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Abstract— We review a recently proposed method for
bit error rate (BER) evaluation of differential phase shift
keying (DPSK) long haul dispersion-managed (DM) opti-
cal systems, based on a parametric gain modeling of the
nonlinear interaction between signal and amplified spon-
taneous emission noise along the DM transmission line.
Such an interaction is responsible of nonlinear phase noise,
which is the main nonlinear impairment in DPSK long-
haul transmission. We review the fundamentals of the novel
DPSK BER evaluation method, which extends Forestieri’s
method for on-off keying modulation to the DPSK case. The
method avoids calculation of the nonlinear phase statistics,
and accounts for intersymbol interference due to nonlin-
ear waveform distortion, and both optical and electrical
filtering. The method is critically based on the assumption
of Gaussian statistics of the received optical field. In this
paper, we provide further evidence of the appropriateness
of the Gaussian assumption, by showing multicanonical
simulations of the probability density function (PDF) of
both the received optical field and of the photodetected
decision variable, with a comparison to the theoretical PDF.

I. INTRODUCTION

Optical differential phase shift keying (DPSK) offers a
promising alternative to improve the performance of long-
haul transmission systems [1], [2]. Compared with con-
ventional on-off keying (OOK) format, DPSK detected
with an optical delay demodulator and balanced receiver
has the major benefit of a lower required optical signal-to-
noise ratio (OSNR), which leads to increased system mar-
gin and extended transmission distance, or equivalently to
reduced transmitted power and thus increased tolerance to
fiber nonlinearities.

However, unlike OOK, the benefits of DPSK may be
severely limited by nonlinear phase noise [3], i.e., the
amplitude-to-phase-noise conversion due to the nonlinear
interaction of signal and amplified spontaneous emission
(ASE) noise during propagation. Such an interaction man-
ifests itself also as a parametric gain (PG) of the received
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ASE noise. PG changes the statistics and the autocorrela-
tion of the ASE noise process. Moreover, in presence of
PG and return-to-zero (RZ) pulses whose intensity is not
constant, the ASE is a non-stationary process.

Attempts have been made to theoretically study the
statistics of the nonlinear phase noise in order to assess
the bit error rate (BER) of DPSK receivers based on
ideal phase discriminators, but an exact expression of
these statistics was found only at zero group-velocity
dispersion (GVD) [4], while an approximate expression
including GVD based on a phenomenological argument
was presented in [5].

In this paper, we review a recent alternative approach
to BER evaluation, which does not need the phase noise
statistics [6]. Assuming the received optical field has
Gaussian statistics, and that the receiver is based on a
Mach-Zehnder (MZ) balanced delay demodulator, the
system BER is evaluated through a Karhunen-Loéve
method for square-law detectors, which leads to a gen-
eralized chi-square distribution of the sampled current in
the electrical domain, much like what done in [7], [8].
The main novelty of our work [6] is in the extension of
the method to the case of non-white ASE noise before
demodulation, providing a BER that accounts not only
for the inter-symbol interference due to propagation, and
optical and electrical post-detection filtering, but also for
noise PG.

The computation of the PG statistics is a delicate
matter. In conventional non-return to zero (NRZ) OOK
systems, the standard method assumes a continuous wave
(CW) signal (corresponding to a single mark) and studies
the propagation of ASE plus such a CW. The method
could clearly be applied also to NRZ-DPSK. But for
return-to-zero (RZ) supporting pulses, which are the stan-
dard choice for DPSK signals, the power periodically
varies in time, and so do the statistics of the PG. Although
the ASE is clearly not a stationary process, in [6] we
proposed, for BER evaluation, to keep using anequivalent
stationaryPG ASE process obtained from a CW signal,
whose power level is a suitable filtering the time-varying
intensity at the sampling time. The CW-equivalent ASE
idea was tested in [6] against the correct cyclostation-
ary ASE statistics (which can be obtained with a very
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Fig. 1. Set-up of the single-channel dispersion-managed DPSK
system.

computationally-expensive method [9]), with very good
agreement.

The paper is organized as follows. Section II describes
the DPSK long-haul DM system under study. In Section
III the Gaussian assumption for the received ASE noise
is discussed. Section IV derives the ASE statistics and
explains theequivalent stationaryPG ASE process. In
Section V we numerically verify the accuracy of our
model for BER computation against both available exper-
imental results and multi-canonical monte-carlo (MMC)
simulations [10]. Finally we provide a performance com-
parison of DPSK and OOK single-channel systems.

