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Small-Signal Analysis of Amplitude-, Phase-, and
Polarization-to-Intensity Conversion in General
Optical Linear Systems With Application to
PMD Compensation
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Abstract—A general small-signal model for amplitude-, phase-,
and polarization-to-intensity conversion in optical systems affected
by chromatic dispersion, polarization-mode dispersion (PMD),
and polarization-dependent loss (PDL) is presented, which extends
a previous scalar model by Wang and Petermann [1]. The model
leads to simple intensity filters, which can be expressed as a linear
combination of the components of the Stokes’ vector of the signal
input state of polarization (ISOP), and facilitates the prediction
of the ISOPs, which minimize/maximize the intensity modulation
on the output signal. The model is first used to study the output
intensity in a first-order PMD-compensated single-channel system
with either input amplitude, or phase, or polarization modulation.
The small-signal model provides a good prediction of the received
intensity up to modulation indexes of about 20%-30%, according
to the modulation type. The model is then successfully used in a
semianalytical bit-error rate (BER) evaluation method to estimate
the system penalty induced by cross-phase modulation (XPM) in
a two-channel wavelength-division-multiplexed (WDM) disper-
sion-managed system with PMD compensation.

Index Terms—Nonlinearity, optical fibers, polarization, polar-
ization-mode dispersion (PMD), polarization-mode dispersion
(PMD) compensation.

1. INTRODUCTION

T has recently been shown that the performance of wave-

length-division-multiplexed (WDM) systems with optical
polarization-mode dispersion compensators (OPMDCs) can be
severely degraded by cross-phase modulation (XPM)-induced
depolarization [2]-[4]. Such compensators, usually designed
for the single-channel linear propagation regime, are based
on a small-bandwidth feedback control and are thus not able
to follow the bit-by-bit XPM distorting effects. Moreover, the
presence of residual chromatic dispersion (CD) and/or lumped
polarization-dependent loss (PDL) causes additional distortions
that interact with those due to the polarization-mode dispersion
(PMD)/XPM interaction [5], further degrading the OPMDC
efficiency.

Although some simple, convincing arguments have been pro-
vided in [3] to explain the degradation mechanism due to the
interplay of XPM and PMD in OPMDCs with ON—OFF keying
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(OOK) modulation, a complete system model for the quantifi-
cation of such a degradation, mainly due to the distributed con-
version of XPM-induced polarization modulation to intensity
modulation along the fiber, is still not available.

Following in the footsteps of the development of a successful
distributed scalar model for the evaluation of the amplitude- and
phase-to-intensity modulation (AM—-IM, PM-IM) conversion
in dispersion-managed optical fiber systems affected by both
XPM and chromatic dispersion [6]—[8], which capitalized on the
results of the Wang—Petermann small-signal IM-IM, PM-IM
scalar model [1], this paper presents the key result needed for the
extension of the model in [6] to the case of optical systems also
affected by PMD and PDL, namely, a vectorial version of the
Wang—Petermann small-signal model. While the IM-IM vecto-
rial case was already tackled by Noé ez al. [9] for systems without
PDL, and a large-signal IM—IM analysis was introduced in [10]
for systems without PDL and in [11] for systems with PDL, the
new contribution of this paper is the study of the small-signal
vectorial model of both common-mode PM-IM and polariza-
tion modulation to intensity modulation (PoIM—IM), which are
needed tools to cope with phase and polarization modulations
induced by XPM in WDM systems.

While previous analyses have dealt with input polarization
modulation by considering an equivalent relative motion of the
fiber principal states of polarization (PSP) with respect to a fixed
input state of polarization (ISOP) [12], [2], an approach that is
correct only when the bandwidth of the polarization-modulated
signal is much smaller than the PSP’s bandwidth (a quasi-static
approach), a valuable element of novelty of this paper is the rig-
orous analytical treatment of fast (bit-by-bit) input polarization
modulation, which is needed when the signal bandwidth exceeds
that of the PSP’s and significant higher order PMD is present.

The paper is organized as follows. In Section II, the general-
ized vectorial small-signal model is introduced, providing a very
compact expression of the AM—IM, PM-IM, and PoIM-IM fil-
ters expressed as linear combinations of the four-dimensional
Stokes’ vector of the unperturbed ISOP. Section III presents an
application of the previously generalized model to linear fiber
systems affected by CD, PDL, and all-order PMD, both with
and without first-order OPMDC. Typical functional shapes of
the AM-IM, PM-IM, and PolM-IM filters versus frequency
are presented, and the accuracy of the small-signal model is
checked against direct simulation. Section IV shows the use of
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the model in a semianalytical bit-error rate (BER) evaluation
tool for system penalties assessment in WDM dispersion-man-
aged systems affected by XPM and PMD. Finally, findings are
summarized in Section V.

