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Abstract- Sun e2 al. [l] reduced the set of coupled iirst 
order nonlinear partial differential equations determining 
the wavelength-dependent, time-varying doped-fiber ampli- 
fier gain into a single ordinary differential equation (ODE). 
In this paper we further simplify the ODE, greatly enhanc- 
ing its utility as an analysis and design tool. We find that 
the gain dynamics are completely specified by the total 
number of excited ions. We demonstrate that  channel ad- 
dition causes much faster transients than channel dropping 
in wavelength division multiplexing networks. We approxi- 
mate the solution of the ODE by an exponential with time 
constant given as a function of amplifier parameters. 

I .  INTRODUCTION 

Gain dynamics of erbium doped fiber amplifiers (EDFAs) 
are already of considerable interest in wavelength division 
multiplexed (WDM) networks, where network reconfigura- 
tions or network faults can lead to the adding or dropping 
of wavelength channels [l], [2], [3], [4]. Given the interest 
in EDFA gain dynamics, much research has been devoted 
to the solution of the set of coupled first order nonlinear 
part*ial differential equations determining the wavelength- 
dependent, time-varying amplifier gain. The complexity of 
the numerical solution of these equations has motivated ef- 
forts to reduce them or to study steady state solutions. For 
instance, Saleh e2 al. [5 ]  eliminated the time dependence of 
the gain to arrive a t  a simple, single transcendental equa- 
tion for the steady state gain. More recently, Sun e t  al. 
[ I ]  at  Bell Laboratories have succeeded in reducing the sys- 
tem of coupled differential equations into a single ordinary 
differential equation (ODE). 

In this paper we further simplify the ODE identified by 
Sun e2 al., [l] bringing into greater evidence the physical 
meaning of the amplification process, and greatly enhanc- 
ing the utility of the ODE as an analysis and design tool. 
We show that the gain dynamics of a doped-fiber ampli- 
fier are completely specified by its total number of excited 
ions, which we call the reservoir ~ ( t ) ,  whose time behav- 
ior is described by a simple first-order ODE. The present 
analysis is based on the assumptions of the model in [1],[5], 
which neglects both excited state absorption and saturation 
induced by the amplified spontaneous emission (ASE) pro- 
duced inside the amplifier. There are several methods to 
include such ASE contributions in the model [B], [7], and 
future work will address this issue. 

As explained in [3], channel additions and drops in WL)M 
systems lead to power disparities among channels and (:an 
compromise the quality of service. Schemes for dynamic 
control of the amplifer gain (and hence output powers) must 

react more quickly than the amplifier gain transients. We 
use the reduced ODE to examine the relative speed of tran- 
sients in added versus dropped WDM channels. 

We have found that the doped-fiber amplifier dynamics 
are connected to the depletion and the refill of the reser- 
voir. While the refill process is mainly contributed by the 
pump, and is a process in which one pump photon can ex- 
cite at  most one ion, the depletion process is mainly caused 
by the signals, and is an avalanche process connected to 
stimulated emission: one signal input photon can consume 
a very large nurnber of excited ions in the reservoir. Thus 
the time scales connected to the depletion process can be 
extremely fast, while those connected to the refill process 
are slow and depend on the pump power and the total num- 
ber of dopant ions. In any case, the amplifier dynamics are 
essentially independent of the fluorescence time. As a con- 
sequence, channel addition causes much faster transients 
than channel dropping. 

The paper is organized as follows. In Section I1 we derive 
the ODE describing the system. In Section 111 we develop 
the step response of the gain of a single amplifier, and an 
exponential approximation for the gain. In Section IV we 
find the step response for a chain of amplifiers. Finally, 
Section V concludes the paper. 

