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Statistics of the Jones matrix of fibers affected by
polarization mode dispersion
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We carry out a statistical characterization of Jones matrix eigenvalues and eigenmodes to gain deeper insight
into recently proposed fiber models based on Jones matrix spectral decomposition. A set of linear dynamic
equations for the Pauli coordinates of the Jones matrix is established. Using stochastic calculus, we determine
the joint distribution of the retardation angle of the eigenmodes and, indirectly, their autocorrelation function.
The correlation bandwidth of the eigenmodes is found to be

p
2�3 that of the polarization mode dispersion

vector. The results agree well with simulations performed with the standard retarded plate model. © 2001
Optical Society of America

OCIS code: 030.6600.
Optical fibers affected by polarization mode dispersion
(PMD) are traditionally described in terms of PMD
vector V�v�, whose statistics1 and autocorrelation
function2,3 are known. Recent work on higher-order
PMD4 employed a model of the f iber Jones matrix
that was based on its spectral decomposition, i.e.,
its eigenmodes and retardation angle, the statistical
properties of which, to our knowledge, have never been
investigated. Moreover, the same fiber model was
recently used for PMD compensation.5 Statistical
characterization of the fiber eigenvalues and eigen-
modes, as well as determination of their coherence
bandwidth, is then helpful for comprehension of
the evolution, in both frequency and length, of the
fiber-system matrix and is the focus of this Letter.
Dynamic equations for the fiber Pauli coordinates are
first established. Such equations are then studied by
use of the stochastic model of the local birefringence
vector that was adopted in the research reported in
Ref. 6.

A linear f iber of length z affected by PMD can be
regarded as a two-input two-output linear system
whose transfer matrix can, in the absence of polariza-
tion-dependent loss or gain, be written as the product
of a scalar function and a unitary matrix U�z, v� with
det�U � � 1. Matrix U can be written in the insightful
form of a matrix exponential that was used in Ref. 7:

U�z,v� � exp
Ω
2i

Df�z,v�
2

�b̂�z,v� Ø s �
æ

� u0�z,v�s0 2 iǔ�z,v� Ø s , (1)

where i is an imaginary unit, Ø stands for a scalar
product, s0 is the 2 3 2 identity matrix, s is a for-
mal vector whose components are the three Pauli spin
matrices,8 and we define u0�z, v� 3 cos�Df�z, v��2�
and ǔ�z, v� 3 sin�Df�z, v��2�b̂�z, v�, where the real,
unit-magnitude vectors 6b̂ are the Stokes represen-
tations of the orthogonal eigenvectors of U associated
with eigenvalues exp�7iDf�2�, where Df is the retar-
dation angle.
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Given the local birefringence Stokes vector W�z, v�,
we find that U 0 � �2i�2� �W Ø s �U , where the prime
indicates a derivative with respect to z. Hence the
Pauli coordinates �u0

0, 2iǔ0� of U 0 are derived from the
Pauli coordinates �u0, 2iǔ� of U :

≠

≠z
u0�z,v� � 2

1
2

ǔ�z,v� Ø W�z,v� ,

≠

≠z
ǔ�z,v� � 2

1
2

ǔ�z,v� 3 W�z,v�

1
1
2

u0�z,v�W �z,v� , (2)

where 3 stands for vector cross product. These are
the dynamic equations of the Pauli coordinates of U .

As in Ref. 6, for f ibers much longer than the correla-
tion length, we assume that W�z, v� � vsn�z�, where
n�z� is a standard three-dimensional white-noise
process. After translating Eqs. (2) into Ito form, we
rewrite them in their canonical differential form9 as
du � c�u�dz 1 v�u�dB�z�, where u 3 �u0, ǔT �T , dB�z�
is the differential of standard Brownian motion and
the arrays

c�u� 3 2
3v2s2

8

µ
u0

ǔ

∂
,

v�u� 3
vs

2

√
2ǔT

u0s0 2 �ǔ3�

!
, (3)

are the drift coefficient and the diffusion coeff icient,9

respectively. The canonical form is useful for applying
the powerful tools of stochastic calculus.

