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Abstract: By assuming the nonlinear noise as a signal-independent
circular Gaussian noise, a typical case in non-dispersion managed links
with coherent multilevel modulation formats, we provide several analytical
properties of a new quality parameter – playing the role of the signal to
noise ratio (SNR) at the sampling gate in the coherent receiver – which
carry over to the Q-factor versus power (or “bell”) curves. We show that
the maximum Q is reached at an optimal power, the nonlinear threshold, at
which the amplified spontaneous emission (ASE) noise power is twice the
nonlinear noise power, and the SNR penalty with respect to linear propa-
gation is 10Log( 3

2 ) � 1.76 dB, although the Q-penalty is somewhat larger
and increases at lower Q-factors, as we verify for the polarization-division
multiplexing quadrature phase shift keying (PDM-QPSK) format. As we
vary the ASE power, the maxima of the SNR vs. power curves are shown
to slide along a straight-line with slope �-2 dB/dB. A similar behavior is
followed by the Q-factor maxima, although for PDM-QPSK the local slope
is around -2.7 dB/dB for Q-values of practical interest.
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1. Introduction

It has recently been shown that, in non-dispersion managed (NDM) systems with coherent re-
ception of multilevel signal formats, both with single polarization and with polarization division
multiplexing (PDM), both for single channel and for multichannel propagation, the nonlinear
noise [1] at the sampling gate can indeed be treated as a signal-independent noise with circular
Gaussian statistics [2–4]. While such a Gaussian approximation had already been proposed for
other dispersion-managed systems but with limited accuracy [5], or to simplify analysis in the
study of nonlinear channel capacity [6,7], the novelty is that in NDM the Gaussian approxima-
tion becomes excellent [2, 3].

In this paper, we introduce a new quality parameter S, which plays the role of the signal
to noise ratio (SNR) at the sampling gate and completely characterizes the performance of
coherent optical transmissions in links where nonlinear noise has a Gaussian distribution. The
new quality parameter has a one-to-one relationship with the Q-factor (Q), whose graph versus
transmitted power (the bell curve) is commonly used in laboratory performance characterization
of long-haul optical transmission systems.

Assuming that the Gaussian nonlinear noise power scales as the cube of the signal power, we
analytically derive the main properties of the quality parameter, namely:

i) its asymptotic low- and high-power behavior: we prove that S vs. power increases with
a slope of �1 dB/dB in the low-power region of operation, and a slope of �-2 dB/dB in the
high-power region;

ii) we find an expression of the power that maximizes S, and thus Q, the so-called nonlinear
threshold (NLT), as well as the S value at NLT. We prove that at NLT the nonlinear noise
power is half the linear noise power, and that the SNR penalty with respect to the linear case is
10Log(3/2)�1.76 dB. Such a value of 1.76 dB has indeed been observed from simulations [4].

iii) we prove that, as the power of amplified spontaneous emission (ASE) noise is varied,
the maxima of the S-vs-power curve move along a straight line of slope �-2 dB/dB shifted by
5Log(3)� 2.38 dB towards lower powers with respect to the high-power asymptote.

Similar laws are then shown to extend to the Q-factor. While this paper was under review, we
became aware of very similar work presented by Bosco et al. [8], who however did not explore
the nonlinear relationship between the S parameter and the Q-factor.

2. Signal detection model

The amplified spontaneous emission (ASE) noise field added by each optical amplifier is a
zero-mean circular complex Gaussian noise process. Suppose the total received ASE field re-
mains Gaussian after nonlinear propagation, i.e., suppose we can neglect nonlinear signal-noise
interactions leading to nonlinear phase noise, as typical of NDM links [9,10]. Also assume that
the sampled nonlinear noise field that adds to the signal is circular Gaussian distributed, and
independent of the signal sample. We assume here a PDM multilevel modulation format. Af-
ter coherent reception with ideal polarization demultiplexing and linear electrical equalization,
followed by matched filtering with ideal carrier estimation, the received field sample at the
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decision gate can be expressed as [11]:

r = s
√

P+nL +nNL

where:
i) r = [rxr,rxi,ryr,ryi] is the 4-dimensional (4-D) real received field vector, taking value rxr +

jrxi on the X polarization, and ryr + jryi in the Y polarization;
ii) P [W] is the per-channel signal average power;
iii) s = [s1,s2,s3,s4] is the dimensionless signal symbol, taking values in a 4-D constella-

tion having 2K allowed symbols, where K is the number of bits per symbol. The symbols si

are normalized to unit power: E[||s||2] = 1
2K ∑2K

i=1 ∑4
n=1 s2

i,n = 1, where E[.] denotes statistical
expectation;

iv) nL is the 4-D ASE noise vector, independent of the signal, having independent, identically
distributed zero-mean Gaussian components, each with variance σ2, so that the total linear
noise power is NA =Var[nL] = 4σ2[W];

v) nNL is the 4-D vector of nonlinear noise samples coming both from single-channel and
cross-channel nonlinearities. We assume it is a zero-mean Gaussian vector, independent of
the signal sample, with components of identical variance [2]. From a first-order perturbation
expansion of the χ3 nonlinear Kerr distortion, we approximate the nonlinear noise power as

NNL =Var[nNL] = aNLP3 [W] (1)

where aNL¿0 [W−2] is a power-independent coefficient. A dependence of the nonlinear noise
power on P3 was indeed observed in [2].

