to propagate down a chain of amplifiers, in which case
the laser from a clamped amplifier cannot be propagated and
thus cannot stabilize the downstream (nonclamped) EDFA’s
as proposed in [12].

VI. I NPUT–OUTPUT LINEAR MODEL

We complete the linear model by characterizing the DFA
as an linear system, whose inputs are the WDM
input flux perturbations and whose output the WDM output
flux perturbations.3

For every input channel at steady state we have
Differentiating, we get

, where from Section V-A we have
and where the
reservoir filter is either open loop (13) or closed loop
(16). Hence, for every input channel we have

(24)

Such equations can be written in matrix form as [25]4

(25)

where and the system matrix is

(26)

where Diag is a diagonal gain matrix

. We note that the dependence on the complex variable
of such matrix comes from the scalar and that

the off-diagonal elements of are just scaled versions of
, i.e., a perturbation on channelhas the same lowpass

(bandpass) effect on the reservoir and on channel in
open-loop (clamped) configuration.

On the other hand, the output perturbation on channel
caused by an input perturbation on the same channel

is where the self-filter

is either a
high pass in the open loop [28], or a notch in the clamped
configuration, as shown in Fig. 10. The depth of the notch is
approximately [where is given
in (17)], and depends on how large the perturbed channel
is with respect to the others, the laser and the pump. It is
usually very small.

A. Chains

Consider the clamped/open-loop DFA of the previous sec-
tion followed by a time-invariant loss element, with loss

for channels 1 through . It is easy to see that the
matrix of the DFA loss system is the same as in (26), with the
total gain for each channel used in and in place

3We exclude here the pump from the input perturbations.
4We indicate vectors in boldface and matrices in boldface with double

underlining. The symbolT indicates transposition.
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Fig. 10. Self-filter magnitude for clamped and open-loop configurations,
same inversionx = 0:6, eight channels at steady state, same data as in Fig. 6.

Fig. 11. Equivalent reservoir filter magnitude for a single(n = 1) and a
chain of n = 200 DFA+loss modules, both for clamped and open loop
configurations, same inversionx = 0:6, eight channels at steady state, same
data as in Fig. 6.

of Vector is unchanged. If a
chain is built cascading copies of the DFA+loss module, the
total system matrix is the product of the individual matrices:

. Such matrices are different, as the bias points of
the modules differ. However, choosing the losses in
order to perfectly balance the module, we have that the gain
matrix becomes the identity matrix and all module
matrices are equal to , so that the system
matrix after modules is

(27)

where we have used the binomial expansion
and the fact that

and where

(28)

is the reservoir filter normalized by the scalar
. The scalar “equivalent reservoir” filter

has already been studied in
[28] for balanced chains of open-loop (nonclamped) DFA’s.
In Fig. 11 we give the Bode plot magnitude of such filter,
for a single module and a chain of 200 amplifiers, for both

clamped and unclamped modules, for the same inversion level.
We see that the equivalent reservoir filter for the clamped
chain has the high-frequency part of its open-loop counterpart
mirrored around the natural frequency . This implies
that in a long chain of clamped amplifiers the passband of the
equivalent reservoir filter expands to very low frequencies (as
well as to very high frequencies), so that the chain becomes
more affected by low-frequency disturbances.

VII. SUMMARY AND CONCLUSIONS

Starting from a simple state-space model of the DFA, we
have provided a detailed analysis of both the steady-state and
the dynamic behavior of gain-clamped DFA’s in a WDM
networking environment.

We have provided criteria for the optimal selection of pump
power, laser wavelength and laser cavity loss for the design
of a gain-clamped DFA with specifications on the number of
WDM signals, input signal power per channel, and signal gain.
A lower bound on the necessary pump power is given in Fig. 3,
and the amount of extra pump needed to satisfy specifications
on the maximum overshoot on surviving channels during
add–drop operations is given in the contour plots in Fig. 5.
From such plots we conclude that the pump power should
be chosen 1–2 dB above its required minimum value. For
example, consider a gain-clamped DFA with eight WDM
channels, 3 dBm input signal power per channel, and 12
dB required signal gain. From the graphs we find that a pump
power of dBm and a laser placed at 1530 nm
ensure a worst-case overshoot less than 0.25 dB. The required
pump value could be obtained using two or more lower power
pumps.

While the above plots were derived from the nonlinear
model, a linearized analysis lead to simple filters giving
the reservoir and output fluxes frequency response to input
signal/pump flux perturbations. From these we learned the
following:

1) in open-loop DFA, only the low-frequency signal/pump
fluctuations are passed to the reservoir and hence to the
gain; in clamped DFA’s only the fluctuations in a narrow
frequency range around the natural system frequency (of
the order of some tens of kHz) are passed to the reservoir
(cf., Fig. 6);

2) long balanced chains of (open-loop) clamped amplifiers
have the small-signal behavior of a single (open-loop)
clamped amplifier with an “equivalent” reservoir filter
of much wider bandwidth, proportional to the number
of amplifiers in the chain (cf., Fig. 11);

3) gain-clamped amplifiers can tolerate pump diodes with
large low-frequency relative intensity noise (cf., Fig. 6);

4) no low-frequency overtones can be impressed on the
channels by modulating the pump; overtones at the
natural frequency cannot be used, as this is strongly
input-power dependent (cf., Fig. 6);

5) ringing is always present and strong in the natural system
response for laser cavity loss above 1 dB (cf., Fig. 7);

6) the laser wavelength giving minimum overshoot for loss
values larger than a few dBs (hence practical for the loop
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configuration) is the one maximizing the gain slope, i.e.,
maximizing the total cross-section and is usually
close to 1530 nm (cf., Fig. 8);