Since juj2 � 1, from the Fokker–Planck equation,9

we find that the real vector u�z, v� has, for every z, a
uniform first-order distribution on the unit sphere in
R4. Hence, the spherical coordinates of u are found
to be independent random variables with marginal
densities:

p�Df� �
1 2 cos�Df�

2p
, p�u� �

1
p

,

p�e� � cos�2e� , (4)
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where 0 # Df # 2p and the eigenmode b̂ �
�cos�2u�cos�2e�, sin�2u�cos�2e�, sin�2e��T has azimuth
2p�2 # u # p�2 and ellipticity 2p�4 # e # p�4.
Thus, at fixed z and v, b̂�z, v� is independent
of Df�z, v� and is uniformly distributed over
the Poincaré sphere, as stated in Ref. 10 without
proof. Moreover, the coordinates uk, k � 0, . . . , 3,
have identical marginal densities p�uk� � �2�p� 3p
1 2 uk

2�21 # uk # 1�, and one can see that
E�uk�z, v�� � 0, for every z . 0, which implies that
E�U� � 0.

By augmenting Eqs. (2) with the joint vector
�u�z, v1�, u�z, v2�� and applying the Martingale dif-
ferential equation (also known as Dynkin’s formula9),
we also f ind that the coordinates uk satisfy

E�uj �z,v1�uk�z,v2�� �
1
4

exp
µ
2
3s2Dv2z

8

∂
djk , (5)

where Dv � v2 2 v1 is the frequency deviation, djk is
the Kronecker delta function, and j , k [ �0, 1, 2, 3�.
In deriving this result, we used the facts that
u�z, v� is an asymptotically stationary stochastic
process with respect to frequency v and Eq. (5)
is the asymptotic value. Strict sense stationar-
ity does not hold, since in our model at v � 0
the birefringence vector is W�z, 0� � 0 for every z
along the fiber. From such a result we also get
the autocorrelation function (ACF) of U�v� as fol-
lows. The Pauli coordinates of Uy�v1�U �v2� are
�u0�v1�u0�v2� 1 ǔ�v1� Ø ǔ�v2�, 2i�u0�v1�ǔ�v2� 2
u0�v2�ǔ�v1� 2 ǔ�v1� 3 ǔ�v2���, where y is a transpose
conjugate. Using Eq. (5), one can see that only the
zeroth component has a nonzero mean, so we get

E�Uy�v1�U�v2�� � exp
µ
2
3s2Dv2z

8

∂
s0 , (6)

extending to the Jones matrix a result already known
for the Müller matrix.2,3

Since in Eqs. (2) optical frequency v always appears
multiplied by the standard deviation, s, all the dy-
namic properties of Pauli coordinates in the frequency
domain are expected to scale with s, as conf irmed by
Eq. (5). Such s is related to the mean-square mag-
nitude of the fiber differntial group delay (DGD) by
�Dt2	 � 3s2z. We can thus express the ACF of u, us-
ing the mean-square DGD, as

Ru�v1, v2� 3 E�uy�z, v1�u�z, v2��

� exp
µ
2

�Dt2	Dv2

8

∂
. (7)

Finally, from Eqs. (3) and the theory of Brownian
motion on spheres,9 we are able to prove that the real
vector u�z, v� describes in z a Brownian motion on the
unit sphere in R4; the motion evolves at different rates
for different values of optical frequency v.

For the frequency derivative Uv of the Jones ma-
trix, we find that Uv � �2i�2� �V Ø s�U. Thus, the
same system of equations (2) holds if u0 is replaced
with uv and W with V, which shows that, given u, uv

is a linear combination of the components of V. Us-
ing Eqs. (2) and Poole’s dynamic equation for the PMD
vector, V, from the Fokker–Planck equation applied
to the joint vector �u, V� we find that u and V are in-
dependent random vectors for a given value of �z, v�.
Hence from Ref. 1 we conclude that, given u, uv is a
Gaussian vector lying on the hyperplane orthogonal to
u, whereas for the marginal distribution of uv we have
a Maxwellian magnitude and a uniform orientation
in R4.

