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Abstract—We propose a novel load-aware power-
selection strategy for maximizing the transparent reach
in dispersion-uncompensated flexible optical networks with
coherent modulation formats, and we quantify the savings
in opto-electronic regenerations with respect to using the
standard full-load transparent reach.

I. INTRODUCTION

We consider the transmission of wavelength division
multiplexed (WDM) dual-polarization (DP) optical dig-
ital signals with coherent detection through a disper-
sion uncompensated (DU) flexible optical network [1]–
[3], i.e., a circuit-switched WDM fiber-optic network
where each fiber carries at most W wavelengths with
possibly mixed modulation formats and where each all-
optical segment of a circuit (i.e., a lightpath) occupies
a wavelength. From the source, the destination may
be transparently reached via a single lightpath (i.e.,
without opto-electronic regeneration (OER) or through
a concatenation of lightpaths on (possibly) different
wavelengths, with OER from one lightpath to the next
one. All-optical wavelength conversion at a node is
excluded in this analysis. To minimize the number of
costly OER, the quality-of-transmission (QoT) aware
routing and wavelength assignment (RWA) algorithm
first tries to set-up a circuit along a single lightpath.
Such a connection may not be feasible for two reasons:

i) unavailability of the same wavelength across suc-
cessive fibers along the lightpath, leading to wavelength
blocking (WB);

ii) the received signal to noise ratio (SNR) for the con-
sidered modulation format is below a required minimum
value S0, leading to SNR blocking (SB).

In this paper we concentrate on physical-layer design
issues connected with RWA, and in particular on SB
due to accumulation of nonlinear optical impairments
along lightpaths. A common approach to resolve SB is
to accept from the RWA only lightpaths whose physical
length is below a threshold, which we call the full-
load (FL) reach [1], [3]. The FL reach is the maximum
lightpath length guaranteeing a received SNR above S0

when all W wavelengths on all lightpath fibers are
occupied. The FL reach is used regardless of the actual

wavelength load u, i.e., the fraction of wavelengths
actually utilized by lightpaths in the network. An optimal
distance-independent power selection policy for signal-
ing on the new lightpath has recently been proposed in
[3], based on the incoherent Gaussian Noise (GN) model
[4].

Using the FL reach is clearly conservative, since
wavelengths saturation at the network core prevents the
average network load u to reach unity. Depending on
network size and connectivity, such a load may even be
less than 0.5. In this paper, therefore, we propose the
use of a new load-dependent reach and a corresponding
optimal power, and quantify the potential OER savings
with respect to the approach in [3].

II. NONLINEAR TRANSMISSION MODEL WITH
ON/OFF RANDOM TRAFFIC

We study the transparent transmission of a DP signal
across a selected lightpath from source to destination.
A lightpath is a sequence of H hops across access
nodes (i.e., nodes where circuits may originate and
terminate), where the k-th hop is a concatenation of
Sk amplified spans followed by the crossing of the
k-th intermediate node, for k = 1, ...,H . A span is
composed of a transmission fiber followed by an end-
line lumped optical amplifier. A node is composed of
a wavelength demultiplexer, add/drop block and output
multiplexer. In our calculations, the losses in crossing a
node will be equivalent to those in crossing one span.
Our reference lightpath is composed of Ns =

∑H
k=1 Sk

identical spans. We assume that each of the W − 1
remaining wavelengths of the k-th hop independently
carries an interferer lightpath (hence carries power) with
known probability uk, k = 1, . . . ,H . Within a first-
order perturbation analysis, the received SNR over the
bandwidth of the DP signal of interest after propagation
across the reference lightpath is [7], [8]:

SNR(P,Ns,u) =
P

β(Ns +H) + aNL(Ns,u)P 3
(1)

where P is the DP reference signal power at the input
of each transmission fiber section; NA , β(Ns +H) is
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the amplified spontaneous emission (ASE) power from
the (Ns + H) optical amplifiers, with β , hνFGBrx,
where h is Planck’s constant, ν is the optical carrier
frequency, F is the amplifier noise figure, G is the
amplifier gain (equal to the span loss) and Brx is the re-
ceiver equivalent noise bandwidth; aNL is the nonlinear
interference (NLI) coefficient [4], [7] which depends on
the number of spans and on the wavelength load vector
u = [u1, ..., uH ], which in turn depends on the offered
traffic and on the RWA algorithm. Since the number
of interfering wavelengths is a random variable (RV),
then also the aNL coefficient and the received SNR are
RVs, whose statistics depend on u. SNR is deterministic
only in the two limiting cases1 u = 0 (single channel
operation) and u = 1 (full load operation) where there
is no variability of the number of interfering lightpaths.

We assume the digital signal is coded with a forward
error-correction code whose SNR threshold for the signal
modulation format is S0. We declare an SB event when
SNR(P,Ns,u) < S0. The circuit is in that case routed
via multiple lightpaths and requires OER at intermediate
nodes.

III. SUMMARY OF RESULTS

We anticipate in this section our main results regard-
ing the load-dependent reach. The design of point-to-
point DU transmission systems for high symbol rate DP
WDM coherent systems is based on the received SNR
contours versus transmitted power2 P and number of
spans Ns [9]. In a networking scenario, however, the
SNR is a RV. We thus propose to base the transmission
design of DU networks on contours of the SNR blocking
probability

PSB , Pr{SNR(P,Ns,u) < S0} (2)

at fixed load u versus both power per channel P and
number of spans Ns. The QoT-aware RWA, which has
only knowledge of the load vector u, can safely declare
that a new lightpath of length Ns will have sufficient
SNR at destination if PSB is less than or equal to a
target level3 PSB for the selected lightpath modulation
format. From the PSB contours at the target level we
can visualize both the maximum number of spans that
can be bridged without OER (i.e., the load-dependent
reach) and the associated optimal power.

For simplicity, in the numerical calculations in this
paper we assumed the load uk and the spans per hop
Sk are uniform at all hops k = 1, . . . ,H and all signals

1here boldface 0 is the vector of all zeros, and boldface 1 the vector
of all ones.

2We assume here all signals in the network have the same power.
3Of course, there is a chance that the RWA is wrong, in which case

the receiver signals back to the controller and the lightpath is torn
down and segmented into more lightpaths.
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Fig. 1. Horizontal cuts (contours) of SNR-blocking (SB) probability
at level PSB versus power P and number of spans Ns at load values
u = [0, 0.1, 0.6 , 1]. All pairs (P,Ns) inside each contour yield
Pr{SNR(P,Ns,u) < S0} ≤ PSB . The target SNR is here S0 =
9.8dB, i.e., bit error rate > 10−3 for a DP-QPSK format. For u =
0.1 and u = 0.6 the dashed green contours are at level PSB =
10−3 and the solid green contours at level PSB = 0.5. Linear and
nonlinear asymptotes shown as black dashed lines. Locus of maximum
reach points shown as blue dashed-dotted line parallel to (lower) linear
asymptote, upward shifted by 1.76dB. Link data: 100km fiber spans
with dispersion D = 2 ps/nm/km, attenuation α = 0.2dB/km, n2 =
2.5 · 10−20m2/W , Aeff=80µm2 at λ = 1550nm. Amplifiers noise
figure F = 4dB. W = 81 wavelengths (reference is center channel.
Symbol rate R = 10Gbaud per channel. Spacing ∆f = 12.5GHz
(spectral fill factor η = R

∆f
= 0.8). S = 2span/hop.

have the same power and modulation format, although
the theory is developed for non-uniform uk, Sk, and
can be straightforwardly extended to mixed modulation
formats. Fig. 1 shows the SB probability contours for
a WDM DP quadrature phase shift keying (DP-QPSK)
system with W = 81 wavelengths and R = 10Gbaud
signals transmitted over Ns 100km DU spans of non-
zero dispersion fiber (NZDF). The points of maximum
reach are marked by red circles in the figure. We indicate
their coordinates as [N0(u), P0(u)]. Rectangular signal
spectra were assumed in the aNL calculations according
to a recent extension [10] of the coherent GN model [4].
SB probability calculations will be detailed in Section
IV.

