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Abstract: After briefly recalling the issue of OAM mode purity in strongly-guiding ring-core
fibers, this paper provides a methodology to calculate the coupling strength between OAM mode
groups due to fiber perturbations. The cases of stress birefringence and core ellipticity are
theoretically and numerically investigated. It is found that both perturbations produce the same
coupling pattern among mode groups, although with different intensities. The consequence is
that birefringence causes the highest modal crosstalk because it strongly couples groups with a
lower propagation-constant mismatch. The power coupling to parasitic TE and TM modes is also
quantified for both perturbations and is found to be non-negligible. Approximate modal crosstalk
formulas valid for weakly-guiding multi-core fibers, but whose parameters are adapted to the
present case of strongly guiding OAM fibers, are found to provide a reasonable fit to numerical
results. Finally, the effect that modal coupling has on OAM transmission is assessed in terms of
SNR penalty.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Spatial division multiplexing, or SDM, can increase the carrying capacity of optical fibers.
Researchers are investigating how we could use this capacity expansion to bring down the cost per
bit of information. Integration of components such as multiplexers, transceivers and amplifiers
will play an important part in reducing cost. However, the optical fiber will determine the distance
supported and will impact the effort required to recover information, particularly when modal
multiplexing is used to achieve SDM. This paper examines the impact of deformities in fibers
supporting orbital angular momentum (OAM) modes, focusing on core ellipticity and stress
induced birefringence.
The greatest source of impairments in systems using mode multiplexing in few mode

fibers (FMF) comes from the cross-correlation (or crosstalk) induced when multiplexing and
co-propagating spatial modes. Two broad strategies have emerged for dealing with this cross-
correlation: the use of extensive multiple input, multiple output (MIMO) processing to undo the
correlations [1], and the use of components and fibers that avoid the introduction of correlations [2].
Each strategy has its advantages and disadvantages, and there is a lack of extensive modeling
to quantify these differences. The distance that can be propagated before either strategy breaks
down is of particular importance. MIMO processing can become prohibitively complex if the
equalizer length grows linearly with distance. Thus research focuses on differential group delay
in systems using MIMO [3]. Avoiding MIMO processing is only possible for distances where
cross-correlations remain tolerable despite the effects of accumulated imperfections in the fiber.
Hence, for systems targeting limited or no MIMO processing, research must address the source
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and intensity of coupling between modes. This paper address the latter, i.e., systems avoiding
extensive MIMO processing.
Reduced MIMO processing is possible for mode group multiplexing and for fibers designed

to support modes with limited coupling. As capacity increase is greatest when exploiting
individual modes (rather than mode groups) to carry data, we focus on systems that exploit both
polarization multiplexing and individual mode multiplexing. Fibers supporting two types of
modes have emerged for this kind of system: linearly polarized vector modes [4] and orbital
angular momentum modes [5]. The linearly polarized vector (LPV) modes can be completely
polarization maintaining or mix only in polarization; they do not mix in spatial modes. Both
vector modes (LPV and OAM) have by their nature degenerate modes that come in pairs. Hence
their MIMO complexity is capped at 2 × 2 MIMO elements, akin or equivalent to the 2 × 2
MIMO used commonly in polarization multiplexed systems today. The coupling of these pairs of
degenerate modes would eventually require larger MIMO blocks [6]; strong coupling between
all degenerate pairs would require extensive MIMO used with multiplexing of scalar modes.
While some experimental effort has been made to identify coupling levels of OAM in different
lengths of conventional fiber [7], we seek to model the coupling by applying multimode fibers
techniques [8] to fibers with very high contrast refractive indices designed to support many OAM
orders [9].

Expanding preliminary results presented in [10], we examine the source of coupling between
OAM modes in fibers designed specifically to support their propagation. Previous modeling of
the common coupling sources, core ellipticity and stress induced birefringence, must be adapted
to the unusual nature of OAM degenerate modes. We start in Section 2 with an examination
of the intrinsic presence of small modal impurities in OAM guided modes, and in Section 3
explain how this determines the number of coupling mechanisms. In Section 4 we move on
to our numerical analysis of coupling for mode profiles from a specific OAM fiber design [9],
assessing the effect of coupling in OAM transmission. We present results for various levels of
perturbations and beat lengths. The last section offers some concluding remarks.

