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Abstract: By extending a well-established time-domain perturbation
approach to dual-polarization propagation, we provide an analytical
framework to predict the nonlinear interference (NLI) variance, i.e., the
variance induced by nonlinearity on the sampled field, and the nonlinear
threshold (NLT) in coherent transmissions with dominant intrachannel-
four-wave-mixing (IFWM). Such a framework applies to non dispersion
managed (NDM) very long-haul coherent optical systems at nowadays
typical baudrates of tens of Gigabaud, as well as to dispersion-managed
(DM) systems at even higher baudrates, whenever IFWM is not removed
by nonlinear equalization and is thus the dominant nonlinearity. The NLI
variance formula has two fitting parameters which can be calibrated from
simulations. From the NLI variance formula, analytical expressions of the
NLT for both DM and NDM systems are derived and checked against recent
NLT Monte-Carlo simulations.
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1. Introduction

It has recently been shown that, in high bit-rate coherent optical links with no dispersion man-
agement (NDM), the nonlinear interference (NLI) is a zero-mean signal-independent additive
circular complex-Gaussian noise already after a few spans [1,2]. Based on such a key observa-
tion, a nonlinear Gaussian model for NDM coherent communications has been proposed [3–5]
and experimentally validated [6–8]. In wavelength division multiplexing (WDM), the nonlin-
ear noise comes both from intrachannel nonlinearity and from interchannel nonlinearity. As we
increase propagation distance, intrachannel nonlinearity eventually becomes dominant at bau-
drates in the range of tens of Gigabaud, such as those typically envisaged for modern coherent
optical communications [9], unless some form of nonlinear equalization is employed [10–13].
However up to date such nonlinear equalization techniques at long distance and high baudrate
have unmanageable hardware implementation complexity.

Building on a well-established time-domain perturbation approach [14–17], in this paper
we extend the study of the nonlinear Gaussian model to the regime in which single-channel
intrachannel four wave mixing (IFWM) is the dominant nonlinearity. Such a regime applies to
both NDM and dispersion-managed (DM) long links at sufficiently large baudrates.

The paper, which is an extended version of [18], is organized as follows. Section 2 introduces
the basics of the nonlinear Gaussian model, in which a single parameter, the NLI parameter aNL,
completely determines nonlinearity. Section 3 proves that, within the applicability of the non-
linear Gaussian model, we can analytically derive the nonlinear threshold (NLT) at a target bit
error rate (BER). Section 4 derives explicit analytical expressions of aNL for dual-polarization
modulation both for NDM and for DM links under the assumption that IFWM is dominant.
Section 5 finally compares the analytical NLT to the NLT derived by time-consuming Monte-
Carlo simulations in [9]. The five appendices contain all the analytical derivations needed to
support the results summarized in the main body of the paper. Table 1 provides a list of the
main symbols used in the paper.
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Table 1. List of Main Symbols Used in the Paper

Symbol Unit Definition Symbol Unit Definition

P [mW] average signal power P̂NLT [mW] power at max SNR S0

NA [mW] ASE power P̂1 [mW] power at 1 dB SNR penalty

NNL [mW] NLI power ΦNL [rad] nonlinear phase

aNL [mW−2] NLI parameter G(z) power gain from 0 to z

N number of spans η(t1t2) time-kernel

zA [km] span length ξ normalized dispersion

L [km] total link length τM time-kernel effective duration

α [1/km] attenuation coefficient d f degeneracy factor

γ [1/W/km] nonlinear coefficient S map strength = − β2
α R2

β2 [ps2/km] dispersion coefficient ηp polarization fitting factor

R [Gbaud] symbol rate μ τM fitting factor

2. Nonlinear Gaussian Model

Consider a single-channel long-haul optical link with dual polarization (DP) coherent recep-
tion. Assume that both the amplified spontaneous emission (ASE) and the NLI are indepen-
dent additive complex-Gaussian noises. After coherent reception with polarization demulti-
plexing and ideal linear electrical equalization, followed by matched filtering and ideal carrier
estimation, the 2-dimensional sampled received complex field vector at sampling time t is:
rrr(t) =

√
PUUU(t)+ nnnL(t)+ nnnNL(t), where P [W] is the average signal power, UUU the normalized

2x1 complex signal vector, nnnL the ASE, and nnnNL the NLI vectors. The electrical signal-noise
ratio (SNR) at the decision gate is

S =
P

NA +NNL
(1)

where: NA =E[|nnnL|2] = βN is the ASE power from both polarizations, where N is the number of
spans and β = hνF(G −1) depends on the in-line amplifiers noise figure F and gain G = eαzA ,
being α the fiber loss coefficient and zA the span length; NNL = E[|nnnNL|2] = aNLP3 is the NLI
power obtained from a first-order regular perturbation [3, 5]. The final relationship between
Q-factor and SNR then depends on the modulation format [5, 6, 8].

The main goal of this paper is to provide an approximate analytical expression of the NLI
coefficient aNL, valid for dominant IFWM, in any DM or NDM link. Such an expression will
be used to analytically cross-validate recent simulation results on nonlinear threshold in DP
coherent transmissions [9].