At u = 1 and u = 0 the SB contours at all PSB levels
coincide. For all (P,Ns) pairs inside the region delimited
by the upper branch PM and the lower branch Pm of
the contours (red contour at u = 1 and blue contour at
u = 0) the SB probability is exactly zero, while outside
it is exactly 1. Instead, at any other intermediate load
0 < u < 1 the contours vary with the value of PSB . For
instance, at loads u = 0.6 and u = 0.1 the dashed green
lines show the contours at level PSB = 10−3, while the
dark green solid lines those at level PSB = 0.5. We note
that the dashed green and the dark solid green contours
are quite close to each other (they get closer and closer
as the number of spans per hop S decreases). This is
an indication that the transition of SB probability from
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zero to 1 is rather sharp, and SB contours at practical
levels will be close to the one at level PSB = 0.5, which
– as we shall prove in Section IV – coincides with the
following deterministic SNR contour at level S0:

SNR(E[aNL]),
P

β(Ns +H) + E[aNL(Ns, u)]P 3
=S0

(3)
where the traffic-averaged coefficient E[aNL] is used.
For such a deterministic SNR contour we easily prove
in Appendix 1 that its locus of maximum reach points,
as E[aNL] varies, lays on the dashed-dotted straight line
shown in Fig. 1 parallel to the (lower) linear asymptote
and shifted by 10Log(3/2) ∼= 1.76 dB above that. In the
log-log plot of Fig. 1 the linear asymptote and hence
the dashed-dotted line have slope 1dB/decade, hence the
magenta arrows in the figure indicate 1.76 dB on each
axis direction.

This has a fundamental consequence, first noted in
[3]. If we set P to the full load value P0(1) (magenta
dotted line in the figure) then the ratio between the full-
load reach N0(1) and the maximum reach N0(u) at any
other load u < 1 is always smaller than 2/3. Thus, if
in the QoT-aware RWA algorithm we set the maximum
non-regenerative reach to its full-load value N0(1), at
most we under-estimate the true reach by a factor 1/3,
i.e., by 33% [3]. This was the rationale for proposing
a full-load QoT-aware RWA design using the distance-
independent full load power P0(1) in [3].

However, suppose for instance the actual load is only
u = 0.1. If we use the correct maximum reach power
P ≡ P0(u) = −6dBm (see green dashed contour at u =
0.1) we find that the actual reach is N0(u) =37 spans,
which compared with the full-load reach N0(1) =23
spans gives a transparent reach under-estimation by the
full-load RWA with respect to the true reach by

U ,
N0(u)−N0(1)

N0(u)
100 = 37.8% (4)

which is above 33%. This means that if we know the
average wavelength load u and then select the optimal
maximum reach power P0(u) (whose explicit formula
is provided later in eq. (26)), the reach under-estimation
with respect to the true reach N0(u) when we use the
full-load RWA can be larger than 33%.

By solving the implicit equation (25) of Section IV we
can directly obtain the maximum reach values N0(u) at
any load u and the corresponding optimal power P0(u).