II. DPSK LONG-HAUL DM SYSTEM

Fig. 1 shows the scheme of the single-channel DPSK
multi-span DM system that will be studied in the follow-
ing sections. There are N identical spans, each composed
of a 100 km long transmission fiber followed by a disper-
sion compensating fiber (in-line compensation). The in-
line residual dispersion is zero (full span compensation),
unless otherwise specified. Pre- and post-compensating
fibers, placed before and after the transmission line, may
be inserted to improve the BER. The receiver consists of
a Gaussian shaped optical filter, followed by a MZ de-
modulator with balanced photodetection. The difference
between the received currents from the two photodiodes
is filtered by a Bessel 5-th order filter of bandwidthBe =
0.65 time the bit rate, and then sampled.

III. R ECEIVED ASE STATISTICS

The ASE noise and the transmitted signal interact
during propagation through a four-wave mixing process
that colors the PSD of the initially white ASE noise
components, both in-phase and in-quadrature with the
signal [11]. It is known that signal and ASE noise have
maximum nonlinear interaction strength at zero GVD,
yielding ASE statistics that strongly depart from Gaussian
[4]. We already showed in [6] that the presence of a non-
zero transmission fiber GVD helps reshaping the statistics
of the optical field (in-phase and quadrature componnets)
before the optical filter at the receiver, so that they are
quite close to Gaussian. We want to show here that also

the filtering action of the receiver optical filter helps
make the statistics of the filtered optical field resemble
a Gaussian bivariate density. Fig. 2(top) shows an MMC
simulation of the joint probability density function (PDF)
of the in-phase and quadrature components of an initially
unmodulated (CW) optical field before the receiver opti-
cal filter, in the case of zero transmission fiber GVD and
no DM, at a nonlinear phase rotationΦNL = 0.2π(rad)
and at a linear optical OSNR=10.8 dB/0.1nm (the one
that can be read off an optical spectum analyzer, when
reading the ASE power level away from the signal, where
no PG exists). The PDF was obtained with 6 MMC cycles
with 3 · 106 samples each. One can note the well known
shell-like shape of the joint PDF at zero GVD [4]. Fig.
2(bottom) shows the contour plot of the PDF surface of
the top figure, down to10−12.

Fig 3 shows instead the PDF contours of the same
optical field, butafter an optical filter of bandwidth of
30, 20 and 10 GHz, respectively. We clearly appreciate
the tendency of the contour levels to elliptical shapes for
tighter optical filtering, even in this extreme case of zero
GVD. Hence we can conclude that the joint action of tight
optical filtering and transmission fiber GVD both con-
tribute to making the received optical field after optical
filtering resemble a Gaussian process.

IV. M ODEL FORASE PROPAGATION

In this section we calculate the ASE noise statistics
starting from the nonlinear Schroedinger equation NLSE
of a single-channel periodic dispersion-managed system.
The electric fieldA(z, t), wherez is the distance andt the
time normalized to the supporting pulse durationd · T ,
being d the duty-cycle, propagates in its retarded time
frame as:

∂A

∂z
= j

1

2Ld(z)

∂2A

∂t2
− j

1

LNL(z)
|A|2 A +

g(z)

2
A (1)

where A(z, t) is normalized to the square root of the
transmitted peak powerPpeak, LNL(z) = 1

γ(z)Ppeak
is

the local nonlinear length;Ld(z) = (d · T )2/β2(z)
is the local dispersion length referred to the supporting
pulse duration;g(z) = − 1

LA(z) + ΣkGkδ(z − kL) is
the net logarithmic gain/attenuation per unit length, where
LA(z) = 1

α(z) is the fiber attenuation length, andeGk is
the power gain of thek-th lumped amplifier of the link
placed atz = kL. δ(.) indicates the Dirac delta function.
Ld(z), LNL(z), LA(z) andg(z) arez-periodic functions
with period equal to the span lengthL.

We now normalize A(z, t) to the net fiber
gain/attenuation up to z, i.e. A(z, t) =
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Fig. 2. (top) MMC simulated joint PDF of in-phase and quadrature
components of optical field (CW+ASE) before receiver optical filter.
(bottom) Contour levels of joint PDF. Data: Zero GVD,ΦNL =

0.2π(rad), linear OSNR=10.8 dB/0.1nm. MMC time samples18 ·10
6.
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Fig. 3. Contours of MMC simulated joint PDF of in-phase and
quadrature components of optical field (CW+ASE) after receiver opti-
cal filter of bandwidth (left)30GHz, (center) 20 GHz, (right) 10 GHz.
Data as in Fig. 2. Lowest contour level:10

−14.