II. GENERALIZED SMALL-SIGNAL MODEL

Consider a general linear optical transmission system, de-
scribed by a 2 x 2 Jones matrix T'(w), which accounts for CD,
PMD, and PDL. Assume the 2 x 1 complex envelope of the
input field is composed of a continuous-wave (CW) component
plus a small perturbation as E;(t) = E;(1 + a(t))e~ =M J(¢),
where E; is a constant scalar amplitude, a(t) a small real am-
plitude modulation, and é..(t) a small real common-mode phase
modulation, and the ISOP vector J(¢) is also modulated. Since
the polarization modulation operated by XPM shows up in the
Stokes’ space as a time rotation of the state of polarization
(SOP) around a given axis [5], [3], [4], we will assume that
the ISOP takes the form J(¢) = U, (t)J;, where the unitary
time-varying operator associated with the Jones matrix Up(¢)
operates a counterclockwise rotation of the unit Stokes’ 3 x 1
vector ; associated with the Jones vector J; around a fixed
Stokes’ unit axis p by a time-varying small polarization modula-
tion angle 26, (¢). Analytically, the Jones matrix of this rotation
operator takes the form U, = cos(,)o0 — isin(6,)(p - 5),
where o is the 2 x 2 identity matrix, & = [o1;02;03] the
3 x 1 Pauli spin vector whose elements are the 2 x 2 Pauli
matrices o;, and the symbol - denotes the scalar (inner) product
sothat p - @ = 3.0, pioy is a 2 x 2 matrix [13], [10]. A
good summary on the use of Pauli matrices in PMD-related
problems can be found in [13]. Being the modulations a(t),
6.(t), and 6,(¢t) much smaller than one, one can approxi-
mate the input field as E;(¢t) = F;[J; + AJ;(¢)], where
AJ;(t) = [(a(t) —6.(t))T; — 16, (t)L] and L 2 (p-3)J;. The
Fourier transform of the output field is E,(w) = T(w)E;(w) =
Ei[38(w) + AJ(w)], where I 2 T(0)J;, §(w) is the Dirac
delta, and AJ(w) 2 T(w)AJ;
main output intensity I(t) = |

i(w). Consequently, the time-do-
E,(t)|? can be expressed as

I(t) = (D(IP + 2RIAT0] + 1ATOP) (1)
where (I) = |E;|? is the input CW intensity, the 1 denotes
the transpose conjugation, R[x] denotes the real part of z, and
the term AJ(¢) is the inverse Fourier transform of AJ(w).
After dropping the small |AJ|? term, one can finally express
the small-signal output intensity perturbation on the CW
AT2T - (I)|J)? in the frequency domain as

Al(w) = (I)[Ha(w)a(w) + He(w)fe(w) + Hy(w)bp(w)]
@

where a(w), §.(w), and 6, (w) are the Fourier transforms of the
real modulations a(t), .(t), and 6,(t), respectively, and

Ho(w) = I[[V(w) + V(-w))3;
He(w) = I[[V(w) = VI(-w)]J;/i
Hy(w) = J]V(w)L - LIV (—w)J;)/i 3)
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are the AM-IM, common-mode PM-IM, and PolM-IM
small-signal frequency responses, respectively, and V' (w) 2
TT(0)T(w). Note that the first of such relationships' was
already implicitly used in [9] for the analysis of the feedback
signal in PMD compensators. The remaining two filters in (3)
are original results of this paper. Such filters are already in an
analytical form suitable for numerical analysis. However, it
is possible to recast them in a form that allows a geometrical
interpretation of their dependence on the unperturbed ISOP.

To this aim, we decompose the Jones matrix V(w) on the
basis of Pauli matrices as V(w) = E?:o vi(w)o; = v(w) - g,
with v(w) = [v1;v2;vs; v4] being its 4 x 1 vector of Pauli co-
ordinates (which we call the Pauli vector) and o 2 [o0; @] [10].
Now, plug such an expression of V(w) in (3), and then use stan-
dard manipulation rules for Pauli spin vectors [13], [14]. The
end result, which is derived in Appendix A, can be compactly
expressed by introducing the following definitions.

Letj = [1;7] be the 4 x 1 Stokes’ vector associated with J;

(e,j=J IQJ i), and define the 4 X 4 block-partitioned matrix

re [9 P }
p 1pX
where px is the cross-product 3 x 3 matrix generated by the
3 x 1 unit vector p [13, eq. (4.8)], and the symbol 7 denotes

(v(w) + v (=w))/(2)

transposition. Now, define vp(w) 2
(v(w) — v*(—w))/(2¢), where * denotes con-
jugation. Finally, define z(w) = PTy(w) and z;(w) 2
(2(w) — 2*(—w)/24). Then, the frequency responses (3) can
be compactly rewritten as

and v;(w) 2

l>

Ho(w) = 20p(w) - j
He(w) = 2vy(w) - j

J
Hy(w) = 2z;(w) - j

“)
which represent the main theoretical contribution of this paper.
From such relations, it is clear that the frequency responses are a
linear combination of the four entries of the unperturbed ISOP
Stokes’ vector. Therefore, it is now simple to find the “best”
and “worst” ISOPs of the system [11]. For instance, the IM-IM
small-signal frequency response was shown in [10, eq. (55)] to
be Hiv(w) = wg(w) - j, that is, half the AM-IM response
H,(w), and the magnitude of Hyy;(w) at wy = 27(R/2) (with
R being the signal bit rate) was shown to be a good estimate of
the eye opening at small eye-closure penalty (ECP) values [10,
eq. (50)]. In addition, it was shown that the best/worst ISOPs 3
for the IM response in an uncompensated system obtained from
the small-signal model do coincide with the best/worst ISOPs
of the exact large-signal model [10, Figs. 12 and 13].