Fig. 2(top) shows N0(u) and Fig. 2(bottom) shows
under-estimation U in (4), both plotted versus trans-
mission fiber dispersion D at several load values. We
note a diminishing under-estimation at both increasing
dispersion and load. For standard single-mode fiber
(SMF) with D = 17ps/nm/km, and at a symbol rate R =
10Gbaud, the under-estimation is below 33% at loads
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Fig. 2. (Top) maximum reach N0(u) of same SB probability contours
at PSB = 10−3 as in Fig. 1, versus transmission fiber dispersion D
at several load values. (Bottom) Corresponding under-estimation (4).
Data: W = 81, R = 10Gbaud, ∆f = 12.5GHz, S = 2, zA =
100km, S0 = 9.8dB, F = 4dB, PSB = 10−3.
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Fig. 3. Reach under-estimation versus load u in a DU SMF link
(D = 17ps/nm/km) with W = 81 WDM DP-QPSK channels at
R Gbaud/channel, at SNR blocking probability PSB = 10−3, with
zA = 100km per span, S = 2 spans per hop, bandwidth efficiency
η = R

∆f
= 0.8, and amplifiers noise figure F = 4dB.

u ≥ 0.1. The under-estimation is also decreasing as we
increase the channel symbol rate R (recall that we also
scale the frequency spacing ∆f = R/η) and thus single-
channel nonlinear effects become dominant. However,
when single-channel nonlinearity is fully compensated
for by ideal digital-backpropagation (DBP), even at rates
R ≥ 28Gbaud on SMF the picture goes back to the large
gap between full load and single-channel contours, as in
Fig. 1. Evidence here is provided by the reach under-
estimation versus load curves in Fig. 3, obtained at both
R = 10Gbaud and R = 28Gbaud on SMF fiber, both
without nonlinearity compensation and with ideal DBP.
Note that with ideal DBP only cross-nonlinear effects
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Fig. 4. Normalized histogram of lightpath lengths (spans) obtained
from one path-setup simulation in a 46-node U.S. network at first
wavelength blocking. Measured load was u = 0.46, with a total of
346 lightpaths at WB.

remain, and the reach N0 is essentially independent of
the channel symbol rate and just depends on bandwidth
efficiency η [12].

We next need to quantify the savings in OER when
using either the full-load RWA or our load-aware RWA.
A quick approximate quantification is obtained as fol-
lows. We obtain the distribution of the lightpath length
Ns (spans) in the network from simulations when SNR
blocking is neglected. Each circuit is set up on a single
lightpath until the first WB, when the measured load is
u. Let the obtained normalized histogram of lightpath
lengths Ns (i.e., the empirical probability mass function
(PMF) of Ns) be P (Ns, u), which depends on both Ns
and load u. Fig. 4 shows an instance of such a PMF
at first WB from one simulation in the 46-node U.S.
network (US) [13] when the traffic matrix is uniform
over the nodes and shortest path is selected. The average
load was u = 0.46. From the PMF, we can estimate the
expected number of required OER when the reach is N0

as

E[oer|N0] =

Nmax∑
Ns=1

P (Ns, u)(

⌈
Ns
N0

⌉
− 1) (5)

where Nmax is the maximal Ns in the network, and
dxe is the ceiling function. The percent savings R(u) in
OER operations using our load-aware RWA with respect
to the full-load RWA is

R(u) =
E[oer|N0(1)]− E[oer|N0(u)]

E[oer|N0(1)]
· 100. (6)

Note that whenever N0(1) < Nmax < N0(u) the
savings are 100% since no regenerations are required
with the load-aware RWA. Fig. 5 shows both the under-
estimation U eq. (4) and the savings R(u) eq. (6) versus
load u at WB for both the U.S. network and a 20-node
European (EU) network [14] for a W=89 wavelengths
WDM DP-QPSK system at R =28Gbaud and spacing
∆f = 35GHz over SMF fiber (D = 17ps/nm/km). The
remaining parameters are as in Fig. 1. The results of 100

Fig. 6. Example of link spanned by reference lightpath at λref from
Source to Destination node, with H = 7 hops and and S = 5 spans
per hop. Interfering lightpaths on wavelengths λ1 through λW may
enter/exit at any node.

different runs are reported in the figures. Squares are
for ideal DBP, crosses are without DBP. OER savings
of more than 20% and 38% are obtained in the US
and EU networks, respectively. Using single-channel
nonlinearity suppression with an ideal DBP increases
the savings to more than 50% in the US and 60% in
the EU networks, respectively. The important message
is that underestimation is not a good indicator of OER
savings. Even at relatively small under-estimations as in
the EU network, the savings in OER with respect to
the standard full-load choice N0(1) can be significant.
The reason is that R(u) depends both on the difference
N0(u)−N0(1) and on how quickly the PMF decreases
to zero beyond N0(1).

