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Abstract—A novel analytical model is proposed to predict
the cross-phase modulation (XPM)-induced depolarization in a
two-channel transmission system, in which the Stokes’ vector
of each channel rotates around a space-invariant pivot by a
time-varying angle which depends on the total instantaneous
optical power in the fiber, on the angle between pump and probe
input Stokes’ vectors, and on the walk-off between channels. The
model leads to a simple formula of the probe degree of polarization
(DOP) which is validated both by simulation and experiment. The
model helps identify the key physical factors that determine the
XPM-induced performance degradation of DOP-based first-order
polarization-mode dispersion compensators, and experiments that
quantify such degradation are presented.

Index Terms—Nonlinearity, optical fibers, optical systems, po-
larization, Stokes’ parameters, wavelength-division multiplexing
(WDM).

I. INTRODUCTION

I N A wavelength-division-multiplexed (WDM) system, the
nonlinear effect of cross-phase modulation (XPM) induces

a rapid change of the state of polarization (SOP) on each
channel [1], even when polarization-mode dispersion (PMD)
is not present. Such a nonlinear polarization effect, which
depends on the total instantaneous optical power in the fiber,
produces a time-dependent polarization scattering on the time
scale of a single bit. The ensuing depolarization of the WDM
channels may pose a serious limitation on those links where
optical polarization-mode dispersion compensators (OPMDC)
are needed to reduce the PMD-induced system impairments.
Such compensators, in fact, are designed to compensate a
single WDM channel independently of the others, in the
linear regime of propagation. Most of them [2]–[4] typically
use a polarization controller, a polarization-maintaining fiber
(PMF) with a fixed delay, and a feedback control signal, e.g.,
the degree of polarization (DOP) [2] or a linear combination
of spectral lines of the output signal [3], [4]. The optimum
coupling condition between the line and the compensator is
found by monitoring the feedback signal, which is assumed to
change slowly on the PMD millisecond time scale. However,
OPMDCs cannot mitigate the rapid distorting effects of XPM
which appear on the feedback control on the bit time scale of
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fractions of nanoseconds. As shown in some recent experiments
[5], [7]–[9], when XPM-induced degradation is present, the
efficiency of OPMDCs is drastically reduced.

Moreover, with the aim of predicting such efficiency reduc-
tion, the study of depolarization due to the interaction of Kerr
nonlinearity and PMD has been tackled in several experimental
and theoretical works [10]–[12]. In [10], the focus is on the anal-
ysis by simulation of the depolarization induced by self-phase
modulation (SPM) and its dependence on the transmitted pulse
chirp. Möller et al. [11] have experimentally shown that if the
SOPs of the WDM channels are launched in such a way that the
overall input DOP is minimized, the effects of XPM are also
minimized and the output DOP is maximized.

The main theoretical result so far available was obtained
by Wang and Menyuk [1] in the assumption of a significant
walk-off among the WDM channels, so that each channel senses
only the continuous-wave (CW) component of the remaining
WDM channels. Thus, the coupled nonlinear Schroedinger
equation (CNLSE) in the absence of both PMD and group
velocity dispersion (GVD) can be solved exactly, and it is
concluded in [1] that the SOP change of each channel is space
dependent, but the DOP of each channel is not degraded. With
the same assumptions, Collings and Boivin [12] have tackled
the two-channel case, showing that the analytical solution can
be interpreted as a rotation of the pump and probe Stokes’
vectors around a fixed pivot during propagation.

However, when a finite walk-off is taken into account, the
modulation of the channels rules out an exact closed-form so-
lution of the CNLSE, so that no fixed pivot around which SOP
vectors rotate can be identified anymore.

In this paper, we present a simplified approximate model for
a two-channel WDM system where both channel modulation
and walk-off are accounted for, and we apply it to the evalua-
tion of the DOP in fibers with negligible PMD. According to
the proposed model, the Stokes’ vector of each channel rotates
around a space-invariant pivot by a time-varying angle which
depends on the total instantaneous optical power in the fiber, on
the angle between pump and probe input Stokes’ vectors, and
on the walk-off between channels. The fixed pivot is the vector
sum of the probe and pump Stokes’ vectors.

The model assumes a continuous-wave probe and leads to an
explicit formula for the DOP, which is based on the walk-off-in-
duced linear filtering of the pump channel, similarly to related
well-known results in the analysis of both XPM in scalar non-
linear propagation [13], [14] and of pump-induced relative in-
tensity noise in Raman amplifiers [15], [16].
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The DOP formula turns out to be quite simple when the pump
isON–OFFkeying (OOK) modulated by a square wave emulating
an infinite alternation of marks and spaces, while it is slightly
more complex with random pump bit sequences (RBS). A good
agreement of the DOP formula with 10- Gb/s experimental re-
sults and simulations based on the beam propagation method
(BPM) [17] is found. Simulation results are also presented that
show the DOP degradation in the presence of PMD.

We carried out an experiment of a two-channel 10-Gb/s
WDM system whose statistical performance in the presence of
XPM was studied both with and without first-order DOP-based
PMD compensation [8]. The results show that PMD distorting
effects are emphasized by XPM, and therefore the OPMDC
efficiency is reduced.