U(z, t)e
1

2

R
z

0
g(x)dx = U(z, t)

√
f(z), being

f(z) = exp
(∫ z

0 g(x)dx
)
. Thus, (1) becomes:

∂U

∂z
= j

1

2Ld(z)

∂2U

∂t2
−j

f(z)

LNL(z)
|U |2 U+WA(z, t) (2)

where we have also included a zero-mean Gaussian noise
term WA(z, t) with autocorrelationR (z1, z2, t1, t2) =
E {WA (z1, t1)W ∗

A (z2, t2)} at timest1, t2 and coordi-
natesz1, z2 equal to:

R = δ (t1 − t2) δ (z1 − z2)
∑

k

N0kδ (z1 − kL)

where N0k is the white one-sided PSD of each ASE
polarization introduced by thek-th amplifier, the asterisk
denotes complex-conjugate, andE {.} indicates statistical
averaging.

If the transmitted field is a CW, in absence of noise the
solution of (2) isU(z) = e−jΦNL(z), whereΦNL(z) =∫ z

0 f(x) 1
LNL(x)dx is the nonlinear phase cumulated by the

CW. By adding the noise contribution, we search for a
perturbed solution of (2) of the kind [11]:

U(z, t) = (1 + u(z, t)) e−jΦNL(z) (3)

whereu(z, t) accounts for the noise. By inserting (3) into
(2), and by assuming|u|2 ≪ 1, so that higher-order
powers ofu(z, t) can be dropped [9], [11], we obtain the
linearized NLSE for the perturbation:

∂u

∂z
= j

1

2Ld(z)

∂2u

∂t2
− j

f(z)

LNL(z)
(u + u∗) + WA (4)

where the phase rotationΦNL in (3) has not changed
the statistics ofWA. By indicating the Fourier transforms
of u(z, t) and WA(z, t), respectively withũ(z, ω) and
W̃A(z, ω), whereω is the angular frequency normalized
to R/d, (4) in the frequency domain rewrites as:

∂ũ

∂z
= −j

ω2

2Ld(z)
ũ(z, ω)

−j
f(z)

LNL(z)
[ũ(z, ω) + ũ∗(z,−ω)] + W̃A(z, ω) .(5)

Thanks to itsz-periodic behavior, the local dispersion
length can be written as 1

Ld(z) = 1
LD

+ 1
L∆(z) , where

1
LD

= 1
L

∫ L

0
1

Ld(x)dx is the inverse span-averaged disper-
sion length, while1/L∆ accounts for the local deviation
from such an average. Inside each span, we recognize two
different dynamics alongz due to the fiber dispersion, a
slowdynamic due toLD and afast dynamic due toL∆.
We next move into a reference system that follows the fast
dynamic by making the change of variable:

ũ(z, ω) = ã(z, ω)e−j
Θ∆(z,ω)

2 (6)

being Θ∆ = ω2
∫ z

0
1

L∆(x)dx. Substituting (6) in (5)
yields:

∂ã

∂z
= −j

ω2

2LD
ã(z, ω) − j

f(z)

LNL(z)

·
[
ã(z, ω) + ã∗(z,−ω)ejΘ∆

]
+ W̃A(z, ω)(7)

where again the phase rotation in (6) does not change the
Gaussian statistics of the noisẽWA. For a finite received
nonlinear phase, when the number of spansN → ∞, the



infinitesimal nonlinear phase rotation per span turns out
to drive the evolution ofa(z, ω) as a slowly-varyingz-
function span by span. Thus, using the method of aver-
aging, we substitute the rapidly varying terms in (7) with
their span-averaged values:

〈
f(z)ejΘ∆(z,ω)

LNL(z)

〉
=

1

L

∫ L

0

f(x)ejΘ∆(x,ω)

LNL(x)
dx , R(ω) .

(8)
Introducing thekernelof the transmission linkr(ω) ,

R(ω)/R(0) [14], (7) rewrites as:

∂ã

∂z
= −j

ω2

2LD
ã(z, ω) − jR(0)

· [ã(z, ω) + ã∗(z,−ω)r(ω)] + W̃ (z, ω) (9)

where, thanks to the method of averaging, we substi-
tuted the white ASEW̃A with a Langevin Gaussian
noise process̃W with PSD at coordinates(z1, z2) equal

to E
{
W̃ (z1, ω) W̃ ∗ (z2, ω)

}
= 2σ2δ (z1 − z2), being

2σ2 the one-sided ASE PSD per unit length. For anN -

span link it is2σ2NL =
N∑

k=1

N0k. In terrestrial systems

having long spans (L ≫ LA), we find

r(ω) ∼=
1

1 + jSω2
(10)

where we callS , −LA

L∆
themap strengthof the terrestrial

DM system [6], and we associate toS the sign of the
transmission fiber dispersionDtx. It is also R(0) =
LA

L
· 1

LNL
, which corresponds to the inverse span-averaged

nonlinear length. Note that all parameters in the system
lengthsLA, LNL, L∆ refer to the transmission fiber.