IV. DETAILS OF REACH ANALYSIS

While the objective of the previous sections was to
quantify the potential gain in maximum reach and OER
savings of a load-aware RWA design, this section will
provide all the analytical details necessary to explain the
presented numerical results.

Fig. 6 sketches a link from source node S to destina-
tion node D for a reference lightpath at wavelength λref .
The number of hops is H and generic hop k is composed
of Sk spans. Traffic on the reference lightpath enters at
S and exits at D. On all other wavelengths, traffic may
exit at an intermediate node, then re-enter at a later node
(with different data), then exit, and so forth. Each thick
line with ending arrow indicates a lightpath. We define

uk = Pr{a wavelength is carrying a lightpath at hop k}.

This quantity can be estimated as the long-run aver-
age number of active lightpaths at hop k, divided by
the total number of wavelengths W . The load vector
u = [u1, ..., uH ] is the only “traffic parameter”, which
depends on the QoT-aware RWA.

In DU networks, or more generally in networks with
large-enough residual dispersion per span such that the
coherent GN model [4] holds, the received SNR of the
DP reference signal when all WDM interferers propagate
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Fig. 5. (Left) Underestimation U eq. (4) and (Right) regenerations savings R eq. (6) vs load u at first wavelength blocking in the U.S. and
European (EU) networks for a W=89 wavelengths WDM DP-QPSK system at R =28Gbaud and η = 0.8 over SMF fiber (D = 17ps/nm/km).
Remaining parameters as in Fig. 1. Squares: DBP. Crosses: without DBP.

along the S-D path together with the reference signal is
given by eq. (1), where the NLI power PNLI = aNLP

3

is [4]–[6], [10]:

PNLI =Brx
16

27

¨
|K(f1f2)|2G(f1)G(f2)G(f1+f2)df1df2

(7)
where Brx is the noise equivalent bandwidth of the
receiver, G(f) is the power spectral density (PSD) of
the DP WDM comb, and K(v) is the (un-normalized)
link kernel from node S at coordinate z = 0 to node D
at coordinate z = L, with v = f1 · f2, whose expression
in absence of dispersion slope is [5], [6]

K(v) =

ˆ L

0

γ(s)G(s)e−j
(2π)2v

2 C(s)ds (8)

with γ the nonlinear fiber coefficient, G(s) =
exp(
´ s

0
g(u)du) the gain from 0 to s ∈ [0, L], and

C(s) = −
´ s

0
β2(u)du the cumulated dispersion from

0 to s. In (8), v plays the role of a squared frequency.
We assume that link gain/loss and total dispersion are
perfectly compensated for at the coherent receiver.

Assuming channels have a rectangular spectrum, Fig.
7 shows as colored “islands” the integration domain of
the double frequency integral in (7) [4], [10]. If any of
the WDM signals is switched off, we have to switch off
its corresponding PSD and thus remove the correspond-
ing islands (e.g. when removing the second last WDM
channel, those islands hatched in cyan in the figure). Fig.
7 shows one contour level of the function |K(f1f2)|2.
Such contours are hyperbolas, as they just depend on
the product v = f1 · f2. The central island accounts
for the single channel interference (SCI). The remaining
islands along the axes account for cross-channel interfer-
ence (XCI), which also includes polarization-dependent
effects. Off-axes islands account for four-wave mixing
(FWM) among channels. FWM is normally negligible
in DU links [4]. Neglecting FWM, the NLI coefficient

