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1 Introduction

It has recently been shown that, in high bit-rate coherent optical links with no dispersion management (NDM), the
nonlinear interference (NLI) is a zero-mean additive circular complex-Gaussian noise, independent of the symbol
of interest, already after a few spans [1]. Based on such a powerful observation, a nonlinear Gaussian model for
NDM coherent communications was proposed [2–4]. In this paper, we wish to extend those studies to the regime in
which single-channel inter-pulse four wave mixing (IFWM) is the dominant nonlinearity. This regime includes both
dispersion-managed (DM) and NDM links at sufficiently large baud-rates.

2 Nonlinear Gaussian Model

Consider a single-channel long-haul optical link with dual polarization coherent reception. Assume that both the
amplified spontaneous emission (ASE) and the NLI are independent additive complex-Gaussian noises. After coherent
reception with polarization demultiplexing and ideal linear electrical equalization, followed by matched filtering with
ideal carrier estimation, the 2-dimensional (2D) sampled received complex field vector is: r(t) =

√
PU(t)+ nL(t)+

nNL(t), where P [W] is the signal average power, U the normalized signal vector, nL the ASE, and nNL the NLI. The
electrical signal-noise ratio (SNR) at the decision gate is

S =
P

NA +NNL
(1)

where NA = Var[nL] = βN is the ASE power, which linearly increases with the number of spans N, and NNL =
Var[nNL] = aNLP3 is the NLI power, obtained from a first-order regular perturbation [2,4]. The main goal of this paper
is to provide a general analytical expression of the NLI coefficient aNL, valid for dominant IFWM. Such an expression
will be used to analytically cross-validate recent simulation results on nonlinear threshold (NLT) [5].

3 Nonlinear Threshold

We define the constrained NLT at reference BER0 (i.e., at its corresponding format-dependent SNR S0) as the trans-
mitted power PNLT yielding the maximum of the “bell-curve” S versus P, where the maximum value is constrained to
S0. Maximization of (1) with ASE noise adjusted such that the top value is S = S0 yields [2]

PNLT =
1

(3S0aNL)1/2 (2)

and depends only on S0 and aNL. It has been shown that the model (1), at the top S value, yields an SNR penalty with
respect to linear propagation of 1.76 dB [2, 3]. We can prove that the 1dB NLT P1, i.e., the transmitted power needed
to achieve S0 with 1 dB of SNR penalty, is 1.05 dB smaller than PNLT . P1 corresponds to the NLT simulated in [5] that
we wish to double-check with our theory.
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4 Nonlinear Interference coefficient

We now describe a procedure to derive closed-form analytical expressions of the NLI coefficient aNL. The NLI on
each polarization tributary (i = x or y) can be obtained from a first-order regular perturbation as [6, 7]:

nNL,i = j
√

PΦNL

∫∫
∞

−∞

η(t1t2)Ui(t + t1)Ui(t + t1 + t2)Ui(t + t2)dt1dt2 (3)

where: the nonlinear phase is ΦNL , P
∫ L

0 γ(s)G(s)ds, with γ the fiber nonlinear coefficient and G(s) the power gain at
coordinate s; η(t1t2) is the time-domain kernel (time is normalized to the symbol time 1/R, where R is the baud-rate),
whose 2D Fourier transform is

η̃(w) ,

∫ L
0 γ(s)G(s)e− jC(s)wds∫ L

0 γ(s)G(s)ds

where: w = ω1ω2; L is the total link length; and the normalized cumulated dispersion (NCD) is C(s) =−R2 ∫ s
0 β2(z)dz,

where β2 is the fiber chromatic dispersion, and zero dispersion slope is assumed. For a linear digital modulation we
have Ui(t) = ∑

∞
k=−∞

sk p(t− k) where sk is the complex information symbol (on polarization i) transmitted in the k-th
symbol interval, and p(t) is the supporting pulse. As done in [6,7], when the time-domain kernel is much broader than
the symbol time and thus quasi-constant over squares of size 1 in the normalized time plane (t1, t2), then the NLI term
in (3), for a link with spans much longer than 1/α and lumped amplification, simplifies to nNL,i = cNLP3/2, with

cNL = j
γ

α
N ∑

m,n,l
smsns∗l η ((m− l)(n− l)) (4)

where the summation accounts for IFWM terms, i.e., is over all m,n, l such that m+n = l, with m 6= l, n 6= l. The NLI
power in (1) comes from both polarizations and is NNL , ηpE[|nNL|2] = ηpE[|cNL|2]P3, where ηp = 2 for independent
NLI from each polarization. Thus aNL = ηpE[|cNL|2], where the expectation is taken over the random symbols. For
any modulation format with E[sk] = 0 and E[|sk|2] = 1, we get

aNL = ηp(
γ

α
Nd f )22

∞

∑
p=1

∞

∑
q=1
|η(pq)|2 (5)

where p , n− l, q , m− l, and d f = 2 is the degeneracy factor. The time kernel magnitude decreases and eventually
vanishes after an “effective” time duration τM . Since each |η(pq)|2 in the double summation in (5) is actually an
approximation of the double integral of the kernel over a square of edge 1 centered at the point (p,q), we can approx-
imate the double summation as a double integral over the domain D of the (t1, t2) plane delimited by the hyperbola
t1t2 = τM , the vertical line passing through t1 = 1/2, and the horizontal line passing through t2 = 1/2. We can thus
upper-bound the coefficient as

aNL ≤ ηp(
γ

α
Nd f )22ln(4τM)