The stationary Gaussian noiseã(z, ω) has in-phase and
quadrature components whose PSD matrix (normalized to
the case in absence of PG) is defined as:

G(z, ω) ,

[
Gpp Gpq

Gqp Gqq

]
,

E
{
ã(z, ω)ã†(z, ω)

}

σ2z

whereσ2z is the variance per component in absence of
PG. It is proven in [6] that

G(z, ω) = k0I − k1

[
−ri rr

rr ri

]
− k2

[
rr ri

ri −rr

]

(11)
where




k0 = 1 + 4Φ2
NL(z) |r|2

(2kz)2

(
sinh 2kz

2kz
− 1

)

k1 = 2ΦNL(z) cosh 2kz−1
(2kz)2

k2 = 4ΦNL(z)
(

z
LD

ω2

2 + ΦNL(z)
)

1
(2kz)2

(
sinh 2kz

2kz
− 1

)

beingr(ω) = rr + jri the kernel,ΦNL(z) = zR(0) the
cumulated nonlinear phase by the CW, and

kz =

√

Φ2
NL(z) | r(ω) |2 −

(
ω2

2

z

LD
+ ΦNL(z)

)2

.

If the link is followed by a linear device, e.g. a dis-
persion compensating fiber and/or an optical filter, with
tranfer matrixH(ω), the output PSD matrix becomes
HGH†. In the limit ω −→ 0 we haveGpp −→ 1 and
Gqq −→ 1 + 4

3Φ2
NL, hence at largeΦNL the quadrature

component is dominant and manifests itself as nonlinear
phase noise.

It is easy to verify that (9) is a linearization of the
DM-NLSE of Ablowitz et al. [14]. We verified that the
DM-NLSE yields very accurate PSDs when the nonlinear
phase rotation per span is roughly below 0.02 rad, and
qualitatively reasonable results up to nonlinear phase
rotations per span of 0.1 rad.

Closer examination of (11) reveals that, in the long-
span terrestrial map case whose kernelr(ω) is given in
(10), the ASE PSD solely depends on the three following
dimensionless parameters: i) the strengthS; ii) the nor-
malized average in-line dispersionz

LD
; iii) the peak non-

linear phaseΦNL(z) = z
LNL

LA

L
. Such three parameters

provide general scaling rules both for the noise parametric
gain analysis and for the general design of DM terrestrial
systems.

A. Effects of pulse shape on ASE

Since the proposed ASE model is based on a CW
assumption for the signal, it does not take into account
the influence of signal modulation and pulse shape.

In [6] we found that the CW-equivalent model still
applies by using as the CW reference power a proper ef-
fective valuePeff (ts) at sampling timests. The intuition
about the appropriate value ofPeff comes from equation
(9), which reveals that, at a specificω, the noise field
gets energy from the CW only within a proper frequency
bandwidth. Such a bandwidth, which is essentially set by
the bandwidth of the kernelr(ω), corresponds to a finite
memory window in the time domain. Hence we expect
that the effective powerPeff (t) to be a filtered version
of the transmitted powerP (t) over such a time window.
For instance, in the limit of a very narrow time window,
Peff (t) should coincide with the local power at timet
(thusPeff (ts) = Ppeak), while for a very large memory
time window the noise interacts with the average power
on such a window (thusPeff (ts) = P ). For the terrestrial
kernel (10) we empirically found that a proper windowing
filter for a fully-compensated system is:
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Fig. 4. Q-penalty versus transmitter OSNR for NRZ- (left) and RZ-
DPSK (right) for the experimental system tested by Kim et al.in [12]
with a launched power of 7 dBm andd = 0.33.

H(ω) =
1

1 +
(

S
4 ω2

)2 (12)

so thatPeff (t) = P (t) ⊗ h(t), beingh(t) the inverse
Fourier transform ofH(ω), while⊗ denotes convolution.
Hence, the quasi-stationary ASE noise PSD at timets can
still be evaluated from (11), in which we usePeff (ts) in
place ofPpeak in the evaluation ofΦNL.

V. RESULTS AND DISCUSSION

In this section we prove the accuracy of our model for
BER evaluation in presence of PG by checking it against
experimental and numerical results. The procedure to
evaluate BER once the statistics of the Gaussian received
ASE are known is discussed in detail in [6]. Here we
provide some numerical results.