The paper is organized as follows. In Section II, the novel an-
alytical model for XPM-induced DOP degradation in a WDM
system is derived for a pump and probe scheme. In Section III,
the DOP of the probe is computed from a linear filtering of the
pump channel, and an explicit DOP formula in the case of a 1010
modulated pump, and for an RBS modulated pump are derived
and checked against BPM simulations. In Section IV, exper-
imental DOP measurements for varying launch power condi-
tions are shown in order to validate the analytical DOP for-
mula. Moreover, the performance of a WDM system with PMD
and XPM is evaluated in terms of the statistics of the-factor
penalty, both with and without first-order PMD compensation.
In Section V, we summarize our conclusions. The appendix con-
tains analytical results used in Section III.

II. THE CAROUSEL MODEL

In a long WDM system with negligible PMD, the evolution
of each propagating channel in the nonlinear regime can be ef-
fectively described by the Manakov equation [1], which takes
into account the interaction between the nonlinearity and the
rapidly varying fiber birefringence through a scaling of the non-
linear coefficient by a factor 8/9. Such equation is obtained
from the CNLSE by averaging the Kerr effect over the Poincaré
sphere under the assumption ofcomplete mixing, which is ver-
ified when the fiber correlation length is much shorter than the
nonlinear length [18].

The Manakov equation for two completely polarized OOK-
modulatedprobeandpumpsignals, propagating at wavelengths

and , yields the following system of nonlinear differential
equations1 in the probe retarded-time framealong the fiber
length [1]

(1)

where and are the complex envelopes of probe
and pump, respectively, referred to the probe frequency;

is the walk-off parameter [17]; and are the

1We use here the engineers’ notation for Fourier transforms, as opposed to
[1], where the physicists’ notation is used.

GVD coefficients at and , respectively; and the symbol
indicates the transpose conjugate. Note that the envelopes are
unattenuated, as attenuation has been removed by a change of
variable and appears as an exponential that multiplies the non-
linear coefficient . In the first equation in (1), we recognize
that , where the

’s are the Pauli matrices and we used the standard decom-
position of the projector matrix [19], in which the pump
intensity and the instantaneous pump Stokes’
vector appear. By using similar manip-
ulations involving the Stokes’ vector of the probe, (1) becomes

(2)

where the tensor is known as thePauli spin
vector [20]. Note that the nonlinear terms of SPM and scalar
XPM are weighted by a nonlinear coefficient scaled by 8/9 and
4/3, respectively. The vectorial XPM effects are taken into ac-
count by the traceless Hermitian matrices
and .

Neglecting the GVD terms , the Jones- domain
(2) can be translated into an equivalent equation of motion of
the Stokes’ vectors [21]

(3)
where the symbol stands for vector cross-product. Equation
(3) describes the motion of the pump/probe Stokes’ vectors as a
local rotation around a time- and-varying axis along the fiber,
where the rotation speed depends on the power of the modulated
channels and on the amount of walk-off among them. In the
general case of OOK-modulated signals, the previously shown
equation of motiondoes not have a closed-formsolution.

As a special case, it is known [1], [12] that, when both probe
and pump are CW, the Stokes’ vectors and in (3)
perform a rotation around a time- and-independent pivot

. The proof is simply obtained by adding the two
time-independent (3). At coordinate, the rotation angle is

(4)

where the magnitude of the pivot
depends on the (fixed) relative

polarization angle between and and on the peak
powers of the probe and the pump and respectively,

is the effective fiber length, and the rotation speed in
(4) decreases in because of the fiber attenuation. Note
that the two signals undergo the same rotation angle around

; however, if the transmitted power is much larger on one
channel, such channel practically remains fixed, since its
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Stokes’ vector is almost coincident with . Finally, note that
the rotation angle does not depend on the wavelength distance
between pump and probe: no matter how far apart, the two
CW channels undergo the rotation in (4).

According to such CW model, the WDM channels clearly do
not depolarize. However, the CW assumption for WDM chan-
nels is reasonable only for those systems in which chromatic
dispersion or channel spacing are so large that each channel is
only affected by the average power of the remaining channels.
Hence, the CW model fails to describe the depolarization due to
channel modulation and finite walk-off.

In order to tackle such a more general case, we adopt the fol-
lowing carousel modelas an approximate solution of (3), valid
for completely polarized input pump and probe fields, with an
OOK-modulated pump and a CW probe.

Assume at that the pump isON. As in the CW model,
the “carousel” of the two Stokes’ vectors starts rotating around
a fixed pivot , where is a unit
vector. As soon as the pump goesOFF, the carousel stops its
rotation around and resumes it only when the pump goesON

again. At , the rotation angle is [6]

(5)

and depends on the section of the OOK-modulated pump bits
that have walked past the probe from the input to coordinate
, as expressed by thenormalizedpump power

in the above integral. It is such A time-varying rotation angle
around an average angle
(due to the CW component of the pump and predictable by the
CW model) that causes the depolarization of the probe signal,
whose DOP is therefore decreased, as we will shortly quantify.
It can be easily verified from the first equation in (3) that the
solution shown previously isexactin the limiting case
and nonreturn-to-zero (NRZ) pump bits.

We note that with the change of variable , the inte-
gral in (5), can be written as a convolution operation

(6)

where the walk-off filter inpulse response [22] is

(7)

where is a gating function taking value 1 for
, and zero else. Note that, for simplicity, we assumed

, although the case is similar [22]. The frequency
response of the walk-off filter has zeros at multiples of

due to the gating function [22], [23]. Hence, a periodic
1010 pump sequence, of a period twice the bit time, should
produce on the probe only an average rotation andno
depolarizationat if is a multiple of , i.e., if the fiber
length is a multiple of , with

Fig. 1. Sketch of the interaction of an initially CW probe and a periodic square
waveform pump predicted by the carousel model, at different propagation
lengths. See text for a description.

being the walk-off length, i.e., the length over which the pump
walks past the probe by one bit.