3. Nonlinear Threshold

We define the constrained NLT at reference bit error rate BER0 (i.e., at its corresponding
format-dependent SNR S0) as the transmitted power P̂NLT yielding the maximum of the “bell-
curve” S versus P, where the maximum value is constrained to S0. Maximization of Eq. (1)
with ASE noise adjusted such that the top value is S = S0 yields [3]

P̂NLT =
1

(3S0aNL)1/2
(2)

and depends only on S0 and aNL. It has been shown that the model [Eq. (1)], at the top S value,
yields an SNR penalty with respect to linear propagation of 1.76 dB [3,4]. Appendix 1 reviews
such results and extends them to prove that the 1dB NLT P̂1, i.e., the transmitted power needed
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to achieve S0 with 1 dB of SNR penalty, is ∼ 1.05 dB smaller than P̂NLT . P̂1 corresponds to the
NLT simulated in [9] that we wish to double-check with our theory.

4. Nonlinear Interference coefficient

We now describe a procedure to derive closed-form analytical expressions of the NLI coef-
ficient aNL. Generalizing the work in [16, 17] to DP, Appendix 2 shows that, in absence of
polarization mode-dispersion (PMD), the NLI field vector can be obtained from a first-order
regular perturbation (RP1) as:

nnnNL(t) =− j
√

PΦNL(P)
∫∫ ∞

−∞
η(t1t2)UUU(t + t1)UUU

†(t + t1 + t2)UUU(t + t2)dt1dt2 (3)

where: the nonlinear phase is ΦNL(P)� PL < γG > with L the total link length, γ(s) 8/9 times
the fiber nonlinear coefficient, G(s) the power gain at coordinate s, and the average < γG >
is defined in Eq. (23); η(t1t2) is the time-kernel (where time is normalized to the symbol time
T = 1/R, and R is the baudrate), which is the 2D-inverse Fourier transform of the frequency-
kernel η̃(ω1ω2) given explicitly in Appendix 2; UUU(t) is the received unit-power-normalized
desired signal field, and † stands for transpose conjugate.

For a linear digital modulation we have UUU(t) = ∑∞
k=−∞ sssk p(t −k), where sssk = [Xk,Yk]

T is the
vector of constellation symbols on polarizations X and Y at time k (T stands for transpose),
and p(t) is the real, scalar common supporting pulse [19]. We are interested in the NLI at the
sampling time of interest, say t = 0. We assume a Nyquist pulse p(0) = 1 and p(k) = 0 at any
other integer k. Thus assuming uncorrelated symbols we have E[|UUU(0)|2] = E[|sssk|2] = 1. When
the time-kernel is much broader than the symbol time, a regime we call IFWM dominated, then
we can approximate the supporting pulse with a delta function in each field term in the double
integral of Eq. (3), and the NLI term simplifies to nnnNL(0) = cccNLP3/2, with [16, 17]

cccNL =− jL < γG > ∑
m,n,l

sssmsss†
l sssnη ((m− l)(n− l)) (4)

where the sum accounts for IFWM terms, i.e., runs over all integers m,n, l such that m+n− l =
t = 0, with m �= l, n �= l. The above expression does not apply to intrachannel cross-phase
modulation (IXPM) (m = l or n = l) or pure self-phase modulation (SPM) (m = n = 0); both
such terms however tend to give a negligible contribution to the overall NL power with respect
to IFWM as the time-kernel gets broader and broader, i.e., when IFWM is dominant. The NL
power is PNL �E[|nnnNL(0)|2] =E[|cccNL|2]P3, hence we recognize that aNL ≡E[|cccNL|2], where the
expectation is taken over the random symbols. Appendix 3 shows that, for any DP constellation
with E[sssk] = 0 and E[|sssk|2] = 1, we get when IFWM is dominant

aNL = ηp8(L < γG >)2
∞

∑
m=1

∞

∑
n=1

|η(mn)|2 (5)

where ηp =
3
8 for DP, and ηp = 1 for SP transmission.

Expression (5) is simple, yet it requires the explicit evaluation of the time-kernel, which
is analytically known only for lossless links [16] or for a single lossy span of infinite length
[20]. For practical lossy links of interest the time-kernel evaluation is a challenging numerical
problem, and in this paper we seek an alternative procedure able to avoid its direct numerical
computation. The idea is the following. We first approximate the double sum as

Alim �
∞

∑
m=1

∞

∑
n=1

|η(mn)|2 ∼=
∫ ∞

1

∫ ∞

1
|η(t1t2)|2dt1dt2 =

∫ ∞

1
ln(τ)|η(τ)|2dτ. (6)
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Since the time-kernel magnitude decreases for increasing τ and eventually vanishes after an
effective time duration τM , we may then upper-bound the double sum as

Alim
∼=
∫ τM

1
ln(τ)|η(τ)|2dτ ≤ ln(τM)

∫ τM

1
|η(τ)|2dτ ≤ ln(τM)

∫ ∞

0
|η(τ)|2dτ. (7)

What we need are expressions of both the kernel duration τM and of the above integral of the
kernel magnitude that do not need the explicit time-kernel evaluation. We may choose τM �
μτrms for some positive multiplier μ of the rms width τ2

rms =
∫ ∞
−∞ τ2|η(τ)|2dτ/

∫ ∞
−∞ |η(u)|2du.