In such an additive Gaussian noise channel, we shall extend the conventional electrical signal
to noise ratio (SNR) at the decision gate by including both linear noise and nonlinear noise, and
propose the following new quality parameter:

S =
P

NA +aNLP3 . (2)

In a channel with additive Gaussian noise, the bit error rate (BER) is a known monotonically
decreasing function of the SNR that depends on the specific modulation format [11]. Hence
optimization of BER is equivalent to optimization of the SNR S. In the next section we derive
the main analytical properties of the S parameter.

3. Analytical properties of the new quality parameter

We now wish to derive the properties of S versus P at a fixed transmission distance, which are
summarized in Fig. 1.

From Eq. (2) we first notice that there are two asymptotic regimes. At low power, when NA �
aNLP3, the asymptotic behavior is S ∼= P

NA
� SL which is the linear SNR. At large powers when

NA � aNLP3, the asymptotic behavior is SR
∼= P

aNLP3 . The break-point power discriminating

these two regimes is PB =
(

NA
aNL

) 1
3
. At break-point, ASE power equals nonlinear noise power.

The left and right asymptotes in dB become:

SL,dB � PdB −NA,dB if P � PB (3)

SR,dB �−2PdB −aNL,dB if P � PB (4)

i.e., the left asymptote has slope 1 dB/dB, while the right asymptote has slope −2 dB/dB.
Figure 1 shows a sketch of the new quality parameter versus P for two values of ASE power
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Fig. 1. New quality parameter S versus power P, for two values of ASE power NA differing
by 3 dB (solid lines). Dashed lines indicate the left and right asymptotes [Eqs. (3), (4)].
Breakpoints are marked with squares. Maxima are marked with circles, and their vertical
and horizontal distance from the linear left asymptote is 1.76 dB. As NA is changed, the
maxima slide along the shown dash-dotted line with slope -2 dB/dB.

NA, where the two asymptotes are indicated with dashed lines that meet at the breakpoint,
marked with a square.

By factoring out NA in the denominator, Eq. (2) can be rearranged as

S =
SL

1+ aNLP3

NA

(5)

and therefore the SNR penalty in linear units is

SP = 1+
aNLP3

NA
(6)

which, in dB units, expresses the (vertical/horizontal) distance of the solid S curves in Fig. 1
from the dashed linear asymptote SL.

We next prove several interesting facts about the “bell” curve S versus P, which hold for any
link impaired by Gaussian-distributed nonlinear noise.

Fact 1: power at maximum S

It is customary to define the nonlinear threshold (NLT) as the power PNLT that maximizes the

bell curve. Such a power is found when dS
dP = 0. Since dS

dP = (NA+aNLP3)−P·3aNLP2

(NA+aNLP3)2 , it is seen that
the numerator vanishes when

NA = 2(aNLP3) (7)
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Fig. 2. Q-factor versus SNR for a 28 Gbaud PDM-QPSK signal and DSP-based coherent
receiver. Symbols: Monte-Carlo simulations. Solid line: parablic fit Eq. (11).

i.e., at optimal power ASE noise variance is twice the nonlinear noise variance. The NLT power
is

PNLT =

(
NA

2aNL

) 1
3

(8)

i.e., NLT is 10Log21/3 � 1 dB below the break-point. The maximum S value is reached at NLT:

SNLT =
PNLT
3
2 NA

=

(
33aNL(

NA

2
)2
)− 1

3

. (9)

Since at NLT ASE is twice the nonlinear noise, then from Eq. (6) SPNLT = 1+ 1
2 = 3

2 , i.e.,
10Log( 3

2 ) � 1.76 dB, and this is true for all kinds of links in which the nonlinear noise is
Gaussian and scales with P3.