We visualize such a case in Fig. 1, where we represent the in-
teraction between a linearly polarized CW probe and a circularly
polarized pump modulated by the periodic alternation of mark
and space bits, in the case . We also neglect the attenua-
tion. The (real) envelope of the probe and the normalized
power of the two propagating fields are portrayed in the
time domain at multiples of half the walk-off length. Focus on
the interaction between the first mark bit of the pump and the
time “sections” A, B, C, D, E of the probe at times , T/2,
T, 3T/2, 2T respectively. At the probe is completely po-
larized [Fig. 1(a)]. At , A, D and E are unaltered,
as they have not interacted with the pump, while B and C are
equally rotated by the pump [Fig. 1(b)]. At , sections A
and E are still unaltered, section B has the same rotation as at

since it stopped sensing the pump bit, while section
C is the most rotated, and section D has the same rotation as sec-
tion B since it sensed the pump bit for the same amount of time
[Fig. 1(c)]: this is the coordinate at which the depolarization
induced by XPM is the largest. Moving at , sec-
tions A and E start rotating while the most advanced section C
stops sensing the pump. Finally at , all probe sections
have rotated by the same amount as they sensed the pump bit by
the same amount of time, so that the probe is again completely
polarized, as predicted by (6). If the pump period increases to

, the same situation of total repolarization of the probe can
be found at , and the maximum polarization rotation
at section C at is increased by times. Such argument
can convince us that long sequences of many consecutive marks
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Fig. 2. SOP evolution on the Poincaré sphere of an initially CW probe, of a
square-waveform pump, and of their rotation axis in a 100-km link withD =

10 ps/nm/km,�� = 0.4 nm, andLd = 4T . BPM solution of Manakov
equation.

followed by many spaces on the pump yield the worst depolar-
izing case. Such point will be further explored in Section III on
DOP.

We now move to the limits of our model.
We already verified that the carousel model gives the exact

solution of (3) when the pump largely dominates the signal and
thus remains completely polarized. However, at equal signal and
pump powers, we show in Fig. 2, by direct BPM solution of the
Manakov (2), the SOP evolution along(for fixed time ) in a
situation of large walk-off, where the SOPs of an initially CW
probe (dark grey points), of a pump modulated
at 10 Gb/s by “1010 ” NRZ bit pattern (grey points) and the
SOP of their “rotation axis” (black points)
are represented on the Poincaré sphere. The two channels propa-
gate in a 100-km polarization maintaining fiber with parameters

10 ps/nm/km, 0.2 dB/km, 1.34 W/km with
equalaveragepower of 13 dBm, spaced by 0.4 nm and with
a walk-off of 4 b over the link. Starting from , during
the first mark of the pump, the two SOPs rotate around the fixed
pivot (black central point) describing the two arcs. Then, when
the pump is off the rotation stops, as expected from the carousel
model. After that, since the incoming mark bit of the pump has
already been depolarized by its previous propagation, the SOPs
of the probe and of the pump move, respectively, on the dark
grey and grey arcs, rotating around a pivot that is not fixed
anymore, but moves on the black trajectory. The same expla-
nation can be given for what happens on trajectory.

Note that, if the pump is not a perfectly square NRZ wave-
form, even in the absence of pump depolarization, the pivot
varies with time during a mark bit.

More limits of our model are the following: i) since it stems
from the Manakov equation, it does not take into account the
depolarization due to SPM [10]; ii) the pulse distortion due to
GVD is neglected; and iii) PMD is neglected.

The effect of PMD can be understood as follows. If one thinks
of a real fiber as a concatenation of randomly oriented birefrin-

gent plates, then within each plate pump and probe rotate by
different angles around the local birefringence vector. Hence the
net effect of PMD is to randomly vary the relative polarization
angle and the orientation of the pivot during propagation.

III. DOP CALCULATION

In a WDM system, the depolarizing effects of XPM can
be evaluated by numerical integration of the Manakov (2)
(extended to the case of channels [1]) by means of the
BPM. However, the accuracy of the BPM is paid with a long
computational time, especially in long links where large powers
are launched.

We provide here a faster but accurate DOP calculation based
on the carousel model, which postulates that at the fiber output

the SOP of the probe depicts in time a circular trajec-
tory around the pivot, with a rotation angle that swings in time
around an average value by an amount

, whose expression is obtained from (6).
Without loss of generality, we choose a reference frame of the
Stokes’ space in which the pivot is aligned with the third Stokes’
axis , and the component of the average probe output SOP
along is zero, so that we can express the time-dependent
output probe SOP as

(8)

where the zero-mean process represents the SOP’s
azimuth, and is the angle between the probe and the pivot.
Such angle can be obtained fromand the pump-probe power
ratio through the analytical relationship

. Using (8) in the definition
of DOP yields

(9)
where all we need to evaluate is the time averages
and , with

(10)

filtering of the normalized OOK pump power.
We can already draw some conclusions from such equations.