2. Modes of ring-core fibers

In an optical fiber made of R concentric homogeneous rings, the propagating field can be expanded
in the eigenmodes basis TE0,p, TM0,p, HEυ,p and EHυ,p, where υ and p are positive integers
giving the mode azimuth order and counting for the specific solution, respectively [11]. Given
the fiber circular symmetry, hybrid modes HEυ,p and EHυ,p come with a 2-fold degeneracy,
even and odd. Letting E refer to either HE or EH modes, they can be written, with respect to
cylindrical coordinates (r, ϕ), as [11]

E{
eo
υ (r, ϕ) = fυ(r) ·

{
cos(υϕ)
sin(υϕ)

r̂ + gυ(r) ·

{
sin(υϕ)
− cos(υϕ)

ϕ̂ + jhυ(r) ·

{
cos(υϕ)
sin(υϕ)

ẑ , (1)

where fυ , gυ and hυ are mode-dependent real functions and the upper index of Eυ selects the
even (e) or odd (o) degeneracy. We omit writing explicitly the counting index p for the sake of
brevity.

An equivalent representation consists in combining even and odd degeneracies, which has the
effect of producing helical phase fronts. This is achieved by simply defining the new HE and
EH modes as E±υ

4
= Ee

υ ± jEo
υ , where the "+" and "−" choices produce left- and right-handed

helical phase-fronts, respectively. The corresponding field expressions are

E±υ(r, ϕ) =
1
√

2
[ fυ(r) ± gυ(r)] exp [± j(υ ∓ 1)ϕ] L̂ +

1
√

2
[ fυ(r) ∓ gυ(r)] exp [± j(υ ± 1)ϕ] R̂

+ jhυ(r) exp (± jυϕ) ẑ,
(2)
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where the new circular polarization basis vectors L̂ =
(
r̂ + jϕ̂

)
exp( jϕ)/

√
2 and R̂ =

(
r̂ −

jϕ̂
)
exp(− jϕ)/

√
2 are the left-handed circular polarization (LCP) state and the right-handed

circular polarization (RCP) state, respectively. Equation (2) highlights that the LCP and RCP
components are helical beams with the same handedness, but different orbital angular momentum
(OAM) orders: either υ + 1 or υ − 1 [12, 13]. In weakly-guiding fibers, only one of the LCP and
the RCP components survives, while the other is weak and almost negligible [14]; we call these
two components dominant and secondary, respectively [15]. A simple way to determine which is
the dominant component consists in noticing that weakly-guiding fibers are well described by
the linearly polarized LPn,p modes, whose transverse field components have azimuthal order
n [11]. The LPn,p modes are linear combinations of HE±(n+1),p and EH±(n−1),p, for n , 1, or
combinations of HE±2,p, TE0,p and TM0,p, for n = 1. Therefore, the dominant component
is the one of order υ − 1 for HEυ,p modes and of order υ + 1 for the EHυ,p modes. The
longitudinal component of the modes becomes almost negligible and the corresponding fields
can be considered paraxial [11].
Traditionally, the OAM modes are defined as [2]

OAM±±`,p
4
= HEe

(`+1),p ± jHEo
(`+1),p = HE±(`+1),p with ` ≥ 0, (3a)