Fig. 7. Example of double integration domain (red and cyan “islands”)
in eq. (7) when spectra are rectangular with uniform channel spacing.
Vertical stripes correspond to G(f1), horizontal stripes to G(f2), and
45-degrees tilted stripes to G(f1 + f2). When switching a channel
OFF (e.g. the second last WDM channel) the corresponding PSD is
zeroed, and so are the corresponding islands (those marked in cyan in
the example).

can be written as

aNL = aSCI + aXCI (9)

and in [10] we found that with rectangular spectra the
SCI coefficient in the coherent GN model may be well
approximated at large enough symbol rate/dispersion as:

aSCI ∼=
16

27

Brx
B0

[
4

B2
0

ˆ (B0/2)2

0

|K(v)|2 log(
(B0/2)2

v
)dv

]
(10)

where B0 is the reference signal one-sided equivalent
nonlinear optical bandwidth. It corresponds to integra-
tion of (7) over a square of edge B0 centered at the
origin [4]. In the numerical calculations in Section III
we assumed B0 ≡ kNLR and Brx = kLR where kL is
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found by bit-error rate (BER) matching with simulations
in the linear regime, and once kL is fixed, then kNL
is found by matching with simulated SNR contours.
The values we found to best match our simulations are
kL = 1 (i.e., ideal matched filtering – a normal situation
in presence of a linear equalizer) and kNL = 1.25.

When all pumps propagate together with the signal,
by generalizing the coherent GN model calculations with
rectangular signal spectra in [10] we find that the dual-
polarization XCI NLI coefficient can be approximated at
large-enough channel spacing times symbol rate product
∆f ·R as :

aXCI∼=
16

27

Brx
B0

∑
p 6=0

4

B2
p

(
Pp
P

)2
ln(

1 +
Bp

2∆fp

1− Bp
2∆fp

)

ˆ ∞
0

|K(v)|2dv

(11)
where the sum is extended to all interfering pumps p
(or lightpaths) distinct from the reference lightpath with
index 0, Bp is the p-th pump optical bandwidth, ∆fp =
fp − f0 is the carrier frequency offset of pump p from
reference channel 0, Pp is the p-th pump power (P is the
power of the reference channel). The above formula can
handle point-to-point WDM transmissions with flexible
spectrum and format allocation, similarly to [11].

In classical coherent GN model treatments [4], [5],
[10] that lead to eq. (11), all WDM channels enter at
the same node S and exit at the same node D, hence
the kernel due to the pumps is the same as the kernel
due to the reference channel (8). However, we now allow
lightpath p to enter at the generic coordinate zip and exit
at zop, with4 0 ≤ zip < zop ≤ L. The dual-polarization
XCI NLI coefficient can now be approximated as:

aXCI∼=
16

27

Brx
B0

∑
p 6=0

4

B2
p

(
Pp
P

)2
ln(

1 +
Bp

2∆fp

1− Bp
2∆fp

)

ˆ ∞
0

|Kp(v)|2dv


(12)

where

Kp(v) =

ˆ zop

zip

γp(s)G(s)e−j
(2π)2v

2 C(s)ds (13)

is the kernel due to pump p. The correctness of this
formula is easily understood for links with identical gain
G(s) on each span from the “classical” case where signal
and pumps enter and exit at the same coordinates [10],
by simply setting the nonlinear coefficient γp(s) to zero
in correspondence to segments of the signal path where
the pump is absent. Now, for DU links with identical
spans we exactly have [10]:ˆ ∞

0

|Kp(v)|2dv = NpI1 (14)

4If an interferer enters before z = 0 we set zip = 0. If it exits after
z = L we set zop = L.