First, the larger the swing angle , the smaller the DOP.
Therefore, since the walk-off filter is a low-pass filter, the
lower the pump modulation frequency, the lower the DOP,
thus confirming the same observation already made about
Fig. 1. Next, if pump and probe Stokes’ vectors are initially
aligned or counteraligned, then , so that the DOP is
unity. Unfortunately, the presence of PMD prevents such initial
alignment to be kept during propagation, so that depolarization
occurs. Finally note that, by invoking the ergodic theorem
[24], one can compute the time averages in (9) by using the
characteristic function (CF) of the random variable (RV)

where denotes expectation.
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If one now wants to avoid any further analysis, one may note
that (10) and (9) can be used for a fast semianalytical Monte-
Carlo simulation of the DOP. Although such method readily pro-
vides us with the correct DOP values, we next look for explicit
exact DOP formulas that highlight the functional dependencies
of the DOP.

A. Periodic Pump

We start by observing that (9) can be given a closed form
if the pump is a periodic 1010 modulating signal. Consider
the case of a pump modulated with a periodic alternation
of NRZ pulses, with . A periodic and skew-sym-
metric signal results, with period .
If we assume that higher order harmonics are filtered out by
the walk-off filter, only the first harmonic of its
Fourier series expansion contributes to , with ,

the frequency of the “1010” sequence, and
the bit rate. Hence, from (10), we get

(11)

where is the frequency response of the walk-off filter,
the phase of , and

for long fibers with [22], [23]. The maximum swing
angle for the probe SOP de-
creases for increasing walk-offs and increasing bit rates,
until the effect of attenuation becomes dominant. In other
words, a larger walk-off length increases
the amount of depolarization on the probe signal, as expected ac-
cording to the discussion about Fig. 1. To evaluate the time-av-
erages in (9), we expand and in Fourier
series as

(12)
where is the Bessel function of the first kind of order.
By averaging over a time much longer than, one gets [25]

(13)

If the supporting pulses of the pump are not NRZ, (13) can be
easily generalized by inserting the first Fourier coefficientof
the considered pulse shape in the argument of the Bessel func-
tion , although the carousel model is slightly less accurate in
such case, as already noted. Propagation onperfectly com-
pensated spans has been accounted for by multiplying by

. Moreover, if the extinction ratio of the considered system

is not zero, a corrective factor that multiplies the pivot
modulus must be introduced in the argument of. Now
using (13) in (9) gives

(14)

where the dependence of the DOP on the relative pump-probe
polarization angle is implicit in and . From (14) and
(13) we can conclude that, if polarization control of the signals
( or cannot be achieved, e.g., due to
PMD, the basic countermeasure against DOP degradation is to
increase the bit walk-off by further spacing the channels or by
using a more dispersive fiber, so as to reduce the argument of the
Bessel function. Clearly, also increasing the bit rateimplies a
reduction of XPM-induced DOP degradation.

B. RBS-Modulated Pump

An empirical DOP formula for the RBS case was derived in
[25], based on an extension of (13). Here instead, we provide
an exact DOP formula. The appendix details a method for the
evaluation of the CF ofanylinear filtering of a pulse-amplitude-
modulated signal. In our case the output is given in (10)
and the PAM symbols are binary, with . The
convolution in (20) can be made explicit
with our exponential finite memory walk-off filter in (7)
when the supporting pulse is zero-mean NRZ. Assuming

, i.e., large walk-off per span, one gets

if

if

if

(15)

so that the CF in (20) becomes here

(16)
where all terms with disappear in the infinite product by
the causality of . With the change of variable ,
and posing , this simplifies to

(17)

where is the effective fiber length. The
infinite product can be safely truncated to . Since

in (17) is real, it coincides with , and thus
. Hence again the DOP formula is given by

(14). A useful and tight lower bound is found by setting
in the integrand in (17)

(18)
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Fig. 3. DOP curves versus� obtained with BPM numerical simulations
(dashed line with crosses) and analytical DOP (14) (solid line) for two
independent RBS modulated channels with NRZ pulses, propagating on a
3 � 100-km link of TeraLight fiber, with�P = 3 dBm, in the two cases
PR = 9.3 dB andPR = 11.8 dB. Grey lines: periodic 1010. . . pump; black
lines: RBS-modulated pump.

from which it is clear that very similar considerations about the
effect of system parameters as in (13) apply.

In order to validate such formulas, in Fig. 3, we compared
the analytical DOP curves obtained by (14) (solid line) to those
evaluated with the Manakov equation through the BPM (dashed
line with crosses) whenbothchannels are modulated with NRZ
supporting pulses at 10 Gb/s, with no power on zeros .
The system consisted of three perfectly compensated links of
TeraLight fiber ( 0.2 dB/km, 1.68W/km, and 8
ps/nm/km) of 100 km each, with spacing 0.8 nm.
DOP is plotted versus the anglebetween input SOPs, for an
average probe power dBm and two different values of
power ratio 9.3 dB and 11.8 dB. The grey curves
refer to the periodically modulated pump, while the black curves
refer to the RBS case. In the BPM simulations, the local distor-
tion due to GVD was included ( in (1)). In the RBS
pump case, we observe an excellent agreement between theory
and simulation. The small discrepancies around the values of
minimum DOP can be attributed mostly to the assumption of a
-independent pivot of the carousel model (there was a walk-off

of 6.4 b over the entire link) and in minor part to
the fact that also the probe is modulated. In the periodic pump
case, (14) gives a less accurate approximation of the simulated
curves. We verified that this is due to the GVD distorting ef-
fect on the pump bits, which were neglected in our calculations.
In the anomalous propagation in our system, the interaction of
GVD and nonlinearity in fact compresses the NRZ pump pulses,
so that in (13) the first Fourier harmonic of the pump should
be actually given by a coefficient lower than . For this
reason, the analytical results overestimate the actual probe de-
polarization.