In the following, we will show how the PM-IM filter H. and
the PolM-IM filter H), can be applied to the description of scalar
and vectorial XPM effects in WDM systems with PMD [4] and
can thus be usefully exploited in the assessment of system penal-
ties.

!More precisely, the IM-IM filter, which differs from the AM-IM filter by a
factor of 2.
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Fig. 1. Line and compensator eigenmodes and eigenmodes rotation axis on
the Poincaré sphere.

III. APPLICATION TO FIRST-ORDER
PMD-COMPENSATED SYSTEMS

We now show the usefulness of relations (4) when analyzing
the intensity modulation induced by (desired) amplitude mod-
ulation and (often accidental) phase and polarization modula-
tion, such as those induced by XPM, at the output of a system
composed of a linear transmission line followed by a first-order
OPMDC.

First, assume the fiber line has no PDL, and a unitary Jones
matrix Up(w) = Vi(w)Upg, where Upy is its value at the ref-
erence frequency, and V7, (w) is the unitary extracted Jones ma-
trix (also known as difference rotation matrix [15]), which we
model as V7,(w) = cos(ATw/2)og — isin(ATw/2)(b(w) - 7),
where A7 is the differential group delay (DGD), and b(w) is
the unit eigenmode, which at the carrier frequency (w = 0) is
aligned with the line input PSP [10, eq. (30)]. This form of the
line Jones matrix implies a general depolarizing trajectory of
the eigenmode l;(w) or equivalently of the PSP, and assumes
that the DGD does not vary with frequency, that is, neglects po-
larization-dependent chromatic dispersion, which is known to
contribute way less severely than the eigenmodes (PSP) depo-
larization to system degradation [16]. For simplicity, we will as-
sume that the eigenmode b follows a rotation model [10, p.268],
that is, rotates, as w varies,Aat a constant rotation speed k around
a fixed (unit) rotation axis k coinciding with the vertical Stokes’
axis 83, starting from b(0) coinciding with the first Stokes’ axis
51, which represents a worst case for the eigenmodes depolar-
ization (equatorial trajectory).

We assume the line is followed by a single-stage OPMDC,
based on a polarization maintaining fiber of DGD exactly AT,
whose PSP direction vector ¢ is placed so as to cancel the first-
order PMD of the line, that is, it is aligned with —13(0). Such
a scheme implements an ideal first-order compensation, which
completely equalizes the line in the absence of depolarization
(higher order PMD), that is, when b(w) = b(0). The positions
of the line and compensator eigenmodes on the Poincaré sphere
are depicted in Fig. 1.
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One can show (Appendix B) that in the absence of line CD,
the overall line + OPMDC system has a Jones matrix whose
Pauli coordinates yield

vp(w) :[cos2 (%) + sin? (%) cos(kw);
isin(A7w) sin? <k7w> :0; 4 sin’ (%) sin(kw)}

v (w) = [o; 0 _% sin(Arw) sin(hw): 0]

so that one explicitly finds

H,(w) =2 |:COSQ (%) + sin? (%) cos(kw)]

A
+2i [sin2 <%w> sin(kw)js

+ sin(A7w) sin? <k7w> jl}
H.(w) = —sin(ATw) sin(kw)ja
Hy(w) = —sin(A7w) sin(kw)p2

ATw) . . .
T ) sin(kw)(p1j2 — p2J1)

2% .92
+ L|:Sln 5

k
+ sin(ATw) sin? <7w> (p2gs — p3j2)} (5)

where j = [j1; j2; js] and p = [p1; p2; ps].2 From (5), we note
that the AM-IM filter does not depend on the unperturbed ISOP
component jo, while the PM-IM conversion only depends on
such an ISOP component. Consequently, the worst ISOPs in the
AM case arejA' = £ 3,, since the magnitude | H, (w)| is minimum
for all frequencies. In addition, no PM-IM conversion takes
place for those ISOPs lying on the plane (31, §3) containing b(0)
and the eigenmode rotation axis ]AC while maximum PM-IM
conversion occurs forj' = =3o, that is, the ISOPs perpendic-
ular to such a plane. Note also from (5) that the real part of the
PoIM-IM filter is functionally a multiple of the PM-IM filter,
while its imaginary part vanishes when j is aligned with the
rotation axis p.> Hence, polarization modulation gives a much
smaller intensity distortion than common-mode phase modu-
lation (|H,(w)| < |H.(w)|) when py < j2 and j is almost
aligned with p. Note that the presence of CD and PDL consid-
erably complicates the expressions of the previously described
filters.