11. THEORY 
We start from the rate and photon equations used in [l], 

derived assuming a two-level system for the dopant ions, 
homogeneously broadened gain spectrum, no excited state 
absorption, no background loss, and no self-saturation by 
ASE. The rate equation for the fraction of excited ions Nz,  
0 5 Nz 5 1, is 

N 
dNz(Z ,  t> - -- & ( z ,  t )  - - a Q j ( ~ , t )  (1) C U J  az - 

P A  j = o  at 7- 

and the equations describing the propagation along z of the 
photon fluxes &A [photons/s] of channel k ,  k = 0, ..., N ,  are 

where 7- [SI is the fluorescence time, p [mW3] is the ion density 
in the doped fiber core of effective area A [m']; r k ,  uk [m2], 
and ug [m2] are the confinement factor, and the emission 
and absorption cross-sections of channel IC, respectively, and 

==. ui+ug. The length of the amplifier is L [m]. Channels 
entering at  z = 0 have uk = 1 while those entering at  z = L 
have u k  = - 1. The pump is placed on channel 0. 

A 
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Dividing both sides of ( 2 )  by &k # 0, multiplying by d z  
and integrating from z = 0 to  L yields 

Gk(t)  = Bk T ( t )  - Ak, k = 0, ..., N (3) 

where 

Gk(t )  A .fo ubaQI. Q~ = / n ( Q P ‘ ( t ) / Q ~ ( t ) )  

r ( t )  fi pA s,” N z ( z ,  t )  dz  

is the logarithmic gain; 

is the total number of excited ions in the amplifier, 
which we call the “reservoir”. The reservoir is a 
number between 0 and TM = pAL, the total num- 
ber of ions in the doped fiber. The state variable 
represents the number of available ions ready to  
be converted into signal photons; 

A 

A A Ak = prkC7,“L and Bk = r k a r / A  

The standard parameters used in [1]-[5] are the absorption 
coefficients a ! k  = p r k d g  = & / L  and the intrinsic satura- 
tion powers P;” = hv+ = &. We introduce parame- 
ters Ak, Bk, which are independent of T, to  stress that the 
gain depends on r only through r .  Note that the defini- 
tions of QP( t )  and QPt(t) include the directionality of the 
fluxes, therefore obviating the need for the parameter uk 

Multiplying both sides of (1) by dz and integrating from 

are non-dimensional parameters. 

A 

A 
r k a k  r 

PI. 
0 to L yields 

Using (3) in (4) we arrive a t  a first-order ODE describing 
the dynamic time behavior of the system’s state, ie., the 
reservoir r( t )  

Once the initial condition r ( 0 )  is specified, it is easy to show 
that the solution of (5) is unique. r (0 )  can be any number 
in the allowed range [0, T M ] ,  although the range spanned by 
a real amplifier can be narrower [lo]. If a t  time t = 0-,  Le. ,  
one instant before the start of the observation period, the 
amplifier is a t  equilibrium, then r (0)  must satisfy ( 5 )  with 
+(0-) = 0 

N 

r (0)  = 7 Q ~ ( o - >  (1 - eBJr(O)-A’ ) (6) 
j = O  

which corresponds to  the well-known Saleh steady state 
equation [ 5 ] .  For a starting guess a t  its numerical solution, 
the upper bound ~xj”=, Qj”(O-) can be used. 

Note that,  for given input fluxes Q Y ( t ) ,  the direction 
of their entering the amplifier has no effect on r .  Hence 
co- and counter-propagating pumping is equivalent in this 
analysis. However we recall that  ASE has been neglected 

in this analysis, and in fact a co-propagating pump always 
gives a larger optical SNR [8]. 

Equation ( 5 )  can be expressed equivalently in terms of . .  
A L  the normalized reservoir z ( t )  = $ so N z ( z ,  t )  d z  = $, also 

known as the f r a c t i o n  of exc i ted  ions [ 6 ] , [ 8 ] ,  

This form may be more useful in the study of an isolated 
amplifier, as the main amplifier parameters are clearly vis- 
ible in the expression. 