We simulated a set of 10,000 fibers to compare
numerical results with theory. The simulations
employed the standard retarded plate model, with
each fiber realization consisting of N � 100 polariza-
tion-maintaining f iber plates. The plate’s eigenmodes
were linearly polarized, with uniform distribution
on the Poincaré sphere equator. The retardation
angle of each nth plate was Dfn�v� � Dfn0 1 Dfn1v,
with a random Dfn0, uniform on �0, 2p�, and a fixed
local DGD, Dfn1 � dt, chosen to give a rms DGDp

�Dt2	 �
p
N dt. In the simulations the number of

plates must be large enough to avoid the frequency
peridiocity of U �z, v� related to the fixed local
DGD dt.

In Fig. 1 the theoretical probability density func-
tions (4) of the retardation angle, the eigenmode az-
imuth, and the ellipticity are plotted and compared
with simulation results, which represent averages over
the fiber realizations at the reference frequency v � 0,
and good agreement is found.

The ACF of vector u is plotted in Fig. 2 versus the
normalized frequency difference Dv

p
�Dt2	,11 along

with that of the individual components uk. Here

Fig. 1. Probability density of (top) retardation angle Df,
(middle) eigenmode azimuth u, (bottom) eigenmode ellip-
ticity e. Dashed curves and line, theory [Eq. (4)]; circles,
simulations.
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Fig. 2. top, ACF of (circles) vector u and other shapes its
components, uk; bottom, ACF of (asterisks) the eigenmode
vector b̂ and (open circles) function Rc 1 RsRb̂. Dashed
curves, theory.

again we note the good match of the simulations with
theoretically predicted Gaussian functions (5) and
(7). Comparison with the results in Refs. 2 and 3
shows that the correlation bandwidth of vector u�v� isp
2�3
 0.8 times that of the PMD vector V�v�. Note

that the ACF gives an indication of how quickly on
average these vectors move in frequency with respect
to their central frequency value but does not give
information on the shape of the trajectories that the
vectors are likely to follow.

Information on the ACF of retardation angle Df and
eigenmode b̂ is buried in the ACF of u, and we did not
find a way to extract it analytically. However, as was
pointed out in Ref. 11, simulation with enough samples
is in practice as good as theory determining ACF
functions.
In Fig. 2 we again plot the theoretical ACF,

Ru�v1,v2� 3 E�cos�Df�z,v1��2�cos�Df�z,v2��2�

1 sin�Df�z,v1��2�sin�Df�z,v2��2�

3 b̂�z,v1� Ø b̂�z,v2�� ,

and function Rc�v1, v2� 1 Rs�v1, v2� Rb̂�v1, v2�,
where the three terms are the simulated ACFs of
cos�Df�z, v��2�, sin�Df�z, v��2�, and b̂�z, v�. In
Fig. 2 we also show the simulated ACF Rb̂ alone.
From the figure we conclude that (i) Rb̂�v1, v2� 

Ru�v1, v2�. Hence, the correlation bandwidth of
eigenmode b̂ is

p
2�3 that of the PMD vector V. Also,

(ii) b̂�z, v1� and sin�Df�z, v2��2� are independent for
v1 � v2 and practically uncorrelated for any other
choice of v1, v2.

We stress again that simulation and theory are in
reasonable agreement, notwithstanding the remark-
able differences between the retarded plate model used
for the simulations and the theoretical model, in which
the local birefringence direction has a uniform distri-
bution on the Poincaré sphere, the local birefringence
strength has a Maxwellian distribution, and there is
no retardation at the reference frequency.

A. Bononi’s e-mail address is alberto@tlc.unipr.it.
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