OAM∓±`,p
4
= EHe

(`−1),p ± jEHo
(`−1),p = EH±(`−1),p with ` ≥ 2, (3b)

where superscripts represent left-handed ("+") or right-handed ("-") circular polarization, and
p indicates the number of intensity rings of the mode. According to Eq. (3), OAM modes are
defined as the helical phase-fronts representation of the HE and EH modes, whose expressions in
the circular polarization basis is given in Eq. (2). Because of this definition, in the weakly guiding
case, OAM modes have essentially a single OAM beam of order `, with the circular polarization
being built from the scalar LP modes. However, in the case of high refractive index contrast
between cladding and core, they have two contributing opposite circularly polarized OAM beams
of orders ` and ` ± 2. We continue to use the terms dominant and secondary components, with
the order ` mode dominant. The presence of a secondary component, which has been described
as the manifestation of a spin-orbit coupling effect [14, 15], makes the propagating OAM modes
not pure [16,17]. Note also that, as they are defined in Eq. (3), OAM±

±`,p and OAM∓
±`,p constitute

two 2-mode groups of degenerate modes: OAM++`,p and OAM−
−`,p , and OAM

−
+`,p and OAM+

−`,p ,
respectively.
TE and TM are not included in the definition of Eq. (3); however, as long as they propagate,

their interactions with the OAM modes must be carefully analyzed. To this end, it is convenient
to express their fields in circular components as previously done for the hybrid modes. In general,
the cylindrical field components of TE0,p and TM0,p can be expressed as [11]

E
{
TE
TM(r, ϕ) =

{
0

d(r) r̂ +
{
−d(r)

0 ϕ̂ + j
{

0
e(r) ẑ, (4)

where d and e are real valued functions that do not depend on the azimuthal coordinate ϕ. Once
expressed in circular polarizations, TE and TM fields have a form similar to Eq. (2):

E
{
TE
TM(r, ϕ) =

1
√

2

{
jd(r)
d(r) exp(− jϕ) L̂ +

1
√

2

{
− jd(r)

d(r) exp( jϕ) R̂ + j
{

0
e(r) ẑ, (5)

where the LCP and RCP components have the same intensity but opposite-handed helical
phase-fronts of order 1. Hence, TE and TM modes do not have a dominant component and both
are made of two OAM beams with topological charges +1 and −1. In weakly-guiding fibers, the
TE0,p and TM0,p are quasi-degenerate, hence they can be linearly combined to form two modes
made of a single OAM beam of order ±1. Nevertheless, since they are not exactly degenerate,
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the resulting OAM modes are unstable; for this reason, they are not used in OAM-multiplexed
transmissions and are considered "parasitic" modes [18].

The OAM and the type (dominant or secondary) of each circularly polarized field component
are summarized in Table 1 for the OAM, TE and TM modes set, where ` ≥ 0 for the OAM±

±`,p

modes and ` ≥ 2 for the OAM∓
±`,p ones, in agreement with the OAM definitions in Eq. (3).

Table 1. Components of OAM, TE and TM modes. Shaded cells indicate the secondary
component (or polarization). For example, OAM−

−`,p
has dominant RCP component of

order −`, secondary LCP component of order −(` + 2), and longitudinal component of order
−(` + 1).

Mode Component

L̂ R̂ ẑ

OAM++`,p ` ` + 2 ` + 1
}
` ≥ 0

OAM−
−`,p − (` + 2) −` − (` + 1)

OAM−+`,p ` − 2 ` ` − 1
}
` ≥ 2

OAM+
−`,p −` − (` − 2) −(` − 1)

TE0,p 1 −1 −
TM0,p 1 −1 0

3. Coupling relations for OAM modes

In an ideal fiber, isotropic with circular symmetry, the set of the N propagating modes is
orthogonal and the propagation is described only by their propagation constants β1, . . . , βN . In
realistic fibers, several kinds of perturbation (e.g., stress birefringence, core ellipticity, twisting
and bending) break the orthogonality, inducing modes to couple. In this case, mode propagation
is described by coupled-mode theory as [19]

dc
dz
= − j

(
D +K(z)

)
c(z), (6)

where c is the N-dimensional vector whose elements are the complex amplitudes of the modes,
D = diag(β1, . . . , βN ) is the diagonal matrix of the mode propagation constants and K(z) is the
N × N coupling matrix that accounts for the local effects of perturbations. The coupling matrix
depends on the perturbation δε (r, ϕ) of the dielectric tensor ε (r, ϕ), and for small perturbations
its coefficients are given by the overlap integral [19]