Note from (7) that  input fluxes Q)” are meaningful in re- 
lation to  the total reservoir capacity r M .  However, the nor- 

Q’” malized input photon fluxes e do not uniquely describe 
the system behavior, since amplifiers with identical uT(X), 
.“(A), but different TM will behave differently even if driven 
by the same normalized photon fluxes. All other parameters 
being equal, however, one can trade p for L by keeping their 
product constant, ie., one can have shorter but otherwise 
identically behaving amplifiers by more strongly doping the 
core. Another implication of (7) is that  if the core area is 
doubled the input fluxes must be doubled to  obtain identi- 
cal system dynamics. 

111. SINGLE AMPLIFIER STEP RESPONSE 
Suppose we have a single amplifier, described by (5). At 

time t = 0- (ie., an instant before time 0) we are given the 
initial value r ( 0 )  and the inputs {QY(O-)}.l The systern 
need not be at  steady state a t  t = 0-. At time t = O +  
each input flux undergoes a discontinuity and then remains 
constant for all t > 0 

Then ( 5 )  a t  t = 0- gives 

j = O  

where Gj (0) = Bj r (0)  - Aj , and a t  t = O+ gives 

N 

+(o+)  = +(o-)+ CAQ~”(~  - eGJ(0)) (10) 
j = O  

For small values o f t  we can approximate the actual so- 
lution of (5) with a straight line 

T ( t )  r r (0)  + i.(O)t (11) 
More generally, we can differentiate ( 5 )  n - 1 times and 
find the derivatives a t  time zero %r(O+), i = 1, .., n,  and 
approximate r ( t )  with its truncated Taylor series in t = 0 

i=O 

‘Note that r(O+) = r(O-)  since f(0) exists. 
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One problem with such polynomial approximations at t = 
0 is that they fail to  converge to the actual solution for t --+ 
00. A reasonable compromise between accuracy near t = 0 
and asymptotic convergence is obtained by the exponential 
approximation 

r ( t )  = rS"OO) + ( r (0 )  - rss(oo))e-t'Te (13) 
where rss(oo) is the steady state value of T (approached 
asymptotically for t -+ co) with the new input fluxes (8), 
and T, is the exponential time constant. To get accu- 
racy near t = 0 we impose that T e ( O + )  = T ( O + ) ,  ie., 
the derivative of the approximation matches that of the 
actual solution a t  time t = O + .  We have from (13) 
+ ( O + )  E -md, so that we find the time consljant 

7, 

The exponential approximation gives a better model to 
describe the gain dynamics for longer time scales with re- 
spect to  the polynomial approximations. It is good t 3  de- 
scribe transients in a circuit switching scenario, with chan- 
nels being added/dropped dynamically. Such an apFroxi- 
mation has been suggested in [3], but an explicit expression 
for the exponential time constant was missing. It has been 
shown in [3] that the exponential approximation is indeed 
closer to the experimentally measured value of r ( t ) .  Bononi, 
e t  ai.  [lo] give an analytical justification of the exponential 
approximation, corroborating the results in [4]. 

As a numerical example, consider a case very similar to 
the one presented in [l]. The amplifier has two input than- 
nels A1 = 1552.4 nm and A 2  = 1557.9 nm,  with initial input 
powers PI = -2 dBm and PZ = -2 + 10Logl,(7) tlBm, 
simulating the remaining 7 channels of an 8-channel system 
with -2 dBm/channel. The amplifier is pumped at  980 nm, 
with pump power 18.4 dBm, and has L = 35 m ,  T = 10.5 
ms. The absorption coefficients are [0.257, 0.145, 0.1251 
rn-l and the intrinsic saturation powers are [0.440, 0.197, 
0.2141 mW at  [980, 1552.4, 1557.91 nm respectively. The 
system is a t  equilibrium before t = 0. At time t = 0 part of 
the power on channel 2 is dropped, simulating the drop of 
a given number of channels. 

Fig. l(a) shows (top) the reservoir dynamics for the 
exact solution of (5) and for the exponential approxima- 
tion (13), for power variations in channel 2 simulating the 
drop of 4 and 7 channels, and the addition of 7 chan- 
nels, respectively. Fig. l(a) (bottom) shows the clx-re- 
sponding output power excursion on channel 1, defined as 
10Logl,(Q$t(t)/Q~Ut(O+)). This figure matches very well 
with Fig. 1 of [I]. The exponential approximation for the 
reservoir is always below the actual solution, and larger er- 
rors are obtained for larger power drops. 