If the parameter μ is chosen too large such that μτrms exceeds the actual time-kernel duration,
then we just make the upper-bound of Eq. (7) looser. We will discuss the choice of parameter
μ in the results Section. Now, for every optical link, both with and without dispersion manage-
ment, a physically meaningful function is the power-weighted dispersion distribution (PWDD)
J(c), representing signal power versus cumulated dispersion c [16]. Appendix 4 shows that

DEN �
∫ ∞

−∞
|η(τ)|2dτ =

∫ ∞

−∞
J2(c)

dc
2π

(8)

NUM �
∫ ∞

−∞
τ2|η(τ)|2dτ =

∫ ∞

−∞
c2[J(c)+ cJ′(c)]2

dc
2π

. (9)

Thus aNL in Eq. (5) can be upper-bounded by the following expression depending solely on
integrals of J(c), which are easy to evaluate for practical links:

aNL ≤ ηp8(L < γG >)2 DEN
2

ln(μ
√

NUM
DEN

). (10)

The derivation in Appendix 3 clearly shows that this bound is valid for any zero-mean DP
modulation format with independent polarization tributaries, at a given baudrate. In other terms,
in the IFWM dominated regime both constant amplitude formats such as quadrature phase
shift keying (QPSK), and variable amplitude formats such as quadrature amplitude modulation
(QAM) at the same average power P do generate the same nonlinear power aNLP3. Appendix 5
derives closed-form expressions of the aNL upper-bound of Eq. (10) for several links of interest.
For instance, for NDM links we obtain for N � 5:

aNL ≤ ηP(
γ
α
)2 N

π|S | ln(
4μ√

5
(αzAN)2|S |) (11)

with span length zA, and fiber “strength” S �−β2
α R2 [20]. Note the similarity of this expression

with that of a Nyquist-WDM NDM system derived in [4] using a frequency-domain approach.
The major difference is the N log(kN) scaling law in the IFWM-dominated regime, as opposed
to the simpler N scaling when presumably cross-nonlinearities dominate. The N log(kN) scaling
law is instead confirmed by the amplitude variance results of Mecozzi et al. ( [15], Eq. (4)),
which are based on the same RP1 time-domain approach and large-strength assumption as in
this paper, although dealing with Gaussian shaped return-to-zero on-off keying modulation.

5. Results

Figure 1 (left) shows a plot of the aNL formula (10) versus number of spans N (solid), and nu-
merically simulated values (symbols), for a single-channel 28 Gbaud DP-QPSK coherent trans-
mission over single mode fiber (SMF, β2 = −21 ps2/km, α = 0.2 dB/km, γ = 1.26 W−1km−1

) for an Nx100 km link, both NDM and DM with 30 ps/nm (DM30) of residual dispersion per
span (RDPS) and no pre-compensation. For the NDM link we used the formula (11), while for
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Fig. 1. (Left) aNL [mW−2] versus spans N from Eq. (10) (solid) and simulations (symbols).
DP-QPSK on Nx100 km SMF links, R=28 Gbaud. (Right) 1dB NLT vs. symbol rate R for:
theory P̂1 = P̂NLT − 1.05 dBm, with P̂NLT as in Eq. (2) (solid lines); simulations from [9]
(symbols). DM30 = DM with 30 ps/nm RDPS.

the DM case the formula (10) and Eqs. (35)-(36). In the theoretical curves we used the value
μ = 6, which roughly matches the actual duration τM

∼= 6τrms of the time-kernel and gives the
best fit of the shape of aNL versus N for both links, although for NDM links the dependence
of aNL on μ is rather weak. Instead of the theoretical DP value ηp = 3/8, a smaller fitting
factor ηp = 3/50 was used for DM, and ηp = 3/88 for NDM, in order to compensate for the
upper-bounding in Eq. (7). We appreciate the match of theory and simulation, as well as the
announced N log(kN) scaling law in the NDM case. The perceived NDM slope over a 50 span
range is ∼ 1.25 dB/dB as in [1], although restricting the range to the first 15 spans gives ∼ 1.35
dB/dB, as we experimentally verified in a companion study [6, 7]. NLI grows faster in the DM
case: aNL has an initial slope of ∼ 2 dB/dB and then bends at larger N.

Figure 1 (right) shows the 1dB NLT at BER0 = 10−3 versus baudrate for a DP-QPSK format
for both NDM, and a DM30 link with straight-line rule (SLR) pre-compensation [20], both at
20x100 km and at 120x50 km distance. Symbols refer to single-channel simulations taken from
[9], solid lines to the formula P̂1 = P̂NLT −1.05 [dBm] using Eq. (2) and the same (ηp,μ) fitting
factors as in Fig. 1 (left). While for DM links theory only captures the general trend versus R
with obviously major discrepancies at lower R where IFWM is not dominant, the match in
NDM links (optimized at 28 Gbaud through the fitting factors ηp as in Fig. 1 (left)) seems
more reasonable. Notwithstanding the numerical discrepancies observed in Fig. 1 (left), which
may be large for practical design purposes, the analytical NLT curves are of great theoretical
importance, as they provide a first model able to confirm the general trends of NLT observed
in simulations, and quickly predict the NLT qualitative trends as we vary the main system
parameters.