Kµν =
ω

4P

∫ ∞

0

∫ 2π

0
r E∗µδε Eν dϕdr, (7)

where ω is the angular frequency, Eµ(r, ϕ) and Eν(r, ϕ) are the electric fields of modes µ and ν,
and P is a normalization coefficient defined by the orthogonality condition∫ ∞

0

∫ 2π

0
r (Eν ×H∗µ + E∗µ ×Hν) · ẑ dϕdr = δµνP, (8)

with Hµ and Hν being the magnetic fields of the two modes and δµν being the Kronecker delta.
The analytical solution of the overlap integral is difficult because of the nontrivial dependency

on the radial coordinate of the fields. However, some necessary conditions for mode field
components to couple can be drawn by simple considerations of the tensorial structure of δε and
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the subsequent integration over ϕ [8,20]. Coupling between the i-th and j-th field components of
modes µ and ν can occur only if the (i, j) element of δε is not zero, i.e., δεi j(r, ϕ) , 0. In many
cases of practical interest δεi j(r, ϕ) can be expressed as the product of two factors, one depending
on the radial coordinate and the other on the azimuthal one [20]. Since the perturbation on the
fiber must be single-valued, the azimuthal function is periodic in 2π and consists of terms like
exp ( j kϕ), where k = 0,±1, ... is the integer defining the azimuthal order of the perturbation.
On the other hand, for Eqs. (2) and (5), the i-th component of the generic mode µ, whether
OAM, TE or TM, is proportional to a factor exp ( jqµ,iϕ), where qµ,i are reported in Table 1. As
a consequence, the integrand in Eq. (7) includes terms that are products of exponentials with
imaginary arguments, and the integration with respect to ϕ can be non-zero only if

qµ,i − qν, j = k, (9)

for at least a pair of field components i, j.
From a physical point of view, Eq. (9) represents the case in which the helical distribution

of the perturbation matches the difference between the OAM carried by the two considered
components, thus allowing for possible interaction between them. Note that the secondary and
longitudinal components almost vanish in the weak-guidance limit, therefore they weakly interact
with the other components and the resulting coupling is negligible. We finally remark that the
condition of Eq. (9) is a necessary but not sufficient requirement for coupling to occur: Kµν may
still be zero because of the integration over the radial coordinate, which is, however, not easy to
evaluate in general.
While these arguments apply to any kind of perturbations, in the following we restrict

our analysis to the intrinsic ones, i.e., those potentially induced during fiber production and
not necessarily caused by the external environment. These intrinsic perturbations are stress
birefringence and core ellipticity. We consider the case in which the perturbations are aligned to
the reference frame in this section. While this is a special condition that affects the coupling
coefficients, it has no influence on the coupling conditions we discuss. The general case will be
analyzed in Sec. 4.

3.1. Stress birefringence

In a fiber affected by stress birefringence, the material becomes slightly anisotropic and the tensor
of the dielectric perturbation inside the h-th ring, expressed in circular components, is [20]

δεh(r, ϕ) = ε0nh∆nh

©«
0 1 0

1 0 0

0 0 0

ª®®®®¬
, rh−1 ≤ r ≤ rh, h = 1, 2, . . . (10)

where ε0 is the vacuum permittivity, and nh , ∆nh and rh are the refractive index, the birefringence
and the outer radius of the h-th ring (r0 = 0), respectively. By inspection of the perturbation
tensor, coupling may occur only between cross-polarized transverse components (L̂↔ R̂) since
the particular structure of the tensor prevents all the other possible interactions. Moreover, stress
birefringence does not exhibit an azimuthal dependency, that is, k = 0 and the corresponding
coupling condition restricts coupling to components carrying the same OAM. Thanks to the
previous considerations, Eq. (9) reduces to

qµ,i = qν, j, (11)

where i and j are cross-polarized transverse components. As a consequence, there cannot be
coupling between TE and TM modes since opposite circular polarizations carry OAM with
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different topological charges for such modes. The selection rules for birefringence-induced
coupling are obtained from Eq. (11) and are reported in Table 2 for OAM and parasitic modes.
This table covers the strongly guiding case; secondary components disappear in the weakly
guiding limit.