We now provide numerical verifications of these filters in
order to clarify the usefulness of the previously provided for-
mulas. In the calculations, the input CW had unit intensity £; =
1, and the line had DGD A7 = 0.57 and eigenmode depolar-
ization rate k = 0.27, with T being the bit time of a digitally
modulated signal of interest. The unperturbed ISOP j had az-
imuth § = 7/4 and ellipticity ¢ = /12, with equal power split
on the PSPs.

2The Stokes’ vectors j and p we use here correspond to those rotated by the
operator U, as explained in Appendix B.

3We note here that, for the chosen structure of U, (%), the largest input depo-
larization is obtained when p is orthogonal to j, while when p is aligned with
j,one gets L = J; and thus H,(w) = H,.(w), as one can also deduce directly
from (4).
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Fig. 2.

Output intensity before (left) and after (right) the OPMDC when either AM (top), PM (center), and PolM (bottom) are applied, with a 10% modulation

index and E; = 1. Line parameters: A7 = 0.57, k = 0.27". Unperturbed ISOP: azimuth # = 7 /4, ellipticity ¢ = 7 /12. Solid line: Small-signal model. Dashed

line: Exact solution.

Fig. 2 shows the output intensity before (left column) and
after (right column) the OPMDC, when modulation of either the
amplitude a (top), or the common phase .. (center), or the po-
larization angle 6, (bottom) was introduced by the bit sequence
0001 010 110 of nonreturn-to-zero (NRZ) pulses swinging from
—0.1 to 0.1, yielding a modulation index of 10% in all three
cases. The pulse shape was a raised cosine, with roll-off 0.2.
The polarization modulation axis p was orthogonal to 5 Solid
lines refer to the small-signal model, while dashed lines refer
to the exact large-signal solution obtained by simulation. Be-
sides the very good agreement observed with a 10% modulation
index, in the case of amplitude modulation (top), we note the
well-known split-and-delay effect due to a proper ISOP and a
DGD of half a bit before compensation. The intensity distortion
then almost disappears after compensation, the residual distor-
tion being due to the residual higher order PMD connected with
the eigenmode depolarization, which cannot be compensated
for by the previously mentioned first-order OPMDC. The center
and bottom figures show instead that the peak-to-peak intensity
perturbations induced by common-phase or polarization modu-
lation at the line output are attenuated by the OPMDC, which
is a general trend in the many cases, not shown here, that we
observed in which the first-order compensator properly works.
In addition, the peak-to-peak intensity perturbations caused by
the polarization modulation are comparable to those due to the
common-mode phase modulation.

We can also try to understand the intensity distortions by
reasoning on the frequency behavior of the filters in (4) and
(5). Fig. 3 shows |H,| (top) and both |H.| and |H,| (bottom)
at the OPMDC input (left column) and output (right column)
versus normalized frequency f /R, where R = 1/T is the signal
bit rate, for the same line and ISOP values of Fig. 2. Solid
lines correspond to the small-signal model, while symbols cor-
respond to the exact values, obtained by simulated transmission
through line, or line + OPMDC, of a CW field with F; =
1 and a sinusoidal modulation at frequency f, with a modu-
lation index of 10% of either the field amplitude (top row),
or the common phase, or the polarization angle (bottom row).
More precisely, open symbols give the ratio of the magnitude
of the output intensity spectral line at frequency f to the mag-
nitude of the modulating sinusoid (which we denote as ajy,

After OPMDC

Before OPMDC

o F H 1
T
T
c L 4
©
£ 7

r Hc

0 1 2 3
fIR fIR

Fig. 3. |H,(w)| (top row) and |H.(w)| and |H,(w)| (bottom row) versus
normalized frequency before (left) and after OPMDC (right) for the parameters
used in Fig. 2. Solid lines: Small-signal model. Circles, crosses, and diamonds:
Simulations for |H,(w)|, |H.(w)|, and |H,(w)|, respectively.

fc,.,and B, ,respectively, and are all equal to 0.1 in this case).
The good agreement between theory and simulations again con-
firms the validity of (4) with modulation indexes up to 10%.
While the shape of |H,(w)| suggests how much an OOK-mod-
ulated signal is distorted before and after compensation [9], the
shape of | H.(w)| and | H,(w)| tell us that the undesired intensity
modulation produced by a neighboring WDM channel through
common-phase and polarization modulation contains empha-
sized frequency components in the high-frequency portion of
the signal spectrum, up to f = R and beyond.