In all curves, we note that depolarization is not present when
the input Stokes’ vectors are either aligned or counteraligned,
as expected, while DOP is minimum when they are roughly or-
thogonal, since this implies a maximum velocity on the circular

Fig. 4. Analytical worst case DOP versus bit rateR for the same system
considered in Fig. 3, with RBS pump andPR = 11.8 dB.

trajectory, which is easily seen to be proportional to .
We note a very low DOP minimum of about 20% caused by
XPM at the large average pump power of 14.8 dBm (RBS pump
case), while we remark that depolarization due to PMD alone
never decreases the DOP below 50% for NRZ unchirped pulses,
since the CW component cannot be depolarized by PMD [10].
Note also that (14), although valid in the pump-probe case, also
applies to the worst case of an-channel WDM system in
which all channels have the same average power, the inter-
fering channels are copolarized, and their vector sum has a rela-
tive polarization angle with respect to the probe. In such case,
the number of channels depends on the power ratio as

.
Fig. 4 shows the worst-case DOP at versus bit

rate , calculated with the analytical formula (14) for an RBS
modulated pump with NRZ pulses, for the previously described
three-span system, both for a channel spacing 0.8 nm
(solid line) and for 0.4 nm (dot-dashed line). In the
case 0.4, a minimum DOP value is visible around

13.5 Gb/s. A rough analytical approximation of such
minimum-DOP value of can be obtained from (18) as

. Note that at 40 Gb/s, where the PMD
distorting effects become stronger, the XPM depolarizing ef-
fects on the TeraLight produce a DOP of 70% at 0.8 nm,
while a much lower at 0.4 nm.

To conclude this section, we show by simulation the effect on
DOP of two factors that were neglected in the analysis, namely
polarization-dependent loss (PDL) and PMD.

Fig. 5(a) shows the DOP for the same system used to derive
Fig. 3, with a pump-probe ratio 11.8 dB, but here signals
had an extinction ratio of 10 dB , and a polarizer
with a PDL of either 1 or 2 dB and a diattenuation axis aligned
either with or with was inserted before the receiver. First
focus on the solid line curve (no PDL). We note a higher value
of the DOP minimum as compared with Fig. 3, due to a finite
extinction ratio. Next, we note that PDL markedly breaks the
symmetry of the DOP curves and shifts the minimum away from

.
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Fig. 5. DOP curves versus� obtained by BPM simulation for the same system studied in Fig. 3 in the case of RBS-modulated channels withPR = 11.8 dB,
and with an extinction ratior = �10 dB. (a) With a polarizer at the receiver and no PMD; grey dashed line:PDL = 1 dB; black dashed line:PDL = 2 dB;
solid line: without PDL. (b) Without PDL but with PMD; diamonds:DGD = 16 ps; circles:DGD = 41 ps; solid line: without PMD.

Fig. 6. Experimental setup for measurements of output probe DOP. Inset: Dispersion map.

Fig. 5(b) shows the same 3 100-km system of Fig. 5(a)
without PDL and for two different fiber realizations, the first
with a total differential group delay (DGD) of 16 ps (diamonds),
and the second of 41 ps (circles). Such curves were obtained
by BPM simulation of the Manakov-PMD equation [18], and
took about a day of simulation time. We note that PMD further
enhances the XPM-induced depolarization, the worst reduction
occurring for the largest rotation speed case 0 , and the
smallest for the lowest total DOP case 180 , as already
noted in [11].

IV. EXPERIMENTS

In this section, we first give some experimental results on
DOP measurement that validate the new analytical formula (14).
Then we show how the interaction of PMD and XPM in a two-
channel system can degrade the performance of a first-order
PMD compensator whose feedback signal is represented by the
output probe DOP [8].

A. Experimental Measurements of DOP

We performed DOP measurements on the dispersion-man-
aged 3 100-km link depicted in Fig. 6. The dispersion map is
shown in the inset. We used TeraLight as the transmission fiber
whose total measured DGD on the link is below 2 ps, so that
PMD can be safely neglected. Pump and probe are spaced by

0.8 nm and are NRZ modulated at 10 Gb/s by indepen-
dent pseudo-RBS. We performed five sets of 500 mea-
surements of both the total input DOP and the output DOP, after
filtering the probe channel, randomly changing the polarization
controller (PC) each time. Fig. 7 reports the measured probe

DOP (dots) versus along with BPM simulation results (trian-
gles), and the theoretical DOP curves obtained by (14) (solid
line). The average probe power is fixed at 3 dBm, while the
power ratio is varied for each set of measurements, being

6.3, 9.3, 11.8 dB in Fig. 7(a), (b), (c) respectively. The
relative polarization angle can be easily calculated from the
total measured input DOP and the power ratio by applying
the analytical relationship