Table 2. Selection rules for the birefringence-induced coupling; integers n and m are either
≥ 0 or ≥ 2 as specified in Eq. (3). Lack of coupling is due to polarization orthogonality (−)
or Eq. (11) not being met (- -). Shaded circular polarizations indicate secondary components.
The lower triangular part of the table is obtained from the upper one simply by swapping n
with m. TE and TM modes never couple to one another so these are not included.

OAM++m,p OAM−−m,p OAM−+m,p OAM+−m,p Modes and
ComponentsR̂ L̂ R̂ L̂ R̂ L̂ R̂ L̂

− m = 1 − -- − m = 3 − - - R̂ TE/TM
-- − m = 1 − - - − m = 3 − L̂

− m − n = 2 − -- − m − n = 4 − - - R̂ OAM++n,q
n − m = 2 − n = m = 0 − n = m − n + m = 2 − L̂

− n − m = 2 − m + n = 2 − n = m R̂ OAM−−n,q
m − n = 2 − -- − m − n = 4 − L̂

− m − n = 2 − -- R̂ OAM−+n,q
n − m = 2 − n + m = 4 − L̂

− n − m = 2 R̂ OAM+−n,q
m − n = 2 − L̂

3.2. Core ellipticity

Core ellipticity consists of a slight deformation of the ideal circular shape of the fiber cross-section.
This deformation yields the scalar dielectric perturbation [20]

δε (r, ϕ) = ε0 cos 2ϕ
R−1∑
h=1

γh(n2
h − n2

h+1) δ(r − rh), (12)

where δ(·) is the Dirac function, subscript h selects one of the R rings of the fiber and γh is
elliptical deformation in terms of maximum radius variation. As in the stress birefringence
case, the particular structure of the perturbation determines the possible interactions among the
components, but this time, since the perturbation is scalar, core ellipticity allows coupling only
between the same components (R̂↔ R̂, L̂↔ L̂ or ẑ↔ ẑ). Moreover, the perturbation presents
a dependency on ϕ through a sinusoidal function of azimuthal order k = ±2. Putting together
these observations, the coupling condition in Eq. (9) becomes

qµ,i − qν,i = 2 or qν,i − qµ,i = 2 (13)

where i selects the same component in each mode. A closer examination of Table 1 reveals that
the condition is actually the same for every selected kind of component in each couple of modes.
Therefore, the selection rules depend on the chosen modes but not on the choice of the specific
component. Selection rules for ellipticity-induced coupling are summarized in Table 3. Again,
results are for the strongly guiding case; modes with opposite dominant components should not
be considered in the weak-guidance limit. Indeed, in that case, the eventual coupling comes from
interactions involving secondary or longitudinal components, which are nevertheless negligible.
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Table 3. Selection rules for the ellipticity-induced coupling among OAM, TE and TMmodes,
where they are reported once for each mode combination. Integers n and m are either ≥ 0 or
≥ 2, as specified in Eq. (3). Symbol - - means that the corresponding condition in Eq. (13) is
never verified by the specific mode orders. Shaded circular polarizations indicate secondary
components. The lower triangular part of the table is obtained from the upper one simply by
swapping n with m.