Of course, one may play with the two fitting parameters to improve the prediction of aNL

(and thus NLT) versus symbol rate. Focusing for instance on the NDM link, Fig. 2 (left) shows
aNLversus R for a 20x100 km link. Symbols represent simulations, while the red line the theo-
retical aNL of Eq. (11) with the same (ηp,μ) = ( 3

88 ,6) parameters as in Fig. 1. We can decrease
the gap to simulations by using the “optimized” parameters (ηp,μ) = ( 3

31 ,0.02) as shown by
the magenta line, i.e., by pretending the time-kernel duration is smaller than its actual value.
However this comes at the price of a reduced accuracy of the aNL versus spans N as shown in
Fig. 2 (right).
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Fig. 2. (Left) aNL versus symbol rate R for DP-QPSK 20x100 km NDM link. Symbols:
simulations. Red line: theory (11) with (ηp,μ) = ( 3

88 ,6) as in Fig. 1. Magenta line: theory
(10) with optimized (ηp,μ) = ( 3

31 ,0.02). (Right) aNL versus spans N for 28 Gbaud DP-
QPSK NDM link. Symbols: simulations. Red and Magenta lines: theory.

We verified that the main reason of the inability of the model to correctly predict the shape
of aNL versus symbol rate R (hence NLT versus R) over the wide range shown Figs. 1 and 2
stems from the key approximation [16]

∫∫ ∞

−∞
η(t1t2)p(t1 −m)p(t2 −n)p(t1 + t2 − l)dt1dt2 	 η ((m− l)(n− l))

used to derive Eq. (4), which requires shorter and shorter pulses p(t) as (m− l) and (n− l)
grow.

6. Conclusions

We provided a time-domain model of NLI in IFWM dominated links, which reasonably models
NDM links, as well as high baudrate DM links. Such a model provides a quick qualitative
tool to compare transmission link parameters in terms of their impact on received SNR. The
model has two fitting parameters which may be optimized to best fit simulations, although it
has difficulties in reproducing the correct behavior of aNL versus symbol rate over the wide
range shown in Figs. 1-2. More work is needed on this issue to improve its accuracy.

Appendix 1: NLT at fixed distance N and fixed SNR

In [3,5] it is shown that the power that maximizes the SNR, called the unconstrained NLT, is ob-
tained when ASE power is twice the nonlinear noise power. Hence explicitly the unconstrained
NLT is

PNLT =

(
NA

2aNL

) 1
3

(12)

and the corresponding maximum SNR value at NLT is

SNLT ≡ PNLT
3
2 NA

=

(
33aNL(

NA

2
)2
)− 1

3

(13)

with an SNR penalty with respect to linear propagation of SP = 10Log3
2 ∼ 1.76 dB.
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Figure 3 (left) shows an example of the “bell curve” S versus P, where a reference SNR S0

was fixed, and the smallest and largest intersections of the SNR vs. P curve with the line at level
S0 occur at power Pm and PM , respectively. The corresponding penalties are marked as SPm and
SPM in the figure. The two intersections coincide at a specific value of ASE noise N̂A, and the
corresponding power value P̂NLT is called the NLT at S0, or the constrained NLT [21]. Clearly,
SP = 1.76 dB also at the constrained NLT. At NA > N̂A no intersections are found, i.e., the
target SNR S0 is unachievable. Figure 3 (right) reports the sensitivity penalty values SPm and
SPM at their respective powers Pm and PM as we vary the ASE noise over all achievable values
NA ≤ N̂A. The graph in Fig. 3 (right) is routinely used in system design [21]. Since both N and
S0 are fixed, we stress that the SP vs P points are actually obtained by using varying amounts
of ASE noise. For each NA, the two corresponding (Pm,SPm) and (PM,SPM) points are found at
the intersection of the SP curve with the unit slope straight line SdB

L = PdB −NdB
A , as shown in

Fig. 3 (right).
Objective of this Appendix is to provide explicit expressions of SPm, SPM , P̂NLT , and the NLT

P̂1 at SP = 1 dB.
i) Expressions of SPm, SPM and P̂NLT at NA ≤ N̂A

Inverting Eq. (13) at SNLT = S0 we get

N̂A =
2

(3S0)3/2a1/2
NL

. (14)

From Eq. (1), Pm and PM are seen to solve the cubic equation P3− 1
S0aNL

P+ NA
aNL

= 0. Cardan’s

solutions ( [22], p. 23) of the cubic equation y3+ py+q= 0 are discriminated by the value of the
discriminant Q = ( p

3 )
3 +( q

2 )
2. When Q < 0 the cubic has 3 real roots, which can be expressed

in trigonometric form as

y1 = 2

√
− p

3
cos(

α
3
) y2,3 =−2

√
− p

3
cos(

α
3
± π

3
) (15)

with α = arcos(−
√

(q/2)2

−( p
3 )

3 ). In our case p
3 =− 1

3S0aNL
, q

2 = NA
2aNL

, so Q =− 1
(3S0aNL)3

+ (NA/2)2

a2
NL

,

and using Eq. (14) Q = − (N̂A/2)2

a2
NL

+ (NA/2)2

a2
NL

< 0 for all NA ≤ N̂A. In such a case, α =
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arcos(−NA/N̂A), with 90o < α ≤ 180o, and thus 30o < α
3 ≤ 60o, so that −cos(α

3 + 60o)>0,
i.e. y1 is the largest positive solution, while y2 the smallest positive solution corresponds to
the + sign in Eq. (15): PM = 2√

3S0aNL
cos(α

3 ) and Pm = 2√
3S0aNL

cos( 2π−α
3 ). Using Eq. (14), we

rewrite the solutions explicitly as:

PM = 3S0N̂A cos(
arcos(−NA/N̂A)

3
) Pm = 3S0N̂A cos(

2π − arcos(−NA/N̂A)

3
). (16)