We verified by extensive simulations (not reported here)
that, for most line parameters and J; values, the polarization
modulation has a larger impact on intensity distortion than the
common-mode phase modulation, although in special cases the
converse may be true, as already mentioned when commenting
on (5). As an example, in Fig. 4, we show contour plots of
the ratio max |H,,|/max|H.|, where max |H,| and max |H.|
are the maximum values of the filters magnitude |H.(w)| and
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Fig. 4. Contour plot of the ratio max |H,|/max|H.| versus azimuth and
ellipticity of the polarization rotation axis p for two different line parameters
(reported in each subfigure title) in the case of a line + OPMDC system, and
an unperturbed ISOP with azimuth § = 7 /8 and ellipticity ¢ = «/8.

|H,(w)|, respectively, over the band occupied by the main
signal lobe w € [0, 27 R]. The contours are plotted versus the
azimuth and the ellipticity of the polarization rotation axis p for
two different line parameters in the case of a line + OPMDC
system and for a generic unperturbed ISOP with azimuth
¢ = m/8 and ellipticity ¢ = /8, which does not have any
specific connection with the symmetry axes of the system. For
most orientations of p , we observe that max |H,,| > max|H.,|.
We also verified that, for the relatively few cases in which
max |Hp,| < max|H,|, the effects of both filters are almost
negligible, with max |H,| being lower than 0.5. Note that the
points of maxima in the contour plots also correspond to the
maxima of max |H,|, which, for the considered ISOP, occur
when the rotation axis p is close to the Stokes’ axes 355, that is,
when the magnitude of its second component ps is maximized
(see (5)).

We next analyze in Fig. 5 the effect of line CD and PDL on the
intensity filters in the case with OPMDC, where again a good
match between model (solid lines) and simulations (symbols) is
found for a 10% modulation index.

Fig. 5 (left column) shows |H,(w)| (top) and |H.(w)| and
|H,(w)| (bottom) versus normalized frequency when the line
used in Fig. 3 now also has a first-order CD corresponding to a
line length of 10% of the dispersion length Lp [17]. The well-
known effect of first-order CD is to introduce oscillations in
the intensity filters, which increase the waveform distortions on
the input modulating signals, and to emphasize the polarization
modulation with respect to the common-phase modulation (see
Fig. 3).

Fig. 5 (right column) shows the intensity filters when the
system with OPMDC used in Fig. 3 is followed by a diatten-
vator with PDL = 2 dB and diattenuation axis orthogonal, in
Stokes’ space, to the unperturbed CW SOP at the output of the
OPMDC. Such a situation maximizes the distortion induced by
the given PDL. We observe that PDL causes both a common re-
duction of filter amplitudes and a smoothing of its dips.

Finally, we tested how robust the small-signal model is with
respect to modulation index. For the same compensated line as
before, we used a 27 — 1 pseudorandom binary sequence (PRBS)
of NRZ pulses to modulate the amplitude a, the common phase
6., or the polarization angle 6,,.

4This is known to produce an ECP of about 0.5 dB in scalar OOK linear
systems affected by group-velocity dispersion [18].
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PMD + PDL

PMD + GVD

Hc and Hp

f/R flR

Fig. 5. |H.(w)| (top), |H.(w)|, and |H,(w)| (bottom) versus normalized
frequency for same system with OPMDC as in Fig. 3, but with added either
(left) line group-velocity dispersion corresponding to a dispersion length of
10% of the line length or (right) a 2-dB PDL element at the OPMDC output.
Circles, crosses, and diamonds: Simulations for |H,(w)|, |H.(w)|, and
|H,(w)], respectively.

To quantify the linearization error, we evaluated the root-
mean-sqaure (rms) deviation

o e
T
J

(with T;,, being the width of the PRBS window) between the true
intensity I(¢) and the intensity derived from the small-signal
model I;(t) = (I)|J|> + AI(t) obtained by (2).

Fig. 6 shows plots of d versus normalized modulation index
for amplitude modulation a, common-phase modulation 6., or
polarization angle modulation §), for (left) the same ISOP with
azimuth § = 7 /4 and ellipticity ¢ = 7/12 used in Fig. 2 and
(right) a different ISOP with azimuth § = 7/8 and ellipticity
e = w/6. As a worst case, the Stokes’ vector p was chosen
orthogonal to the ISOP in both situations. We note that the error
slightly depends on the ISOP and is larger for the amplitude
modulation than for the phase modulations. Since for acceptable
curve matching, the rms deviation should stay below roughly
5 - 1072 [19], [20], then from the figure, we conclude that the
linearized model is reliable for an AM index below about 20%,
while a larger index up to about 30% is tolerable for the phase
modulations.

What can we conclude from such figures? It is clear that for
practical OOK transmission systems, which usually work with
extinction ratios in excess of 10 dB, the AM-IM linearized
model is not applicable. It could, however, be used to estimate
the statistics of accidental intensity modulations induced by
small undesired amplitude modulations, such as, for instance,
the transmitting laser relative intensity noise, as done in [1].

However, the small-signal model has its most valuable appli-
cation in the semianalytical BER evaluation procedure that we
describe next.

—I(t)2dt
1) dt

d=
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Fig. 6. Root-mean-square (rms) deviation d versus modulation index, computed for the same line of Fig. 3 with OPMDC, for an ISOP (left) with azimuth ¢ = 7 /4
and ellipticity € = 7/12 and (right) with azimuth 6 = 7 /8 and ellipticity ¢ = 7 /6. Solid lines: Small-signal model. Circles, crosses, and diamonds: Simulations

with AM-IM, PM-IM, and PoIM-IM filters, respectively.