As another example of step response, consider in Fig. l(b) 
the turn-on dynamics of the previous amplifier, in which no 
beam is present before t = 0 and the pump is turned on 

r a a  w - r  0 
at  t = O+.  From (14) we have T~ = Q p ( ! - L G ~ : o ? )  = 595 
lis. Observing also that r (0 )  E 0 and e G P ( ' )  2 0 (amplifier 
OFF), and that a;/wF E 1 ,  we get re T .  This means 
that the turn-on time is the time it takes the pump, provid- 
ing Qp photons/sec, to invert the whole ion population in a 
one-to-one process. This also justifies the observed ncarly 

P 

~ 
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linear increase in the reservoir. Note that the exponential 
approximation is accurate for low values and high values of 
t ,  with pooresi: performance a t  the knee of the curve. This 
is not surprising, as the time constant was chosen to give 
exact results for t = 0 and t -+ 00. 

This long time constant, as well as the ones relative to 
channel drops in the previous example, which are of the or- 
der of 100 ps, are connected to the long time required by the 
pump to refill the reservoir. One pump photon can a t  most 
excite one ion, and thus i t  takes a strong pump flux to have 
a fast refill. On the other hand, the fast dynamics observed 
in the signal add process are connected to  the time it  takes 
the added signal to  deplete the reservoir. One signal photon 
can consume many excited ions in the stimulated avalanche 
process, and thus i t  is sufficient to have a relatively weaker 
signal to have much faster system dynamics. 

IV. AMPLIFIER CHAIN STEP RESPONSE 

In this section we apply our theory to  the study of tran- 
sient gain dynamics in a chain of amplifiers in response to 
channel dropping/adding in a circuit switching scenario, a 
case also studiled in [a]. 

Consider a chain of m identical fiber amplifiers, identical 
inter-amplifier loss L I ,  and N + 1 beams a t  the chain input, 
with CW input fluxes Qin, .., Q$ for the signals, and Qbn = 
Q p  for the pump. As in Section 111, at t imet  = O+ the signal 
fluxes at  the input of the chain have a discontinuity, so that 
for t > O+ equation (8) holds for j = 1, .., N .  

Such discontinuity propagates instantly along the ampli- 
fier chain.2 Equations (9) and (10) describe the derivative 
of reservoir v i ( t )  at  each amplifier i = 1, .., m along the 
chain. 

Let Qi? be t8he flux of channel j a t  the input of the i-th 
amplifier. By definition Q i j  = QF for all j ,  and Qi: = Qp 
for all i since the pump is restored a t  each amplifier. Let 
G:$" 2 eBJrlFA3 be the linear gain of channel j a t  the i-th 
amplifier. At t8he input of the m-th amplifier we can thus 
write for channel j: 

. A  

(15) 
Equation (10) for the m-th amplifier then becomes 

(16) 
If the system is started a t  equilibrium (kna(O-) = 0), 

and if the gains of each channel are almost equal along the 
chain, very close to the inter-amplifier loss and large (Vi, 
GfY(0) = GY"(:O) Z LI  >> l) ,  then A 

j = 1  

'We are neglecting the propagation delay of light in the fiber chain. 
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I time (us\ / I  time (us) 

Fig. 1. (a): Time evolution of (top) Reservoir and (bottom) Output power excursion for surviving channel 1, whith channel 2 undergoing 
step variations at t = 0. Solid: exact solution of (5); Dashed: exponential approximation. (b): (top) Reservoir and (bottom) Gains at 
[980, 1552.4, 1557.91 nm, with pump turned on at t = 0. 

which shows that the slope i . m ( O t )  of every reservoir in an 
initially “balanced” chain is approximately equal to (17) for 
every amplifier. 