[∫
∞

0
|η(τ)|2dτ

]
(6)

and what we need is an expression of the kernel duration τM , and of the above integral of the kernel magnitude. We
may choose τM , µτrms for some positive multiplier µ of the r.m.s. width τ2

rms =
∫

∞

−∞
τ2|η(τ)|2dτ/

∫
∞

−∞
|η(u)|2du. We

chose µ = 1.5 in all numerical results. Now, an analytical expression of the time kernel is not known even for the
simplest links, except for lossless links [7]. However, there is a nice trick. For every optical link, both with and without
dispersion management, a physically meaningful function is the power-weighted dispersion distribution (PWDD) J(c),
representing signal power versus NCD c, which was shown to be the inverse 1D-Fourier transform: J(c) = F−1[η̃(w)]
[7]. One also has that: η(τ) = F−1

[
1
|ω| J( 1

ω
)
]
, where τ = t1t2 [6,7]. Because of the Fourier relationship between J(c)

and η(τ), we can prove that 2
∫

∞

0 |η(τ)|2dτ =
∫

∞

−∞
J2(c)dc, and that τ2

rms =
∫

∞

−∞
[J(c)+cJ′(c)]2dc/

∫
∞

−∞
J2(c)dc, where

J′(c) = d
dc J(c). Hence, aNL in (6) can be expressed solely in terms of integrals of J(c). Note also that it applies to

any zero-mean modulation format. We managed to get closed-form expressions of the aNL upper-bound (6) for several
links of interest. For instance, for NDM links we got for N & 5:

aNL ≤ ηP(
γ

α
)2 N

πS
ln(

4µ√
5
(α`N)2S )

where ` is span length, and S , |β2|
α

R2 is fiber strength. Note the similarity of this expression with that of a Nyquist-
WDM NDM system derived in [3] using a frequency-domain approach. The major difference is the N logN scaling law
in the IFWM-dominated regime, as opposed to the simpler N scaling when presumably cross-nonlinearities dominate.
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Figure 1. (Left) aNL [dB] versus spans N from eq. (6) (solid) and simulations (symbols). PDM-
QPSK on Nx100 km SMF links, R=28 Gbaud. (Right) 1dB NLT vs. symbol rate R for: i) theory
P1 = PNLT −1.05 dBm (solid, eq. (2)); ii) simulations from [5]. DM30 = DM with 30 ps/nm RDPS.

5 Results

Fig. 1(left) shows a plot of the aNL formula (6) versus number of spans N (solid), and numerically simulated values
(symbols), for a 28 Gbaud polarization-division multiplexed quadrature phase shift keying (PDM-QPSK) coherent
format over single mode fiber (SMF, β2 =−21 ps2/nm) for an Nx100 km link, both NDM and DM with 30 ps/nm/km
(DM30) of residual dispersion per span (RDPS) and no pre-compensation. A fitting factor ηp = 3/50 was used for
DM, and ηp = 1.7/50 for NDM. We appreciate the match of theory and simulation, as well as the announced N logN
scaling law in the NDM case. The perceived NDM slope over a 50 span range is ∼ 1.25 dB/dB as in [1], although
restricting the range to the first 15 spans gives∼ 1.35 dB/dB, as we experimentally verified in a companion study. NLI
grows faster in the DM case: aNL has an initial slope of ∼ 2 dB/dB and then bends at larger N.

Fig. 1(right) shows the 1dB NLT at BER0 = 10−3 versus baud-rate for a PDM-QPSK format for both NDM, and a
DM30 link with optimized pre-compensation, both at 20x100 km and at 120x50 km distance. Symbols refer to single-
channel simulation results taken from [5], solid lines to the formula P1 = PNLT − 1.05 dBm using (2) and the same
ηp fitting factors as in Fig. 1(left). While for DM links theory only captures the general trend versus R with major
discrepancies at lower R where IFWM is not dominant, the match in NDM links (optimized at 28 Gbaud through the
fitting factors ηp) is more reasonable and improves as the number of spans N increases.

6 Conclusions

We have provided a new model of NLI in IFWM dominated links, which reasonably models NDM links, as well as
high baud-rate DM links. Such a model provides a quick qualitative tool to compare transmission link parameters in
terms of their impact on received SNR.
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