7) the laser wavelength giving maximum relaxation oscil-
lation damping is the one giving a laser cavity loss
very close to 1 (hence interesting for the straight-line
configuration, Appendix A), thus having an extremely
large laser flux inside the cavity. Such wavelength is
close to 1511 nm (cf., Fig. 8);

8) the extra pump required to satisfy specifications on the
maximum overshoot is inversely proportional to the
square of the max overshoot, and directly proportional
to the number of channels, signal gain and loop delay
[Appendix B, (30)];

9) the loop delay does not affect the decay ratebut
only the natural frequency [23];

10) the linear model tends to overestimate the natural
frequency, overestimate the reservoir overshoot and
underestimate the laser overshoot during add–drops.
For our sample DFA, the maximum total input signal
power for the linear model to be accurate is7 dBm
for a pump of 15 dBm, and it increases with pump with
a slope of 5 dB/dec (cf., Fig. 14).

The most serious limitation of the model is its assumption of
homogeneous broadening. Placing the laser wavelength too far
from the signals may cause offsets in the planned steady-state
gain due to spectral hole burning, so that our conclusions on
the optimal placement of laser wavelength must be weighed
against such inhomogeneous effects [15].

APPENDIX A
STRAIGHT-LINE CONFIGURATION

This Appendix discusses the straight-line gain-clamped
(SLGC) amplifier and gives the necessary modifications to the
loop configuration equations.

The SLGC amplifier is composed of a DFA with gratings
etched at both DFA ends acting as mirrors, with input and
output reflectivity and at the laser wavelength, and
ideally zero reflectivity at signal and pump wavelengths.
Indicating with and the forward and backward laser
fluxes entering the DFA, (1) is still valid with the summation
extended over Assuming that a single pass
through the DFA takes seconds, we have

and
so that

(29)

where is the roundtrip attenuation. This should be
compared to (2) for the loop configuration. The Barkhausen

(a)

(b)

Fig. 12. (a) Normalized reservoir and (b) input laser power dynamic step
response to a drop of seven out of eight channels; small-signal solution (solid)
and exact solution (dashed). Data:Pp = 13:9 dBm, Pin=ch = �22 dBm,
x = 0:6; �l = 1530 nm, �l = 0:18 �s.

criterion is here and the steady-state reservoir
is while the steady-state net
laser flux is

Here, the round-trip loss can be very small and thus
very large. For instance, if and we
have a round-trip loss of 0.45 dB. Therefore, in the straight-
line configuration a laser wavelength around 1511 nm should
be feasible, with the advantage of a good dynamic behavior
as shown in Fig. 9. Following the approach in the text, the
clamped reservoir filter can be calculated to be the equation
shown at the bottom of the page where is as in (17) with
the summation extended to and is almost
twice the round-trip delay in the loop configuration.

APPENDIX B
ACCURACY OF LINEAR MODEL

To check the accuracy of the linear model, in Fig. 12 the
small-signal reservoir and input laser power obtained as per
(20) and (19) are shown in solid line and compared to the
exact solution of (1) and (2), in dashed lines, when seven
out of the eight WDM channels are dropped. The input
power per channel, 22 dBm, is small enough that the linear
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(a) (b)

Fig. 13. (a) Same as in Fig. 12, but with larger input power per channel of�10 dBm. (b) Same as (a), but using in the theoretical model the steady-state
values Qss

j reachedafter the step.

approximation is fairly good, with a slight overestimation of
the relaxation frequency the accuracy improving for lower
input powers.

Fig. 13(a) shows the same transient with a larger input
power of 10 dBm, with a more evident underestimation of

and consequent overestimation of the reservoir overshoot
and an underestimation of the laser overshoot. Fig. 13(b)
shows how to improve the accuracy of the linear model for
add–drops: it is enough to use the steady state signal and laser
fluxes after the step instead ofbefore it in
(17), (18). This also explains why in the nonlinear regime the
relaxation oscillation frequency is larger after drops than after
adds: the subsequent steady-state laser level is larger after the
drops, and so is as per (18), while decay rates, as seen in
(23), are comparable.

We have verified that the linear model is fairly accurate
(cf., Fig. 12) when where

To express such inequality as a bound
on input power, we assume equal signal fluxes and gains:

we approximate
and consider the worst-case drop of out of

channels, so that Using (22), (18),
and (6) the above inequality becomes a parabola in:

where ;

Fig. 14 shows in bold line such upper bound on signal power
versus pump power, for , , , and the

corresponding laser power as in (6). Dashed lines correspond
to the following approximations for large pump

Fig. 14. Maximum input power per channelPs and corresponding input
laser powerPl for linear model to be accurate, versus pump power. Number
of WDM channelsN as a parameter. Solid: parabolic formula; dashed:
approximation. Data: signal gainGs = 10:72 dB (x = 0:6); �l = 0:18 �s;
�l = 1530 nm.

Note the 5 dB/decade slope of the signal
power and its linear dependence on, and the 10 dB/decade
slope of laser power, independent of.

We conclude this Appendix with an analytical small-
signal approximation of the contour curves of maximum
dB-excursion on surviving channelgiven in Fig. 5. At high
resonance, from (21) and (22) we have
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(dB), the approximation being excellent for
dB. We assume as before equal signal fluxes

and large gains so that Using
as in (23) and approximating
for large we get:

(30)

For values of dB such expression always overes-
timates the required pump Nontheless, (30) is useful to
highlight the linear dependence on output signal flux on
channel number on loop delay ; the inverse dependence
on and the inverse quadratic dependence on
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