From Eq. (1), the sensitivity penalty is the ratio of the linear SNR P/NA and the nonlinear

SNR S0: SPm,M =
Pm,M/NA

S0
, hence finally the sought SP values are

SPM = 3
N̂A

NA
cos(

arcos(−NA/N̂A)

3
) SPm = 3

N̂A

NA
cos(

2π − arcos(−NA/N̂A)

3
). (17)

As a check, when NA = N̂A the angle α = π , cos(π/3) = 1/2 and we obtain the known value
SPm,M = 3

2 , and the NLT explicit value is P̂NLT = 3
2 S0N̂A = 1

(3S0aNL)1/2 , which can more directly

be obtained by substituting Eq. (14) into Eq. (12).
ii) Expression of P̂1

We are now ready to answer the following question: at which power P̂1 does the SP w.r.t. S0

reach a value of 1 dB? From Eq. (17), letting SPm = 100.1 ∼= 1.26 and x = NA/N̂A, we look for

the solution of equation 100.1 = 3
x cos( 2π−arcos(−x)

3 ), which is x1
∼= 0.936. Hence

P̂NLT

P̂1
=

3
2 S0N̂A

3S0N̂A cos( 2π−arcos(−x1)
3 )

∼= 1.273 (18)

which means P̂1 is 10log10(1.273)∼= 1.05 dB below the NLT at 1.76 dB penalty. This result is
also sketched in Fig. 3 (right).

Appendix 2: Regular Perturbation Solution

We will generalize here the scalar case time-domain analysis presented in [16, 17], which ex-
tends previous analytical work based on Gaussian supporting pulses [14, 15]. The propagation
equation of a DP single channel in the retarded normalized time frame t (physical time normal-
ized to the symbol interval T = 1/R), can be described in absence of PMD by the Manakov-
Nonlinear Schroedinger equation (M-NLSE) in engineering notation as ( [23], Eq. (73))

∂AAA(z, t)
∂ z

=
g(z)

2
AAA(z, t)+

jβ2(z)R2

2
∂ 2AAA(z, t)

∂ t2 − jγ(z)|AAA|2AAA(z, t) (19)

where AAA = [Ax,Ay]
T is the signal field envelope on the two polarizations (in

√
W ), γ(z) is 8/9

times the nonlinear coefficient, g(z) is the net gain/attenuation coefficient per unit length, β2(z)
is the dispersion coefficient, and such parameters are z−varying functions, with span k ending at
coordinate kzA, k = 1, . . . ,N. The function G(z) = e

∫ z
0 g(s)ds is the power gain from 0 to z. Since

the nonlinear term may be also written as |AAA|2AAA = AAA(AAA†AAA), by taking the Fourier transform of
Eq. (19) we get:

∂ ÃAA(z,ω)

∂ z
=

g(z)− jω2β2(z)R2

2
ÃAA(z,ω)− (20)

jγ(z)
∫∫ ∞

−∞
ÃAA(z,ω +ω1)ÃAA

†
(z,ω +ω1 +ω2)ÃAA(z,ω +ω2)

dω1

2π
dω2

2π
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where for any function g(t) we define its Fourier transform (with engineering sign) as g̃(ω) =∫ ∞
−∞ g(t)e− jωtdt, where ω = 2π f , and f is the frequency normalized to the baud rate. The input

modulated field ÃAA0(ω) may be pre-chirped to give ÃAA(0,ω) ≡ ÃAA0(ω)e j ω2
2 ξpre , where ξpre �

−LpreβpreR2 is the normalized cumulated dispersion in the pre-compensation fiber of dispersion
coefficient βpre and length Lpre. Now make the change of variable

ÃAA(z,ω) =
√

P0e
lnG(z)+ jC(z)ω2

2 ŨUU(z,ω) (21)

where P0 is a reference normalizing power, and C(z) � ξpre −R2 ∫ z
0 β2(s)s. is the normalized

cumulated dispersion up to z. Differentiating Eq. (21) and substituting into Eq. (20) one gets:

∂ŨUU(z,ω)

∂ z
=− jγ(z)P0G(z)

∫∫ ∞

−∞
e− jC(z)ω1ω2ŨUU(z,ω +ω1)· (22)

·ŨUU†
(z,ω +ω1 +ω2)ŨUU(z,ω +ω2)

dω1

2π
dω2

2π
.

Now define the nonlinear phase (referred to nominal power P0) as ΦNL(P0) � P0L < γG >,
where L = NzA is the total link length, and

< γG >� 1
L

∫ L

0
γ(s)G(s)ds. (23)

Using such definitions, multiply and divide Eq. (22) by L < γG >, thus finally obtaining the
Manakov dispersion-managed NLSE (M-DM-NLSE) in the form:

∂ŨUU(z,ω)

∂ z
=− jΦNL(P0)

∫∫ ∞

−∞

γ(z)G(z)e− jC(z)ω1ω2

L < γG >
ŨUU(z,ω +ω1)· (24)

·ŨUU†
(z,ω +ω1 +ω2)ŨUU(z,ω +ω2)

dω1

2π
dω2

2π
.