We first reproduced the experimental results of Kimet
al. in [12] for a 6 × 100 km non-zero dispersion shifted
single-channel link working atR = 10 Gb/s and with
a launched power of7 dBm. Fig. 4 shows the Q-factor
penalty measured in [12] with circles and the prediction
of our model (solid line) for (left) NRZ- and (right) RZ-
DPSK (d = 0.33). Note that in our method the Q-
factor is evaluated by inverting the analytical BER. In
each curve the penalty is referred to the Q factor at a
transmitter OSNR=37 dB, which is the highest value used
in the experiment. For the details of the system set-up
see [12]. For the RZ case, we evaluated the Q penalty
by using the CW-equivalent ASE model with either the
average powerP , or the peak powerPpeak, or the effective
powerPeff obtained through (12). From the comparison
with experimental data, the case usingPeff is found to
reasonably fit the experimental data up to penalties of 2
dB, with some over-estimation at lower values of OSNR.

In Fig. 5(top) we checked the analytical PDF of the
sampled current at the decision gate against that obtained
through direct simulation with the MMC method. Results
are shown for a20 × 100km link, with transmission fiber
GVD DTx = 4 ps /nm/km and positive in-line dispersion
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Fig. 5. (top) PDF of sampled current: MMC (solid), theory (dashed)
for several values of linear OSNR (dB/0.1nm). (bottom) BER obtained
from above PDFs (symbols) and from theory (dashed). Data: 20x100
km, DTX = 4ps/nm/km ,Dpre = 0, Dinline = 40 ps/nm/span,
Dpost = 0, ΦNL = 0.2π(rad). R=10 Gb/s. Optical filter bandwidth
1.8R.

Din = 40 ps/nm per span. The nonlinear phase was
0.2π(rad), and a single 10Gb/s NRZ-DPSK channel was
transmitted with a pattern 1,1,1,1.... actually correspond-
ing to a CW signal. The OSNR (dB/0.1nm) was varied
from 5.8 dB, where the nonlinear effect of PG is strong,
to 12.8 dB. No pre and post-compensation was used here.
An improving match between MMC and theoretical PDFs
is observed for increasing OSNR. Fig. 5(bottom) shows
the BER obtained by integrating the tail of the PDFs
below the zero threshold. We notice that the theory based
on the Gaussian assumption for the received optical field
gives an excellent prediction of the true BER, with half of
a dB of discrepacy at the lowest OSNR, i.e. at BER values
worse than10−4.

A. Comparison with OOK

Finally, we compared the Q-factor of DPSK format
with the one of an OOK modulation with NRZ pulses.
For OOK we evaluated the BER as in [13]. A peculiar
difference is that for OOK the PG effects appear only at
large nonlinear phases [13]. Hence the ASE PSD for OOK
at nonlinear phase values beyond the accuracy of (11)
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were estimated through off-line Monte Carlo simulations,
as detailed in [13]. For DPSK, instead, we used the
analytical ASE PSD (11) since the performance rapidly
deteriorates already at small nonlinear phases.

The optical link was again a 20x100 km, with transmis-
sion fiber GVDDTX = 8ps/nm/km, fully compensated
at each span, with optimized pre and post-compensation
for each format at each nonlinear phase value. The linear
OSNR at the receiver was11dB/0.1 nm. Fig. 6 depicts
the measured Q-factor vs. the average nonlinear phase
ΦNL, for NRZ-DPSK (solid), 50% RZ-DPSK (dashed)
and NRZ-OOK (circles). From the figure we note the well
known 3 dB difference between DPSK and OOK at small
ΦNL, while for increasingΦNL we observe different
distortions on the modulation formats, mainly due to PG.
We note that RZ-DPSK is strongly affected by PG since
in this casePeff is close toPpeak, twice the value than
in NRZ-DPSK. Meanwhile, we observe that OOK for
increasingΦNL recovers the previously mentioned 3 dB
gap, and it overcomes DPSK at largeΦNL. The reason
can be found in the greater PG-induced increase of the
noise quadrature component with respect to the in-phase
one. Such an inflation has a strong impact in terms of
nonlinear phase noise on the performance of DPSK.

VI. CONCLUSIONS

We reviewed the DPSK BER evaluation method in
presence of PG that we recently proposed in [6]. The
critical assumption of Gaussian statitics of the received
optical field at the optical receiver was further supported
by novel comparisons with accurate simulations using the
multi-canonical monte carlo method.
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