. The shape of the trans-
mitted pump in the experiments can be reasonably repro-
duced in the analysis by a raised cosine in power, with roll-off
parameter and with an extinction ratio around10
dB. In such case, the analytical DOP (14) has been calculated
by using (16) with the correct pulse shape and by multiplying

by a factor .
We use different DOP scales to highlight the cases in which

the pump power is smaller. The spread in the measurement
points is mainly due to the amplifiers noise, which is the main
source of depolarization when XPM is negligible. Such effect
is not taken into account in theory and simulations. Some PDL,
estimated in 0.5 dB, was also present in the experiment, which
justifies the slight asymmetry of the average measured DOP
curve [recall Fig. 5(a)]. For increasing , when significant
XPM effects act on the propagating signals, a reasonable
match among experimental, analytical and numerical results
are shown. Notice that all plots in Fig. 7(a)–(c) have the same
V-shape, and their minimum is found around 90, as expected.
For each considered value, the WDM system may be
interpreted as a probe signal propagating with four, eight,
or sixteen interfering channels, respectively, for 6.3,
9.3, and 11.8 dBm, where all channels have the same average
power of 3 dBm and all the interfering channels’ input SOPs
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(a)

(b)

(c)

Fig. 7. Output probe DOP after three spans versus relative polarization
angle�, for several pump-probe power ratiosPR: measurements (dots), BPM
simulations (triangles), analysis as per (14) (solid line).

are aligned as a worst case for probe DOP. Finally, in Fig. 8,
BER measurements obtained for the same case of Fig. 7(c) are
reported. Without giving details on the receiver, the purpose of
this figure is to show that, asincreases from 0to 180 , BER
improves. The reason is that the dominant system impairment
is here the scalar XPM-to-intensity-modulation (XPM-IM)
conversion operated by GVD [14], which is maximum for
aligned Stokes’ vectors, and minimum for counteraligned
vectors. Such two extreme cases can be regarded as scalar
propagation cases of the Manakov equation, whose behavior

Fig. 8. Experimentally measured BER in the same case of Fig. 7(c).

can be quickly inferred from (1), where the XPM contribution
in the first equation is proportional to :
we clearly see that the second term is proportional to the first
when the channels are copolarized (maximum XPM), while it
disappears when they are orthogonal (i.e., ), giving
a minimum XPM. Note that a large PDL at the receiver could
change the previous conclusions, as discussed in [26].

Therefore, if input polarization control is feasible, one should
always choose 180 for best performance, although the
presence of PMD reduces the input orthogonality and increases
the XPM-IM [11].

B. PMD Compensator Performance in Presence of XPM and
High-Order PMD

In this section, we quantify the performance degradation in-
duced by XPM on a system that uses a first-order PMD compen-
sator based on the DOP as a feedback signal [2]. Several other
papers already reported the degradation in compensated systems
that use different feedback signals [5], [9].

We consider the same WDM system described in the previous
section, in which a high-order PMD emulator and a single-stage
DOP-based PMD compensator were introduced, as shown in
Fig. 9. In order to reproduce the actual interaction between high-
order PMD and XPM, a distributed multisection emulator was
employed, where each section consisted of a polarization con-
troller and a PMF. One section, that introduces only first-order
PMD, was inserted before the first span of TeraLight, then three
sections were added at each interstage, before the chromatic
dispersion compensating fiber (DCF). In this way, a condition
of mixing of the PMD effects with respect to the fiber nonlin-
earity was achieved according to a sort of experimentally imple-
mented BPM. In the linear regime, PMD depolarizes the output
signal and its SOP changes during propagation. Consequently,
the polarization angle between two copropagating channels
is randomly perturbed by PMD during propagation. The em-
ulator introduced an average total differential group delay of
30 ps. The PMD compensator was a single-stage compensator
in which a polarization controller and a PMF were used, and a
feedback loop was applied to maximize the DOP of the output
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(a)

(b)

Fig. 9. Experimental setup as in Fig. 6, with insertion of a distributed PMD emulator and a first-order PMD compensator.

Fig. 10. CCDF of randomQ-factor penaltyX , with (dashed line) and without (solid line) PMD mitigation, with average DGD 30 ps, (a) in the linear regime and
(b) in the nonlinear regime with� = 180 , (c) in the nonlinear regime with� = 0 , and (d) with random�.

probe [2]. The fixed DGD introduced by the compensator PMF
was set at the value of 53.1 ps, which is optimum in the absence
of XPM [2].

The system performance is given in Fig. 10 in terms
of the complementary cumulative distribution function
(CCDF) of the random -factor penalty , defined as

dB . The -factor penalty was
measured at a constant received optical signal-to-noise ratio

24 dB (over 0.1 nm), with respect to the linear
transmission where neither PMD nor nonlinear effects were
present. The power at the preamplifier was set so as to obtain

in the linear case. Fig. 10 shows the measured
CCDF both in a compensated (dashed line) and in a non-
compensated (solid line) system, both in the linear regime
[Fig. 10(a)] and in the nonlinear regime where different values
of have been considered, namely 180 [Fig. 10(b)],

0 [Fig. 10(c)], and a random [Fig. 10(d)]. In the latter
case, the relative polarization angle was randomized over the
Poincaré sphere using the PC in the probe transmitter arm.
Cross- and copolarized input channels were obtained due to
a polarization beam splitter and a polarization beam coupler,
respectively. In each considered situation, more than 1000
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PMD conditions were drawn, so that the CCDF was accurately
evaluated down to . For the random case, for each PMD
realization a different value of was drawn.

In the whole experiment, the power of the probe channel,
equal to 3 dBm, was kept constant so that the interplay among
PMD and the nonlinear effects of SPM was negligible. The
power of the pump channel was 3 dBm in the linear regime
[Fig. 10(a)], while it was switched to 12 dBm in the nonlinear
regime [Fig. 10(b)–(d)]. OSNR of the probe channel before fil-
tering was kept constant in all cases to 24 dB/0.1 nm.