If the field terms in the integrand in Eq. (24) are approximated as z-independent, then Eq. (24)
can be integrated on the link [0,L] to yield the first-order regular perturbation (RP1) solution:

ŨUU(L,ω) =ŨUU(0,ω)− jΦNL(P0)
∫∫ ∞

−∞

∫ L
0 γ(s)G(s)e− jC(s)ω1ω2ds

L < γG >
·

·ŨUU(0,ω +ω1)ŨUU
†
(0,ω +ω1 +ω2)ŨUU(0,ω +ω2)

dω1

2π
dω2

2π

with ŨUU(0,ω)≡ ÃAA0(ω)/
√

P0 the initial condition. Define now the (scalar) frequency-kernel as

η̃(w)�
∫ L

0 γ(s)G(s)e− jC(s)wds∫ L
0 γ(s)G(s)ds

(25)

so that the RP1 solution writes as ŨUU(L,ω) = ŨUU(0,ω)+ŨUUNL(ω), with

ŨUUNL(ω)�− jΦNL(P0)
∫∫ ∞

−∞
η̃(ω1ω2)ŨUU(0,ω+ω1)ŨUU

†
(0,ω+ω1+ω2)ŨUU(0,ω+ω2)

dω1

2π
dω2

2π
.

(26)
If one adds at the receiver a post-compensating fiber with accumulated normalized dispersion

ξpost , one finally has the RP1 field at the receiver as:
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n

m

Fig. 4. Colored dots represent IFWM points on (m,n) plane when infinitely many precursors
and postcursors are taken into account. They all have degeneracy factor d f = 2, except
those on the m = n line (partially degenerate) which have degeneracy d f = 1. Points on
axes (IXPM) and (0,0) point (pure SPM) should not be included in IFWM count.

r̃rr(ω) =
√

P0e
lnG(L)+ jξtot ω2

2 [ŨUU(0,ω)+ŨUUNL(ω)] (27)

where ξtot � C(L)+ ξpost . For a “power-transparent” line G(L) = 1, and typically for coher-
ent systems ξtot = 0, so that after chromatic dispersion compensation at the receiver we have
r̃rr(ω) =

√
P0[ŨUU(0,ω)+ ŨUUNL(ω)], and in the time domain rrr(t) =

√
P0UUU(0, t)+ nnnNL(t) where

nnnNL(t) is the inverse Fourier transform of
√

P0ŨUUNL(ω) and thus has the expression reported in
Eq. (3). Note that the reference power P0 can be freely chosen to simplify the analysis.

Appendix 3: Power of NL term

We need to evaluate aNL = E[|cccNL|2], where we rewrite cccNL in Eq. (4) as:

cccNL = − jL < γG > ∑
m,n

sssmsss†
m+nsssnη (mn)

= − jL < γG > ∑
m,n

(
Xm(XnX∗

m+n +YnY ∗
m+n)

Ym(XnX∗
m+n +YnY ∗

m+n)

)
η (nm) (28)

and the summation runs over all signed non-zero m,n integer pairs, which we visualize as points
on the (m,n) plane. Each point corresponds to a pair of RVs, one per polarization, as given by
the big parenthesis in Eq. (28). When we swap m ↔ n the constituent random variables (RV)
XnXmX∗

n+m and YnYmY ∗
n+m (Type I) remain unchanged: they represent the same RV, which in

the double summation in Eq. (28) must be counted df = 2 times, and the double summation
for them then runs on half the (m,n) plane, i.e., for instance on the pairs (m,n) below and on
the bisectrix m = n (actually the points at which m = n have degeneracy df = 1, but we will
disregard this subtlety for very broad time-kernels, and use df = 2 even for them), except the
axes m = 0 and n = 0 which collect the IXPM and pure SPM terms. The situation for Type I
RVs is summarized in Fig. 4. On the contrary, when we swap m ↔ n, the RVs XmYnY ∗

m+n and
YmXnX∗

m+n (Type II) do change into new RVs.
We will restrict the analysis to common DP coherent modulation formats, for which E[sssk] =

0. Moreover, we choose E[|sssk|2] = 1 to be the unit power of the normalized constellation sym-
bols sssk = [Xk,Yk]

T . Symbols are assumed to be uncorrelated in time. Tributary symbols Xk,Yk

are also zero-mean uncorrelated and have the same power E[|Xk|2] = E[|Yk|2] = 1/2. Then the
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RV SSSmn � sssmsss†
m+nsssn is zero-mean, and so is cccNL. Therefore

aNL =Var[cccNL] = (L < γG >)2 ∑
m,n

Var[SSSmn]|η (mn) |2

since the RVs adding up to build cccNL are uncorrelated. Taking into account the degeneracy
factor d f we thus get

aNL

(L < γG >)2 = 2

⎛
⎜⎝∑

(m,n):
m≤n

1
8

d2
f |η (mn) |2 + ∑

(m,n)

1
8
|η (mn) |2

⎞
⎟⎠

where the first sum is on Type I RVs and accounts for the “self-polarization” variance, while the
second sum is on Type II RVs and accounts for the variance due to cross-polarization crosstalk
between X and Y. The factor 2 accounts for the contribution to NL variance from the two
polarizations, and 1/8 = (E[|X |2])3 = E[|X |2](E[|Y |2])2 is the variance of both Types of RVs.
Using the fact that the magnitude square of the kernel |η(mn)|2 is the same on the 4 quadrants
of the (m,n) plane, the above further simplifies to

aDP
NL

(L < γG >)2 = 2

(
2
8

d2
f +

4
8

) ∞

∑
m=1

∞

∑
n=1

|η (mn) |2 (29)

where we added the superscript DP for clarity. The per-component apc
NL in DP (such that apc

NLP3
0

is the NL variance on each component and P0 = P/2 is the per-component power) is obtained
using E[|X |2] = 1, E[|Y |2] = 1 (i.e., normalizing the M-DM-NLSE of Eq. (24) to P0):

apc
NL

(L < γG >)2 =
(
2d2

f +4
) ∞

∑
m=1

∞

∑
n=1

|η (mn) |2. (30)

The result for SP is obtained by using E[|X |2] = 1 and keeping only the Type I RV, hence

aSP
NL

(L < γG >)2 =
(
2d2

f

) ∞

∑
m=1

∞

∑
n=1

|η (mn) |2.