As a nunierical example, consider a case very similar to  
the one presented in [2]. The amplifier chain has 20 identical 
amplifiers and two input channels a t  1552.1 and 1557.7 nm, 
with initial input power of 3 dBm/channel. The amplifiers 
are identical to that  used in Section 111. The inter-amplifier 
loss is LI  = 10.32 dB. The system is a t  equilibrium before 
t = 0. At time t = 0 the 1557.7 nm channel is dropped 
completely. 

Fig. 2(left) shows the time evolution of the reservoirs 
r i ( t ) ,  i = 1, ..., 20 along the chain, obtained by numeri- 
cally solving (5) for each amplifier. It can be seen that,  
in this initially well-balanced chain, the initial slopes of 
all reservoirs are very close in value, confirming (17). The 
first amplifier’s reservoir has a monotone increase, while all 
the following amplifiers have damped oscillations in their 
reservoirs. The  reservoir values beyond the third ampli- 
fier ( i  > 3) converge in time to the asymptotic value 
r z  = ‘1 + $ Y L I  = 1.2039 x IO1* determined by channel 1 

Fig. 2(right) shows the output powers a t  channel 1 corre- 
sponding to  the reservoirs in Fig. 2(left). A strong overshoot 
is visible as the amplifier index i increases. Fig. 3(left) is a 
zoom for small time t of Fig. 2(left), in order to show the 
initial slope of the curves. Fig. 3(right) shows the initial 
slopes calculated using (16). 

The dB-power excursion at the nz-th amplifier on channel 
s is [2] AP;::(~) loLogl , (P~: ( t ) /P~F(O+)) .  We easily 
find: P&yi(O+) P::(t) - - nL1 a Gl;”(O)’ Using the linear approxima- 
tion ri ( t )  r i (0)  + i i (O+) t  for each reservoir and (3), we 
finally get the dB-power excursion a t  the m-th amplifier as: 

(101. 

m 

AP;:(~) = 10Loglo(e)B, f i(o+>t (18) 
i = l  

which shows that the excursion grows (initially) linearly in 

time with slope proportional to the sum of the t = Ot slopes 
of the reservoirs along the chain. As noted in (21, if these 
are all equal, the slope of the excursion grows linearly with 
the amplifier index down the chain. Fig. 4 shows the power 
excursion 3n the surviving channel relative to  the example 
above, (left) on a long time scale, and (right) on a short 
time scale. 

V. CONCLUSIONS 
In this paper we further simplify the ODE for the doped- 

fiber amplifier gain dynamics reported in 113, bringing into 
greater evidence the physical meaning of the amplification 
process, and greatly enhancing the utility of the ODE as 
an analysis and design tool. We find that the doped-fiber 
amplifier dynamics are connected to  the depletion and the 
refill of the reservoir of excited ions in the amplifier. The 
time scales connected to  the depletion process can be ex- 
tremely fast, while those connected to  the refill process are 
slow and depend on the pump power and the total number 
of dopant ions. In any case, the amplifier dynamics are es- 
sentially independent of the fluorescence time. This effect 
leads to faster transients in WDM channel additions than in 
channel drops. These results are important in determining 
the response time necessary for dynamic control of amplifier 
gain, 

The present analysis is based on the assumptions of the 
model in [1],[5], which neglects both excited state absorp- 
tion and saturation induced by the amplified spontaneous 
emission (ASE) produced inside the amplifier. There are 
several ways to  include such ASE contr ibut ions in the  model 
[6], [7], and future work will address this issue. However, 
the main findings of the present work will be valid as long 
as the signals give the main contribution to  the amplifier 
saturation. 
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Fig. 2. Numerical solution of (5) giving the time evolution along a chain of 20 amplifiers, with one channel drop at  t = 0: (left) Reservoir; 
(right) Output power of surviving channel. i = amplifier index along the chain. 
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Fig. 3. (left) Zoom of Fig. 2 for sm~11 times t; (right) Initial slopes calculated as in 17. 
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Fig. 4. Time evolution the dB-power excursion of surviving channel 1 along a chain of 20 amplifiers. (left) long time scale; (right) short time 
scale 
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