IV. THE SEMIANALYTICAL BER EVALUATION METHOD

The method was originally developed for estimating system
penalties in OOK NRZ WDM systems affected by scalar XPM
[21]. In this section, we review the main steps and adapt them
to the vectorial case at hand.

The key idea is that the interchannel crosstalk due to XPM
shows up on the channel of interest as a stochastic additive in-
tensity noise process on mark bits only and is independent of
the modulation bits. Therefore, the first step of the method eval-
uates the received waveform by the beam-propagation method
(BPM) [17] when only the channel of interest is transmitted,
without amplified spontaneous emission (ASE) noise. This al-
lows construction of the received eye in the absence of crosstalk,
accounting for CD and self-phase modulation (SPM) distor-
tions, and the choice of the best sampling time for maximum
eye opening. Let y(¢x) be the sampled current at the kth bit time
in single-channel noiseless propagation. We assume the pream-
plified receiver has an optical filter whose bandwidth (which we
assume to be five times the bit rate) is large enough not to dis-
tort the signal and the XPM-induced crosstalk and only limits
the received ASE. An electrical low-pass filter of a bandwidth
0.65 times the bit rate then follows. The total sampled current is
then

i(tk) = y(te) + n(tr) + z(tr)

where n(ty) is the electrically low-pass-filtered signal-ASE
beat noise, and xz(t;) is the electrically low-pass-filtered
XPM-induced crosstalk. The BER(i(%,)) for each kth bit in the
PRBS sequence is then found by the total law of probability by
conditioning on the sampled crosstalk term

oo

BER(i(t1,)) = / BER(i(t1) | 2(ty)) fu () d

— 00

where f,(z) is the probability density function (pdf) of the
crosstalk term, which we obtain offline by constructing his-
tograms of XPM-induced intensity swings on the probe CW
channel. Finally, the total BER is averaged over all bits in the
PRBS in order to properly account for intersymbol interference.

Now, the crosstalk pdf can either be estimated by very lengthy
BPM simulations or very quickly by using our small-signal fil-
ters. Next, we describe how to use the small-signal filters to
evaluate the crosstalk statistics. For simplicity, assume there
are only two WDM channels, a probe (the channel of interest),
and a pump (the channel causing XPM-induced crosstalk on the
channel of interest).

The idea is the following. The PMD-impaired fiber is mod-
eled, as usual, as a concatenation of waveplates with randomly
oriented PSPs. Within each waveplate, XPM gives a small phase
and polarization modulation to the probe [5], [4]. Such a small
modulation generated at the waveplate gets converted into an
intensity modulation through the PM—-IM and PolM-IM filters
referred to the equivalent fiber seen from the specific wave-
plate until the end of the link. Finally, the intensity perturbations
generated at all waveplates get added up to yield the received
crosstalk intensity. Since all intensity perturbations are obtained
from linear filtering of the pump modulation and are added at
the output, this amounts to calculating a single compound filter
whose input is the pump modulation and whose output is the re-
ceived crosstalk intensity. Once such a filter is calculated, esti-
mation of the crosstalk pdf is a simple and quick task [21]. Note
that in order to calculate the small-signal filters as per (3) and
(4), a calculation of the SOP of both pump and probe is needed
at the input of each waveplate. To this extent, both channels are
supposed to be completely polarized CW, with power equal to
their mark power level (recall that we are focusing on the SOP
evolution on marks only), whose SOPs are only affected by a
frequency-independent rotation, due to the fiber birefringence
evaluated at the carrier frequency of each channel. The rotation
axis p used in filter I, is computed as the normalized sum of
pump and probe ISOPs, according to [4].

The procedure is expected to be accurate—and the linearized
PM-IM and PolM-IM filters are expected to hold—when the
waveplates are selected short enough that phase and polariza-
tion modulations (i.e., the Kerr nonlinearity) in each waveplate
are small. The main limit is that the procedure neglects the in-
teraction of SPM and XPM on the probe channel, which is valid
when the probe power is not extremely large [21].

As an application of this method, we evaluated the optical
signal-to-noise ratio (OSNR) penalty at BER = 10~ for a
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Fig.7. OSNR penalties (@BER = 10~?) of the probe channel (P, = 3 dBm)
versus P, at the output of a two-channel system with 3 x 100-km perfectly
compensated span of TeraLight fiber and At = 0.44T, k = 0.3T". Solid lines:
Small-signal model. Dashed lines: Simulation. Grey lines: Only PMD.