We clearly see from Eqs. (29) and (30) that variance coming from Type I RVs (the one
present also in SP transmission) is twice that due to cross-polarization, hence apc

NL = 3
2 aSP

NL, and
therefore aDP

NL = 3
8 aSP

NL. Figure 5 shows both aSP
NL estimated from SP transmission, and apc

NL from
DP transmission of a single QPSK modulated channel in a 20x100 km single-mode fiber (SMF)
NDM link. We observe the convergence of the gap to the value 3/2 predicted by theory already
at 28 Gbaud. When convergence is reached, we are in the “IFWM dominated regime”. Note
that apc

NL is 6 dB larger than aDP
NL , as confirmed by the simulated aNL in Fig. 2 (left).

Appendix 4

In this Appendix we prove formulas (8)-(9).
We start by recalling two important results that can easily be derived from [16]:
1) the PWDD J(c) is the inverse 1D Fourier transform of the frequency kernel considered

as a function of the single variable w = ω1ω2: J(c) = F−1[η̃(w)] ≡ ∫ ∞
−∞ η̃(w)e jwc dw

2π . Since
η̃(w) is Hermitian, as per Eq. (25), then J(c) is real.

2) the time-kernel η(τ) seen as a function of the single variable τ = t1t2 can be obtained as

the following inverse 1D Fourier transform: η(τ) = F−1
[

1
|ω| J( 1

ω )
]
.
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Fig. 5. aNL versus baudrate in 20x100 km SMF NDM coherent link with SP- and DP-
QPSK single channel transmission. apc

NL is the per-component NLI coefficient in DP, with
apc

NL = 4aDP
NL . The figure shows convergence of apc

NL to the value 3
2 aSP

NL theoretically predicted
when IFWM is dominant.

We thus can prove the following two results:
A) ∫ ∞

−∞
|η(τ)|2dτ =

∫ ∞

−∞
J2(c)

dc
2π

(31)

Proof: from Parseval’s theorem for Fourier pairs we have
∫ ∞

−∞
|η(τ)|2dτ =

∫ ∞

−∞

∣∣∣∣ 1
|ω|J(

1
ω
)

∣∣∣∣
2 dω

2π
=
∫ ∞

−∞
J2(

1
ω
)

dω
ω2

1
2π

and after the change of variable c = 1/ω we finally get Eq. (31). Since the Fourier trans-
form of η(τ) is real, then η(−τ) = η(τ)∗, and thus |η(τ)|2 is even. Hence

∫ ∞
0 |η(τ)|2dτ =

1
2

∫ ∞
−∞ J2(c) dc

2π .
B) ∫ ∞

−∞
τ2|η(τ)|2dτ =

∫ ∞

−∞
c2[J(c)+ cJ′(c)]2

dc
2π

. (32)

Proof: we know that time function η(τ) has real Fourier transform V (ω) = 1
|ω|J(

1
ω ),

since J(c) is real. Hence τη(τ) has transform j dV (ω)
dω and by Parseval’s theorem then∫ ∞

−∞ τ2|η(τ)|2dτ =
∫ ∞
−∞(

dV (ω)
dω )2 dω

2π .

Now, for ω > 0, dV (ω)
dω = d

dω ( 1
ω J( 1

ω )) and by the change c = 1/ω: dV (ω)
dω = d

dc (cJ(c)) · dc
dω =

[J(c)+cJ′(c)](−1
ω2 ), where J′(c)� d

dc J(c). Similarly, for ω < 0, dV (ω)
dω =−[J(c)+cJ′(c)](−1

ω2 ).

Hence in general dV (ω)
dω = [J( 1

ω )+ 1
ω J′( 1

ω )](
−sgn(ω)

ω2 ) so ( dV (ω)
dω )2 = [J( 1

ω )+ 1
ω J′( 1

ω )]2 1
ω4 , and

thus by the change c = 1/ω we get Eq. (32).

Appendix 5

We compute in this Appendix the closed-form expression of the upper-bound Eq. (10) for NDM
and DM links. In these calculations, the term NUM =

∫ ∞
−∞ c2[J(c) + cJ′(c)]2 dc

2π is the most
critical: if the PWDD J(c) has a discontinuity at c0 �= 0, then J′(c) has a term δ (c− c0) which
causes NUM (and thus the kernel width τrms =

√
NUM/DEN) to diverge to infinity. In such

a case, which occurs in most links of interest, the double sum Alim in Eq. (6) still converges,
and we verified that the value τ ′rms =

√
NUM′/DEN obtained by neglecting the Dirac deltas in

J′(c) still provides a meaningful time scale for measuring the width of the time-kernel.
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Fig. 6. PWDD versus normalized cumulated dispersion on SMF fiber link (D = 17
ps/nm/km, α = 0.2 dB/km) and transmission at R = 28 Gbaud, corresponding to strength
S = 0.35, for (Left) N = 20 span NDM system with span length zA = 100 km (Right)
N = 120 span DM system at 30 ps/nm RDPS and span length zA = 50 km.