Note that a -factor penalty of 0.5 dB with only XPM was
measured for the best relative polarization angle 180 , and
of 0.8 dB in the worst case 0 , which justifies the fact that
the CCDFs reach value 1 for such low penalty values. Com-
paring Fig. 10(b) or (c) with Fig. 10(a) in the noncompensated
case, it can be observed that PMD-induced penalty, at a CCDF of

cannot be simply added to the XPM one. Moreover, a com-
parison among Fig. 10(b)–(d) for the noncompensated system
shows that the -factor penalty is more relevant when nonlinear
coupling is most efficient 0 , even if PMD mixes the rel-
ative angle among the propagating channels. A random choice
of is very close to the worst case.

Now making a comparison among the performance of the
noncompensated and compensated system shown in Fig. 10, a
reduction of PMD compensation efficiency in presence of XPM
effects is observed. In the linear case, the difference between the

-factor penalty with and without PMD, respectively, is 2 dB
for a . In the cases 0 and 180 such
gain reduces to 1 dB and 1.2 dB, respectively. Whenis ran-
domized, the reduction of PMD compensator efficiency (down
to 0.7 dB of gain with respect to the noncompensated system) is
the most striking because a larger XPM-induced depolarization
is more likely to occur, as expected.

A simplified but convincing explanation of the cooperation of
PMD and XPM in the performance degradation of PMD com-
pensated systems has been provided in [9] in terms of XPM-in-
duced PMD-mediated intensity noise on the received probe, al-
though we believe that a more complete system model that cap-
tures the fine details of such interaction is yet to be found.

V. CONCLUSION

A carousel model that allows prediction of the XPM-in-
duced depolarization in a two-channel WDM system has been
proposed. The model postulates that the Stokes’ vectors of the
probe and the pump perform a rotation around a fixed pivot
by a bit-pattern-dependent angle that increases with the total
launched power. According to the model, the worst case DOP
degradation is induced by long sequences of “1” pump bits,
while large walk-offs are found to reduce the XPM-induced
depolarization. The carousel model leads to a new DOP for-
mula based on a simple walk-off linear filtering of the pump
channel, which is in good agreement with both simulations
and experimental results at 10 Gb/s. Compared with the long
computational time of BPM simulations, such a new formula
yields a fast DOP evaluation tool, which is accurate when PMD
and PDL are small. The carousel model helps identify the key
physical factors that determine the XPM-induced performance

degradation in OPMDC based on DOP feedback control.
Finally, the performance of a first-order OPMDC in a 10-Gb/s
pump-probe 3 100-km system has been experimentally
evaluated, and the expected reduced efficiency in PMD com-
pensation caused by XPM has been statistically quantified. It is
verified that PMD and XPM cooperate to degrade performance.
Countermeasures to reduce such degradation rely on increasing
the channels’ relative walk-off, as well as controlling the input
SOPs so as to minimize the total DOP of the input WDM comb.

APPENDIX

In this appendix, we derive a closed-form expression of the
characteristic function of any linear filtering of a pulse ampli-
tude modulated (PAM) signal with independent symbols.

Let be a stationary
PAM random process, with an RV uniform over [0, ],
and independent and identically distributed (IID) random
symbols (independent of ), feeding a linear, time-invariant
filter with impulse response . The output of such filter is

, where .
The CF of the RV is found, for any real , as [24]

where the external expectation is performed with respect to the
RV . Since the symbols are IID, then

where is the common CF of the RV’s . Recalling that
is uniform, we have

(19)

which is the sought closed-form CF. We note that since the input
process is stationary and the filter time-invariant, also the output
process is stationary, so that anyvalue in (19) will do, for
instance . The function can be effi-
ciently evaluated with a fast-Fourier routine, while the external
averaging can be easily evaluated by taking the average of the
integrand for a finite number of values, uniformly sampling
the interval [0, ].

In the special caseof binary, equally likely symbols
, one gets

and thus

(20)



BONONI et al.: DEGREE OF POLARIZATION DEGRADATION DUE TO XPM 1913

REFERENCES

[1] D. Wang and C. R. Menyuk, “Polarization evolution due to the Kerr
nonlinearity and chromatic dispersion,”J. Lightwave Technol., vol. 17,
pp. 2520–2529, Dec. 1999.

[2] F. Roy, C. Francia, F. Bruyère, and D. Penninckx, “A simple dynamic
polarization mode dispersion compensator,” inProc. OFC 1999, San
Diego, CA, Feb. 1999, Paper TuS4, pp. 275–278.

[3] F. Heismann, D. Fishmann, and D. Wilson, “Automatic compensation
of first order polarization mode dispersion compensator,” inProc.
ECOC’98, Madrid, Spain, Sept. 1998, pp. 529–530.

[4] R. Noé, D. Sandel, M. Y. Dierolf, S. Honz, V. Mirvoda, A. Schöplin,
C. Glingener, E. Gottwald, C. Scheerer, G. Fisher, T. Weyerauch, and
W. Haase, “Polarization mode dispersion compensation at 10, 20 and 40
Gbit/s with various optical equalizers,”J. Lightwave Technol., vol. 17,
pp. 1602–1616, Sept. 1999.

[5] R. Khoshravani, Y. Xie, L.-S. Yan, Y. W. Song, A. E. Willner, and C. R.
Menyuk, “Limitations to first order PMD mitigation compensation in
WDM systems due to XPM-induced PSP changes,” inProc. OFC 2001,
Anaheim, CA, 2001, Paper WAA5.