two-channel system in which the probe and pump signals were
spaced by AX = 0.8 nm and were OOK modulated by two
independent 27 — 1 NRZ PRBS streams at 10 Gb/s. The line
consisted of three fully compensated 100-km spans of Tera-
Light fiber (D. = 8 ps/nm/km, v = 1.68 W—1.km~!, and
«a = 0.2 dB/km), where the interaction between PMD and
XPM was taken into account through a distributed multisec-
tion emulator, as in [4]. At the end of each span, three sections
were added before the dispersion-compensating fiber (DCF),
and each section emulated a polarization-maintaining fiber with
randomly oriented PSPs. The DGD of the whole system was
AT = 0.447T, and the eigenmode rotation rate was k = 0.37,
and 6(0) = (0.56,—0.52,—0.63), that is, almost orthogonal
to the input probe SOP. We studied the system both with and
without the ideal OPMDC with perfect first-order PMD cancel-
lation that was already used in the previous section. We com-
pared the results given by our small-signal model to the exact
numerical results, obtained by applying BPM simulation of the
Manakov equation [4]. Because of the BER dependence on the
transmitted channels’ bit alignment, the simulated results were
averaged over 20 different time delays between pump and probe
bits. With the small-signal model, instead, the crosstalk pdf av-
eraged over all possible delays is directly obtained.

In Fig. 7, we show the OSNR penalty obtained both with
numerical simulations (dashed line) and with our small-signal
model (solid line) for a probe ISOP 3 with § = /12 and
¢ = 7 /8 and a pump ISOP aligned with §3, that is, for a relative
polarization angle of 7 /4 between pump and probe ISOPs [4].
The average power of the probe was fixed at 3 dBm, while
the pump average power P, was varied from 3.3 to 16 dBm.
In all cases, the received OSNR of the probe channel was 21
dB/0.1 nm. The constant grey lines describe the OSNR penalty
measured with only PMD, both with and without OPMDC.
With only XPM, we measured a negligible OSNR penalty
of 0.5 dB in the worst case P, = 16 dBm. The efficiency
of PMD compensation starts to be significantly affected by
the interplay between XPM and PMD when ]31, > 15 dBm,
where an additional penalty larger than 1 dB is found. Roughly,
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this corresponds to the compound effect of 16 neighboring
WDM channels if the walkoff effect is ignored, and many more
when CD-induced walkoff is taken into account. We note that
the system without OPMDC suffers a much larger penalty,
exceeding 1 dB beyond P, = 12 dBm. In both cases with
and without OPMDC, the analytical results show a maximum
difference from the numerical results of about 0.5 dB. However,
the analytical model is not able to fit the simulated curves when
the large strength of XPM nonlinear effects rapidly degrades
the system performance, that is, beyond a threshold power of
14 dBm for the noncompensated system and of 15 dBm for
the compensated one. Note that an OPMDC with a degree of
polarization (DOP) as feedback control, which works without
tracking the fiber PSPs, is expected to give worse performance
than that shown in Fig. 7, because its best operating conditions
could be hidden by the depolarizing effects on DOP due to
interaction of PMD and XPM [4].

V. CONCLUSION

This paper presented a vectorial generalization of the small-
signal scalar model of Wang and Petermann [1] for evaluation
of the received intensity out of general optical transmission
systems affected by CD, PMD, and PDL in the presence of
amplitude, phase, and polarization modulations with small
modulation indexes. The novel formulation shows that the
intensity modulation in all cases can be obtained as a linear-
weighted combination of the components of the Stokes’ vector
of the unperturbed ISOP. Such a result, which also holds for
the large-signal IM—IM transfer function, allows, for instance,
a simple search of the best/worst ISOPs for each modulation
format.

As an application, we have checked the amplitude, phase, and
polarization modulation conversion in transmission lines with
and without first-order OPMDC. We have verified that there
exists a whole set of ISOPs—those on the plane, including the
line eigenmode and its rotation axis—for which the PM-IM
conversion is minimal, while for the two ISOPs orthogonal to
such aplane, both the AM—IM conversion is minimal (largest AM
distortion on desired OOK signal) and the PM—-IM (undesired)
conversion is largest. In addition, for most lines and ISOPs,
the polarization modulation is found to give a larger intensity
modulation than common-mode phase modulation. It was found
that first-order compensation, when properly working (i.e., with
nondominant higher order PMD effects, such as eigenmodes
depolarization), also has the ability to reduce the peak-to-peak
intensity excursions due to both common PM and PolM. It
has been verified that the linearized model provides excellent
predictions of the output intensity when the modulation index
is below 10% and acceptable predictions up to modulation
indexes of about 20% for the AM and of about 30% for PM
and PolM.

Finally, a semianalytical BER evaluation method that was
originally developed for the scalar XPM case was adapted to
the case of vectorial XPM. It was shown in a simple case study
that the method is able to quantify the system penalty induced
by the interplay of XPM, CD, and PMD in dispersion-mapped
WDM systems.
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APPENDIX A

It is proven in this Appendix that the frequency responses in
(3) can be cast in the form (4).