NDM link without pre-compensation

Consider an NDM link composed of N identical spans of length zA � 1
α , with fiber dispersion

parameter β2 [ps2/km]. The fiber strength is defined as S = −β2
α R2 [20]. Assuming S > 0,

the PWDD is [17]:

JNDM(c) =
1
N

N−1

∑
k=0

Js(c− kξs) (33)

where Js(c) = 1
S e−

c
S U(c), with U(c) the unit step function, and the normalized cumu-

lated dispersion per span is ξs = −β2zAR2 = αzAS . For instance, Fig. 6 (left) shows
JNDM(c) for a 20x100 km SMF NDM system such as the one whose NLT is reported in
Fig. 1 (right). Dropping the subscript NDM for brevity, we get J′(c) = 1

N ∑N−1
k=0 J′s(c − kξs)

and (J(c)+ cJ′(c))2= 1
N2 ∑N−1

k=0 (Js(c− kξs)+ cJ′s(c− kξs))
2 because the PWDDs of the various

spans practically do not overlap. Hence

NUM =
∑N−1

k=0

∫ ∞
0 c2 (Js(c− kξs)+ cJ′s(c− kξs))

2 dc

2πN2 =
2Σ4ξ 4

s +2Σ2ξ 2
s S 2 +2Σ1ξsS 3 +S 4

8πN2S 3

where Σ1 = ∑N−1
k=0 k = (N−1)N

2 , Σ2 = ∑N−1
k=0 k2 = (N−1)N(2N−1)

6 , and Σ4 = ∑N−1
k=0 k4=

(N−1)N(2N−1)(3N2−3N−1)
30 . Similarly,

DEN =
∑N−1

k=0

∫ ∞
0 (Js(c− kξs))

2 dc

2πN2 =
1

4πNS
.

For large N, we get Σk
∼= Nk+1

k+1 , hence

τNDM
rms

∼=
(

2 N4

5 ξ 4
s +2 N2

3 ξ 2
s S 2 +2 N

2 ξsS 3

2S 2

) 1
2

=
1√
5
(αzAN)2S

and the time-kernel width is seen to scale with N2. Note that we ignored the delta terms in J′(c).
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DM link with small RDPS

Assuming RDPS�D/α (D is fiber dispersion) we can neglect the ripples in the PWDD [16,17]
and use the smooth approximation (we assume S > 0)

JDM(c) =

⎧⎪⎨
⎪⎩

1−e−
c−ξpre

S

ξin
if ξpre < c < ξpre +ξin

e− c−ξpre−ξin
S −e−

c−ξpre
S

ξin
if c > ξpre +ξin

(34)

with normalized pre-compensation ξpre = |β ′
pre|R2 =

Dpre
D/α S (where β ′

pre [ps2] and Dpre [ps/nm]

are the pre-compensation parameters) and total in-line dispersion ξin = Nξs, with normalized
per-span residual dispersion ξs = |βs|R2 = RDPS

D/α S (where βs [ps2] and RDPS [ps/nm] are the

residual dispersion parameters per span). For instance, Fig. 6 (right) shows the true J(c) for a
120x50 km SMF DM system with 30 ps/nm RDPS and SLR pre-compensation, such as the one
whose NLT is reported in Fig. 1 (right); JNDM(c) in Eq. (34) represents the smooth average of
the true J(c). Dropping for brevity the subscript DM:

(J+ cJ′)2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
1−e−

c−ξpre
S (1− c

S )

]2

ξ 2
in

if ξpre < c < ξpre +ξin

(1− c
S )2e−

2(c−ξpre)
S (1−e−

ξin
S )2

ξ 2
in

if c > ξpre +ξin

and thus NUM = 1
ξ 2

in
{∫ ξpre+ξin

ξpre
c2

[
1− e−

c−ξpre
S (1− c

S )

]2
dc
2π +

(
1− e−

ξin
S

)2 ∫ ∞
ξpre+ξin

c2(1 −
c
S )2e−

2(c−ξpre)
S dc

2π }. Long calculations lead to

NUM =
1

2πξ 2
in6S

{

−e−
ξs
S [6(ξin +ξpre)

4 +12(ξin +ξpre)
3S +30(ξin +ξpre)

2S 2 +54(ξin +ξpre)S
3+

+51S 4]+ [3ξ 4
in +6ξ 4

pre +12ξ 3
preS +30ξ 2

preS
2 +54ξpreS

3 +51S 4 +2ξ 3
in(6ξpre +S )+

+3ξin(2ξpre +S )(2ξ 2
pre +S 2)+3ξ 2

in(6ξ 2
pre +2ξpreS +S 2)]}. (35)

Similarly, DEN = 1
2πξ 2

in
{∫ ξpre+ξin

ξpre

[
1− e−

c−ξpre
S

]2

dc +

(
1− e−

ξin
S

)2 ∫ ∞
ξpre+ξin

e−
2(c−ξpre)

S dc},

leading to

DEN =
ξin −S (1− e−

ξin
S )

2πξ 2
in

(36)

independently of ξpre. Note that DEN is always ≥ 0.
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