where I1 =
´∞

0
|Ksingle(v)|2dv, and Ksingle is the

single-span kernel, while the “interference length” Np
is the number of spans from zip to zop. Equation (14)
implies that the XCI contributions of the various spans
are completely uncorrelated in DU links (even within
the coherent GN model), since the XCI NLI variance
aXCIP

3 scales linearly with Np [4], [10].
Also, note that what matters is just the interference

length Np on wavelength λp and not the exact entry/exit
coordinates of the interfering lightpaths, nor how many
lightpaths are active on λp along the S-D path. Note
that this fact holds for XCI within the framework of the
coherent GN model for DU links, while it is automat-
ically implied by the incoherent GN model [3], [11],
[15, eq (2)]. For DU networks with identical spans and
number of spans per hop [S1, ...,SH ] we can thus write
Np =

∑H
k=1 SkIpk, where Ipk = 1 if a lightpath is

present on λp at hop k and 0 otherwise. Thus for DU
networks we have from (12):

aXCI ∼=
∑
p 6=0

Cp
H∑
k=1

SkIpk (15)

where

Cp ,
16

27

Brx
B0
I1

4

B2
p

(
Pp
P

)2

ln(
1 +

Bp
2∆fp

1− Bp
2∆fp

).

In the numerical examples in Section III we always
used for all pumps Pp = P , Bp = B0, and ∆fp =
|p|∆f , with ∆f the minimum channel spacing; also, S
was equal at all hops.

We next assume the RVs {Ipk} are independent for
all k and p, with mean E[Ipk] = uk equal for all
wavelengths at hop k. Define the mean ηa , E[aXCI ]
and the variance σ2

a , V ar[aXCI ]. By the independence
assumption of the RVs {Ipk}, it is easy to get mean and
variance:

ηa =

∑
p 6=0

Cp

 H∑
k=1

Skuk (16)

σ2
a =

∑
p 6=0

C2
p

 H∑
k=1

S2
k(1− uk)uk (17)

where we used the fact that V ar[SkIpk] = S2
kuk(1−uk).

More sophisticated traffic models that include hop-by-
hop correlations can be accommodated.

Using (1), the SNR blocking event can be calculated
as {SNR < S0} = {aXCI > Θ}, where the threshold
value Θ for aXCI above which an SB event occurs is:

Θ(P,Ns) =
1

S0P 2
− β(Ns +H)

P 3
− aSCI(Ns) (18)
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and depends both on power P and on span number Ns.
The SB probability PSB = Pr{SNR < S0} can thus be
computed as

PSB = 1− Fa(Θ) (19)

where Fa(x) , Pr{aXCI ≤ x} is the cumulative
distribution function (CDF) of the RV aXCI .

Since the number of WDM wavelengths is normally
large, it is clear from (15) that the RV aXCI will be
the sum of many independent random variables without
largely dominant terms, and by invoking the central limit
theorem we may approximate it as a Gaussian RV, so that
the SB probability can be approximated as

1− Fa(Θ) ∼= Q(
Θ(P,Ns)− ηa(u, Ns)

σa(u, Ns)
) (20)

whereQ(x) ,
´∞
x

1√
2π

exp{−u2/2}du. PSB is thus the
area below the Gaussian bell centered at ηa with variance
σ2
a, from Θ to ∞. The threshold is load-independent.

Hence as we increase the load u the bell shifts to-
wards the threshold (i.e. ηa increases). It broadens (σa
increases) up to u = 0.5 when variance reaches its
maximum; at u > 0.5 variance starts decreasing back
to zero (reached at u = 1).

The SB probability formula (19) and equations (16)-
(17) with equal pump powers Pp = P and pump
bandwidth Bp = B0, and uniform channel spacing
∆fp = |p|Rη were used in all numerical computations
of (2) in Sec. III.

The SB contours at level PSB shown in Fig. 1 were
obtained by setting from (20):

Θ = F−1
a (1− PSB) ∼= Q−1(PSB)σa + ηa (21)

where F−1
a is the inverse CDF. Using (18), the above

yields the following cubic equation in P :

P 3[aSCI + F−1
a (1− PSB)]− P

S0
+ β(Ns +H) = 0.

