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Abstract: A new linear model of the XPM-induced intensity noise is used for a fast evaluation of the system degrda-  
tion at the end of several types of dispersion compensated transmission systems. 

Introduction 

In dispersion compensated systems the intensity distortion 
induced by the interplay between cross-phase modulation 
(XPM) and group velocity dispersion (GVD) can be a pri- 
mary cause of transmission degradation. Like any phase 
noise, XPM generates intensity distortion at the end of a 
dispersive fiber [l], but because of its distributed genera- 
tion, compensation cannot perfectly undo such distortion. In 
this paper we give the expression of a linear filter that ac- 
counts for the intensitylcross-phasehtensity conversion 
(IMIXPMIIM) at the end of any type of dispersion compen- 
sated system. This allows a fast computation of the XPM- 
induced intensity noise at the receiver, without resorting to 
very long simulations, so that it becomes a very useful tool 
in the design of terrestrial long-haul wavelength division 
multiplexed (WDM) transmission systems. 

Theory 

We consider an N-channel WDM system propagating over a 
transmission fiber of length LJ followed by a compensating 
fiber of length L2. In [?I] we gave an explicit expression of 
an IMIXPM filter in the general case of dispersion compen- 
sated systems, capable of very well predicting the reference 
signal phase. In presence of chromatic dispersion, the XPM 
contribution generated at a given point along the fiber is 
converted by GVD into intensity modulation during the 
propagation from that point to the end of the fiber [l]. As- 
suming all the contributions of each infinitesimal segment 
add up to build the total intensity noise, the global XPM- 
induced relative intensity variation at the end of the span is: 

where <Ps> is the time averaged input signal power, y is the 
fiber nonlinear coefficient, PP(O,w) the Fourier transform of 
the p-th input channel power, and H,F(w) is the total 
IMIXPMIIM filter for the p-th interferer. In the special case 
of perfect compensation at channel s, and neglecting non- 
linear effects in the compensating fiber, such filter simpli- 
fies to: 

where Y=h2D1/4nc, h being the central wavelength and c 
the light velocity; D,, a,, and d,, are the chromatic disper- 

sion, the attenuation coefficient, and the walk-off parameter 
between channels s and p [2],  respectively, of the transmis- 
sion fiber. Equation (1) can be easily extended to the gen- 
eral case of a system composed of M amplified and com- 
pensated links, without neglecting the compensation fiber 
contributions [4]. 

Fig. 1: Squared maienitude of the IMlXPlWIM filter. 
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As an example, Fig.1 gives the squared magnitiude of 
H,,''(o) for a single compensated span, with perfect com- 
pensation at channel s, for two different compensating 
schemes. In the first scheme (solid line), the transmission 
fiber is a non-zero dispersion liber (NZDF), with Ill = -2 
ps/nm/km, L1=85 km, and the compensating fiber is a single 
mode fiber (SMF) with D2=17 ps/nm/km and L2= 10 km. 
Other parameters common to the two fibers are the disper- 
sion slope D'= 0.07 p s h / n m * ,  ~ 2 . 3 5  W-I kni-' and 
a=0.21 dBkm. In the second scheme (dashed line), the 
transmission fiber is it SMF as above, with Ll=57 km, and a 
dispersion compensating fiber (DCF) with D2=-95 
ps/nm/km, L2=10.2 km, D'=0.07 ps/lcm/nm2, y2=6 Wlkm-', 
a2=0.6 dB/km is used for compensation. We clearly see that 
the XPM filtering action is more effective in the SMF+DCF 
scheme, where the walk-off parameter is larger [2,3]. 

Results 

We used the theoretical model to obtain the XPM noise 
variance on channel I. at the receiver as: 

where S,(O,w) is the spectrum of the interferer power on 
channel p. For a single span perfectly compensated system, 
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Fig.2 shows 0: versus the bit rate R of the p channel for 
both of the previous compensation schemes. 

Fig. 2: 0: versus bit rate. 
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The peak power of both channel s and p is 5 dBm, the chan- 
nel spacing is A k 0 . 8  nm, and channel p is on-off keying 
(OOK) modulated with nonretum-to-zero ( N E )  raised 
cosine pulses (roll-off 0.8). The variance is larger for the 
NZDF+SMF scheme, being the IM/XPM/IM filter stronger 
in this case, as confirmed by Fig. 1. The variance also grows 
monotonically in the range shown, while in the SMF+DCF 
scheme the variance has a maximum and then decreses for 
higher bit rates. This is a direct consequence of the shape of 
the IM/XPM/IM filter plotted in Fig. 1. 

Fig. 3: 0: versus degree of compensation 
for two different systems. 
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Fig.3 shows a plot of 0: versus the degree of dispersion 
compensation, defined as Cd=lD2L2/DILI I .  In this case we 
kept L, fixed rind varied the length L2. For a single span 
and the power levels used, a slight undercompensation 
(Cd<l) minimizes the XPM-induced intensity distortion for 
the SMF+DCF scheme, while more undercompensation is 
needed to optimize the NZDF+SMF scheme. 
Simulations based on the split-step Fourier method (SSFM) 
wert carried out to verify the goodness of the theoretical 
predictions. Three WDM channels, with 5 dBm peak power 
per channel and AL=0.8 nm spacing, with a CW probe cen- 
tral channel and two 10 Gb/s modulated edge channels were 
propagated along a chain of span-by-span compensated and 
amplified links. The compensation schemes were: 1) 
NZDF+SMF and 2) SMF+DCF as described before; and 3) 
DCF+SMF, where we swapped the position of the transmis- 
sion and compensating fiber in scheme 2). Exact compensa- 
tion was achieved at the CW channel. 

We consider the power variation induced by XPM on the 
probe channel and we define the sample variance as 0' 

=(l/N)Ck,lN [P,(kTo/N)-<P,>]2 where P, is the channel 
power and N=8192 is the number of samples in the obser- 
vation time To corresponding to 128 bits. In Fig.4 we plot 0 
versus the number of compensated spans both for simula- 
tions (solid line) and for our model (diamonds). As we see 
from the figure, the IM/XPM/IM theoretical model well 
predicts the output probe power variations. Note that, for a 
single simulation with M=30 spans, the SSFM takes 10 
hours on a SUN workstation, while our linear model takes 
5 min. Note also that the DCF+SMF system, which has 
been shown to be the best dispersion map in the case of 
single channel propagation [5] ,  gives the worst performance 
with respect to XPM effects. 

Fig. 4: ci versus number of spans in three different maps. 
Solid: simulation; Diamonds: theory. 
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Conclusion 

A linear filter that accurately describes the XPM-induced 
intensity noise in WDM systems is presented. Our 
IM/XPM/IM theoretical model gives accurate predictions of 
the output intensity distortions over terrestrial transmission 
distances, so that it can be used as a quick design tool. 
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