Fact 2: locus of maxima when varying NA

For any link, from Eq. (8) we see that at each doubling of ASE power NA, the NLT PNLT

increases by 1dB, and from Eq. (9) the maximum value SNLT decreases by 2 dB. This is exem-
plified in Fig. 1. Another interesting property shown in Fig. 1 is that the maxima, as we vary
NA, slide along a straight-line (dash-dotted magenta line) parallel to the right asymptote, shifted

to lower powers by 10Log(3)
2 � 2.38 dB. The proof is simple: since at NLT NA = 2aNLP3

NLT ,
then from Eq. (2) we get SNLT = PNLT

3aNLP3
NLT

, which is the right asymptote SR lowered vertically

by 10Log(3)�4.7 dB, i.e., horizontally by 4.7
2 dB since the slope of SR is -2 dB/dB.

4. Simulation checks

For historical reasons, it is customary in optical communications to express the BER in terms of
the so-called Q-factor Q as: BER = 1

2 erfc( Q√
2
), where erfc is the complementary error function,

and Q2 plays the role of the electrical SNR in a fictitious equivalent OOK transmission. For
instance, BER=10−3 corresponds to Q2 = 9.8 dB. The Q-factor can conversely be obtained
from BER measurements using the inverse relationship, namely

Q =
√

2erfc−1(2BER(S)) (10)
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Fig. 3. Q2 (left) and SNR S (right) vs. channel power P for an SMF NDM 12x100 km
link and 7 channels with 112Gb/s PDM-QPSK modulation on a 50 GHz grid, for NA =
[−10,−9.2,−8.4] dBm. Symbols: simulations. Solid lines: Analytical best fit. Left and
right asymptotes and locus of maxima are also shown for reference.

and is itself a function of the SNR S. Since the total noise is supposed to be Gaussian both
in back to back and after nonlinear propagation, it is simplest to calculate once and for all
the above function from back to back measurements. Figure 2 shows Q2 [dB] versus optical
SNR (OSNR) [dB/0.1 nm] obtained from back to back Monte-Carlo simulations (symbols)
for a 112Gb/s PDM quadrature phase shift keying (PDM-QPSK) format and a digital signal
processing (DSP) coherent receiver with two-sided electrical bandwidth BRX =33 GHz. In the
DSP we assumed perfect polarization demultiplexing (i.e., did not implement the constant-
modulus algorithm usually present in experimental receivers [12]), and we used 7 taps in the
Viterbi and Viterbi phase estimator. We neglected laser phase noise and frequency offset. We
assumed differential encoding/decoding of the phase. The solid line in Fig. 2 corresponds to a
least-mean-square (LMS) parabolic fit over the shown range:

Q2
dB =−A ·OSNR2

dB +B ·OSNRdB −C (11)

with A = 0.0359, B = 2.232, and C = 15.105. In back to back, OSNR is related to S in Eq. (2)
as: OSNRdB = SdB − b, where b � 10log10(

BRX
Δν ) and Δν � 12.5 GHz is the conventional 0.1

nm optical spectrum analyzer C-band measurement bandwidth. Note that all the dependence on
bitrate comes through the bandwidth factor b. From the figure, we understand that the Q-factor
is a warped version of S, with a slope that is larger than 1 dB/dB at small S, and converges to 1
dB/dB at larger S.

At NLT we have dQ
dP = dQ

dS
dS
dP = 0, i.e., the maximum Q-factor is also reached at NLT. Maxi-

mization of the Q-factor can therefore be performed by maximizing the quality parameter S.
To verify this statement, and validate the theory on the parameter S here presented, we per-

formed numerical simulations of nonlinear system performance using the split step Fourier
method, with power-adaptive step size of 1/1000 the nonlinear length. We considered the trans-
mission of seven WDM channels modulated at 112Gb/s PDM-QPSK and with 50GHz channel
spacing. Channels were modulated with different pseudo-random quaternary sequences (one
for each polarisation) of 16384 symbols. The supporting pulses were non-return to zero. The
NDM line consisted of 12 uncompensated 100 km spans of single mode fiber (SMF) with
dispersion -17 ps/nm/km, attenuation 0.22 dB/km, nonlinear coefficient 1.32 W−1km−1, and
zero dispersion slope and zero polarization mode dispersion. Noise was loaded at the receiver,
thus neglecting nonlinear singal-noise interactions, which are known to be negligible in NDM
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Fig. 4. Q-penalty at NLT vs. Q-factor at NLT for 28 Gbaud PDM-QPSK signal and DSP
coherent receiver. Symbols: Monte-Carlo simulations. Solid line: Eq. (12). aNL = 0.0066
(mW)−2.

SMF lines at 100 Gb/s [9, 10]. The BER of the DSP coherent receiver was estimated from
Monte-Carlo error counting stopped after 400 counts. After obtaining the estimated BER from
simulations, the Q-factor was derived by inversion of Eq. (10).