[6] Z. Pan, Q. Yu, A. E. Willner, and Y. Arieli, “Fast XPM-induced polariza-
tion-state fluctuations in WDM systems and their mitigation,” inProc.
OFC 2002, Anaheim, CA, 2002, Paper ThA7, pp. 379–381.

[7] L. Möller, P. Westbrook, S. Chandrasekhar, R. Dutta, and S. Wielandy,
“Setup for demonstration of cross channel induced nonlinear PMD in
WDM system,”Electron. Lett., vol. 37, no. 5, pp. 306–307, Mar. 2001.

[8] E. Corbel, J.-P. Thiéry, S. Lanne, S. Bigo, A. Vannucci, and A. Bononi,
“Experimental statistical assessment of XPM impact on optical PMD
compensator efficiency,” inProc. OFC 2003, Atlanta, GA, Feb. 2003,
Paper ThJ2.

[9] J. H. Lee, K. J. Park, C. H. Kim, and Y. C. Chung, “Effects of nonlinear
crosstalk in optical PMD compensation,”IEEE Photon. Technol. Lett.,
vol. 14, pp. 1082–1084, Aug. 2002.

[10] N. Kikuchi, “Analysis of signal degree of polarization degradation used
as control signal for optical polarization mode dispersion compensa-
tion,” J. Lightwave Technol., vol. 19, pp. 480–486, Apr. 2001.

[11] L. Möller, S. Chandrasekhar, and L. L. Buhl, “Dependence of nonlinear
depolarization on the overall polarization of PMD distorted WDM sig-
nals,” in Proc. ECOC ’01, Amsterdam, The Netherlands, Sept. 2001,
Paper TuA3.6, pp. 214–215.

[12] B. C. Collings and L. Boivin, “Nonlinear polarization evolution induced
by cross-phase modulation and its impact on transmission systems,”
IEEE Photon. Technol. Lett., vol. 12, pp. 1582–1584, Nov. 2000.

[13] A. Cartaxo, “Impact of modulation frequency on cross-phase modula-
tion effect intensity modulation-direct detection WDM systems,”IEEE
Photon. Technol. Lett., vol. 10, pp. 1268–1270, Sept. 1998.

[14] G. Bellotti, M. Varani, C. Francia, and A. Bononi, “Intensity distor-
tion induced by cross-phase modulation and chromatic dispersion in op-
tical-fiber transmissions with dispersion compensation,”IEEE Photon.
Technol. Lett., vol. 10, pp. 1745–1747, Dec. 1998.

[15] C. R. S. Fludger, V. Handerek, and R. J. Mears, “Pump to signal RIN
transfer in Raman fiber amplifiers,”J. Lightwave Technol., vol. 19, pp.
1140–1148, Aug. 2001.

[16] K.-P. Ho, “Statistical properties of stimulated Raman crosstalk in WDM
systems,”J. Lightwave Technol., vol. 18, pp. 915–921, July 2000.

[17] G. P. Agrawal,Nonlinear Fiber Optics. New York: Academic, 1989.

[18] D. Marcuse, C. R. Menyuk, and P. K. A. Wai, “Application of the Man-
akov-PMD equation to studies of signal propagation in optical fibers
with randomly varying birefringence,”J. Lightwave Technol., vol. 15,
pp. 1735–1745, Sept. 1997.

[19] S. Huard,Polarization de la lumière. Paris, France: Masson, 1994.
[20] J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode

dispersion in optical fibers,”Proc. Nat. Academy Sci., vol. 97, no. 9, pp.
4541–4550, Apr. 2000.

[21] N. J. Frigo, “A generalized geometrical representation of coupled mode
theory,” IEEE J. Quantum Electron., vol. QE-22, pp. 2131–2140, Nov.
1986.

[22] A. Bononi, C. Francia, and G. Bellotti, “Impulse response of cross-phase
modulation filters in multi-span transmission systems with dispersion
compensation,”Proc. Optical Fiber Technology 4, pp. 371–383, 1998.

[23] T.-K. Chiang, N. Kagi, M. E. Marhic, and L. G. Kazovsky, “Cross-phase
modulation in fiber links with multiple optical amplifiers and dispersion
compensators,”J. Lightwave Technol., vol. 14, pp. 249–259, Mar. 1996.

[24] A. Papoulis,Probability, Random Variables, and Stochastic Processes,
3rd ed. New York: McGraw-Hill, 1991.

[25] A. Vannucci, A. Bononi, A. Orlandini, E. Corbel, J.-P. Thiéry, S. Lanne,
and S. Bigo, “A simple formula for the degree of polarization degraded
by XPM and its experimental validation,” inProc. OFC 2003, Atlanta,
GA, Feb. 2003, Paper ThJ1.

[26] M. R. Philips and D. M. Ott, “Crosstalk due to optical fiber nonlinearities
in WDM CATV lightwave systems,”J. Lightwave Technol., vol. 17, pp.
1782–1792, Oct. 1999.

Alberto Bononi, photograph and biography not available at the time of
publication.

Armando Vannucci (S’95–M’01), photograph and biography not available at
the time of publication.

A. Orlandini (S’00–M’01), photograph and biography not available at the time
of publication.

E. Corbel, photograph and biography not available at the time of publication.

S. Lanne, photograph and biography not available at the time of publication.

S. Bigo (A’99–M’99), photograph and biography not available at the time of
publication.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