Its explicit Cardan’s solutions (upper branch PM and
lower branch Pm) are found as [9]:

PM = 3S0N̂A cos(
acos(−β(Ns +H)/N̂A)

3
) (22)

Pm = 3S0N̂A cos(
2π − acos(−β(Ns +H)/N̂A)

3
)

(23)

where

N̂A =
2

(3S0)3/2

√
aSCI(Ns) + F−1

a (1− PSB)
(24)

can be interpreted as the limit ASE power at which the
two contour branches merge (when the acos(.) argument
equals -1 we get PM = Pm from (22)-(23) ). Hence the

maximum number of spans N0 at SB probability PSB
can be obtained by solving the implicit equation

β(N0(u)+H)=
2

(3S0)
3
2

√
aSCI(N0)+F−1

a (1− PSB , u,N0)
(25)

where we stressed in the notation that the threshold Θ =
F−1
a (1 − PSB) is also a function of both load u and

maximum number of spans N0. The corresponding max-
reach power is from (22)

P0(u) = 3S0β(N0 +H) cos(
π

3
) =

3

2
S0β(N0 +H).

(26)
This is the key power value to be used by the load-

aware RWA algorithm.
Note that at PSB = 1/2 we have Q−1(PSB) = 0,

hence from (21): Θ = ηa ≡ E[aXCI ], and thus aSCI +
Θ = E[aSCI + aXCI ] ≡ E[aNL]. Thus the (22)-(23)
contour at PSB = 1/2 coincides with the contour of the
SNR (3) calculated with the expected value E[aNL] of
aNL. This is readily seen by the SNR contour derivation
in [9].

V. CONCLUSIONS

For coherent transmissions in dispersion-
uncompensated flexible optical networks without
all-optical wavelength conversion, we introduced a
simple on-off interfering WDM traffic model that
summarizes the impact of network traffic into a unique
parameter, the average wavelength load u. We derived
the statistics of the stochastic received SNR and thus
the SNR blocking probability. From it, we derived
analytical expressions of the load-dependent maximum
reach N0(u) and its corresponding optimal power
P0(u) within the framework of the coherent GN
model. A novel load-aware RWA algorithm could then
use the load-dependent reach N0(u) instead of the
commonly used full-load reach N0(1). For such a novel
load-aware RWA we quantified the possible savings in
opto-electronic regenerations for two sample optical
network topologies at the first wavelength blocking. For
28Gbaud WDM DP-QPSK signals at 80% bandwidth
efficiency over Ns×100km SMF DU transmissions,
regenerations savings of more than 20% and 38% are
obtained in the US and EU networks, respectively, at
the load corresponding to the first wavelength blocking.
When single-channel nonlinearity is removed by an
ideal DBP, the savings increase to more than 50% in
the US and 60% in the EU network, respectively.

APPENDIX 1

Consider the generic contour (3), such as the red,
blue, and dark green contours in Fig. 1. Let N0 be
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the maximum number of reachable spans and P0 the
corresponding power. Then the point (P0, N0) is the
top of the bell curve (SNR versus power P) at distance
N0 when the top SNR value is S0 [9]. But at the top
of the bell curve, the ASE power NA = β(N0 + H)
is twice the NLI power [7], hence the SNR is S0 =

P0

NA+NNLI
= P0

3
2β(N0+H)

i.e., P0 = 3
2S0β(N0 + H)

which is a straight line in the (P,N ) plane, shifted by
( 3

2 )dB ∼= 1.76 dB above the lower linear asymptote
P0 = S0β(N0 +H). Such a line is the locus described
by the coordinates of maximum reach as the NLI power
(hence ASE, which has twice that power) is swept at
constant β (i.e., constant amplifiers noise figure F ).
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