Starting from V(w) = v(w)-g, itis noted that, since the Pauli
matrices are Hermitian, then V'(-w) = (3, vi(—w)o;)t =
v*(—w) - o. Hence, substitution in the first two relations in (3)
gives the equation shown at the bottom of the page, where we
used the linearity property [13, eq. (A.13)]. Such equations im-
mediately give the first two relations in (4). To prove the third
relation, we first prove that

=

JioL=rPj
where L £ (p-5)J; and P is the 4 x 4 matrix defined in block
form in Section II. Write such a4 x 1 vector in block partitioned
form as [ = [lp; l] where [ is its first component and I the
3 x 1 vector of its remaining components. Using [13, eq. (A.3)],
we first write ¢(p - &) = oop — iF X ;ﬁ. Then, using [13, eq
(A.13)], we have [ = 315 (p-5)J; = (I o0di)p—i(I]53;) x
—4j x p. Similarly, we find: lp = T(p ANi=p-J.
Hence, in block form, [ = [p - Jip—if X p] = Pj.
Thus, again using the linearity property [13, eq. (A.13)], the
third relation in (3) writes as
~[J;v(w) - oL — L'v" (-

Hp(w) = W) 'QJi]

[o(w) - (FTeL) - v*(-w) - (Ligdy)]
So(w) - Pj— v (-w) - P74

" (w)P - v (—w)P*]j.

@.|>—lsl>—ns.|;—~@

From the block form of P in Section H, we note that P* =
PT, since (ipx)T = —ipx. Thus, PT" = P, that is, P is
Hermitian. Hence

Hy(w) = o7 ()P ') P
= %[PTy(w) - Pv*(-w)]-j

which proves the third relation in (4).

APPENDIX B

In this Appendix, the line + OPMDC system is analyzed. The
compensator is composed of a tunable polarization controller
(PC), followed by a polarization-maintaining fiber (PMF). It is
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assumed that the PC can orient the PMF eigenmode in any po-
sition on the Poincaré sphere. The Jones matrix Uc (w) of the
PC + PMF compensator as [10] is modeled as

Uc(w) =
Vc(u))

UcoVe(w)
(B0 (3469
(6)

1>

where Uc is the compensator matrix at the reference frequency,
A¢(w) is its retardation angle, and ¢ is the unit eigenmode of
the extracted compensator matrix Ve (w).

The line fiber is described by the unitary Jones matrix

5
&£
[

Vi (w)Uro
2 con(( Y gy isin (24 (0 -

where A¢;(w) and b(w) are its retardation angle and eigenmode,
respectively.
The Jones matrix of the total system composed of line +
OPMDC is
T(w) = Uo(w)Ur(w) =

UcoW (w)Upo @)

where W (w) 2 Ve (w) Vi (w) contains all the frequency depen-
dence of the global Jones matrix, and W (0) equals the identity
matrix. Now evaluation of the matrix V' (w) in (3) gives
V(w) = TH0)T(w) = ULy W (w)Uro-

If one uses such a matrix in (3) and one goes through the deriva-
tion steps in Appendix A, one realizes that the result (4) also
holds if one uses the Pauli coordinates w of W (w) instead of the
Pauli coordinates v of V (w) and if both the ISOP j and the po-
larization rotation axis p are expressed in the coordinate system
rotated by the Mueller matrix associated with the unitary Jones
matrix Ugg.

In order to get explicit expressions of the filters in (4), it is
now necessary to derive the Pauli vector w of W (w).

Since the Pauli vector of the compensator V¢ is v.(w) =
[cos(Ape(w)/2); —isin(A¢p.(w)/2)é] and that of the line V7, is
v;(w) = [cos(Agy(w)/2); —i sin(Agy(w)/2)b(w)], by the con-
catenation rule for Pauli vectors ([10, eq. (A.3)], the Pauli vector
of the total Jones matrix W (w) is obtained as

5(w) = B(w)(&- b(w))

U i @)b(w) + a@)ét fw)@x bw)y | P

o]di = (v(w) + v (=
-a]J;

2)(Tlal)
— vw)=v'(=w) (JTUJZ‘)

K2
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where

It can

[ 2 qin( Ace Ao
a:sm( 5 )cos( 2’)
[)’ésm(Ag)c)sin(A;”)
)]
A Ade ) i [ Ao
’y—cos( 5 )sm(TZ)
A Ag, Ag
L6—(}05( 5 )cos( 2’)

be shown that the concatenation rule (8) has a simple ge-

ometrical interpretation on the Poincaré sphere [10]. This fact is

of gre

at importance, since it provides the eigenmodes descrip-

tion with a graphical tool much similar to the graphical inter-
pretation of the concatenation rule for the PMD vector and can
be effectively used to visualize the action of OPMDCs [22], al-
though this point will not be expanded on in the present paper.

In the specific example, A¢. = A¢d; = ATw, 5(0) = 51,

and ¢
of the

= —b(0) are selected. Moreover, according to the choice
rotation model around & = §3, the eigenmode equation is

b(w) = cos(kw)é; + sin(kw)3,. Substitution in (8) yields the
desired Pauli vector

w(w

) =

A A
[cos2 <%w> + sin? <%w> cos(kw);

isin(Arw) sin’ (%) ; —% sin(A7w) sin(kw);

i sin’ (%) Sin(kw)] .
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