Figure 3(left) shows with discrete symbols the simulated Q-factor versus transmitted power
P for in-line amplifier noise figure Fn = 11 dB (top curve), and then for two larger Fn values, in
increasing steps of 0.8 dB (such artificially large Fn values are usually employed in simulations
of shorter links to derive the NLT at low top Q-factors [4]). The received ASE power is related
noise figure as: NA = NshνFnGBRX , where Ns = 12 is the number of spans, GdB = 22 dB the
gain equal to span loss, and hν the photon energy at frequency ν in the C band. For the top data
set we have NA ∼−10 dBm. From such discrete values, inverting Eq. (11) we derived the cor-
responding discrete S values, marked with symbols in Fig. 3(right). From an LMS fit of the dis-
crete S values (top data set) with formula (2) we estimated the value aNL = 0.0066 (mW−2),
with an estimated NA = −10.33 dBm. The LMS fit on the remaining data sets confirmed the
above estimated aNL value, with an estimated NA increasing in steps of 0.8 dB. We also tried a
more accurate fit S = P/(NA +aNLP3 +bNLP5), which has the effect of slightly decreasing the
estimated aNL value. Although such a higher-order fit better catches the high-power behavior,
we verified that at the NLT the ratio of nonlinear powers (bNLP5)/(aNLP3) was always below
10%, with a negligible effect on estimation of the NLT and its corresponding S and Q values.

Finally, fitted analytical S values were converted to fitted Q values using Eq. (11), as shown
in solid lines in Fig. 3(left).

Using the fitted NA and aNL values, we plotted in dashed black lines in Fig. 3(right) both
the linear asymptotes SL,dB (shown only for the top and bottom data sets) and the nonlinear
asymptote SR,dB. We also plotted the locus of maxima of coordinates given by Eqs. (8), (9) as
a dash-dotted magenta line, which is a straight line with slope -2 dB/dB. The same asymptotes
and locus of maxima, after warping through Eq. (11), were plotted in Fig. 3(left). In this case
the locus of maxima has a parabolic shape, and if linearized around the shown 3 maxima (red
circles, white filled) it corresponds to a line with slope ∼-2.7 dB/dB. The linear asymptotes
allow an appreciation of the SNR penalty at NLT, which is confirmed to be very close to the
theoretical SPdB = 1.76 dB. Also the Q-penalty at NLT can be appreciated as the distance from
the linear asymptotes to the top of the bell curve, and its numerical values are plotted as symbols
in Fig. 4 for ASE power varied over the range NA =−10 : −8 dBm in steps of 0.4 dB. It is seen
that the Q-penalty is around 2 dB at lower Q values at NLT (large NA), and remains above 1.8
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dB over the measured range. Using the parabolic fit Eq. (11), it is easy to see that the Q-penalty
at NLT has equation

QPdB = SPdB · [B−A · (SPdB +2 · (SdB +b)] (12)

where S at NLT is given in Eq. (9). Such a formula is also plotted in Fig. 4 in solid line. However,
the parabolic fit Eq. (11) is accurate up to Q-values of about 14 dB, and beyond such value it
underestimates the Q-factor. Hence Eq. (12) ceases to hold at very small NA (where the linear
Q exceeds 14 dB). The true Q-penalty at NLT will asymptotically decrease to 1.76 dB as NA

decreases, i.e., Q-factor at NLT increases.

5. Conclusions

We have exploited an elementary Gaussian nonlinear model for the received signal field in
coherent transmissions, in order to analytically prove the salient features of the bell curves
of Q-factor versus transmitted channel power. Such a model holds whenever the line strength
is large enough that nonlinear-signal noise interactions (a manifestation of which is nonlinear
phase noise) are weak [9, 10], and the received field statistics are circular complex Gaussian.
The model establishes that at maximum Q the ASE power is twice that of the nonlinear noise,
yielding an SNR penalty of 1.76 dB from back to back, and a slightly larger Q-penalty, which
approaches 2dB at smaller NLT Q-values for a 28 Gbaud PDM-QPSK format. As we change
the linear noise power, the locus of maxima of SNR versus power slide along a straight-line with
slope �-2 dB/dB, while the corresponding slope for the Q-factor of a 28 Gbaud PDM-QPSK
modulation is around -2.7 dB/dB. While we proposed here the SNR S as a transmission quality
parameter, it is worth mentioning that in wireless communications with in-phase/quadrature
modulation formats the sum of noise, co-channel and cross-channel interference (i.e., linear
plus nonlinear noise in our parlance) is known as the error vector, and the standard deviation of
the error vector (called the error vector magnitude, EVM) is often used as a design parameter
(see, e.g., [13]), even when the error vector statistics are not necessarily neither Gaussian nor
signal-independent, as they approximately are instead in NDM links.
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