TE/TM OAM++m,p OAM−−m,p OAM−+m,p OAM+−m,p Modes and
ComponentsR̂ L̂ R̂ L̂ R̂ L̂ R̂ L̂ R̂ L̂

-- m = 1 m = 1 m = 3 m = 3 TE/TM
R̂ L̂

|m − n| = 2 m = n = 0 m − n = 4
m + n = 2 OAM++n,q

m = n R̂ L̂

|m − n| = 2 m + n = 2 m = n OAM−−n,q
m − n = 4 R̂ L̂

|m − n| = 2 m = n = 0 OAM−+n,q
m = n = 2 R̂ L̂

|m − n| = 2 OAM+−n,q
R̂ L̂

4. Numerical analysis of power coupling

To verify the accuracy of the coupling relations and to study the propagation of OAM modes
in stress birefringence- and core ellipticity-affected fibers, we consider a hollow ring-core fiber
for OAM transmission [9] and numerically assess its propagation properties in terms of power
coupling. In the following, we first describe the model of propagation, then we evaluate both
fiber propagation constants and coupling coefficients, and finally we assess power coupling from
Monte Carlo simulations of the fiber.

4.1. Numerical model of propagation

The complex amplitudes of the modes at a given point z along the fiber are given by

c(z) = U(z) c(z0), (14)

where the propagation operator U is an N×N complex matrix that includes the cumulative effects
of all the interactions occurred among modes up to z. In these settings, mode coupling can be
fully characterized by the study of U, whose evolution is given by the differential equation [21]

dU
dz
= − j

(
D +K(z)

)
U(z) = − j B(z)U(z), (15)

obtained by combining Eqs. (6) and (14), and defining B(z) = D + K(z). Note that, although
the matrix K(z) represents the local coupling between modes, the overall accumulated coupling
depends also on matrix D. As a rule of thumb, the larger the difference between the propagation
constants, the lower the coupling between the modes. To describe concisely the properties of
the fiber, we introduce two parameters: the fiber modal birefringence ∆β, that characterizes
the maximum separation among modes; and the coupling strength ∆κ, that characterizes the
maximum relative strength of the perturbations. Accordingly, we define these parameters as:

∆β = max βi −min βi and ∆κ = max κi −min κi, (16)
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where κi ∈ eig(K). Modal birefringence and coupling strength can be expressed also in terms of
beat lengths, where the modal and coupling beat lengths are respectively given by Lβ = 2π/∆β
and Lκ = 2π/∆κ.

Since the perturbations evolve randomly along the fiber, the corresponding coupling matrices
should be evaluated for an arbitrary strength and orientation of perturbation. However, the
coupling matrix K for the single perturbation ξ can be written as αM(θ)Kξ0 MT(θ), where Kξ0

is the coupling matrix for the reference perturbation ξ0, which is of the same kind of ξ but aligned
to the reference frame and normalized in strength; α is the coefficient that accounts for the relative
variation of the perturbation strength with respect to ξ0; θ is the angle at which the perturbation
is oriented with respect to the reference frame; and M is a proper rotation operator [8, 20]. As
stated before, a rotation of the perturbation does not change the coupling condition of Eq. (9);
therefore the operator M is a block diagonal matrix where each block corresponds to a group of
degenerate modes. With respect to the hybrid modes of order υ, these blocks are given by

T(υθ) =
1
√

2
©«

exp
(
− jυθ

)
exp

(
jυθ

)
j exp

(
− jυθ

)
− j exp

(
jυθ

)ª®¬ . (17)

As a consequence, according to Eq. (3), the diagonal blocks are T±(`θ) = T((` + 1) θ) for the
OAM±

±` mode groups; whereas they are T∓(`θ) = T((` − 1) θ) for the OAM∓
±` ones. For TE and

TM modes, T = 1 because these modes are not degenerate, they have cylindrical symmetry and
rotation has no effects on them.
When there are more kinds of perturbation, the total coupling matrix is the superposition of

each single contribution applied with its own angle θξ and magnitude αξ , which generally vary
along the fiber. Therefore, the final expression of matrix B is

B(z) = D +
∑
ξ

αξ (z)M
(
θξ (z)

)
Kξ0M

T (
θξ (z)

)
, (18)

where the summation is extended to the different kinds of perturbation ξ affecting the fiber.
As stated above, we limit the analysis to stress birefringence and core ellipticity. These

two perturbations arise mainly from the manufacturing process, so it is reasonable to assume
that birefringence axes are aligned to the ones of the elliptical core [22, 23]. Following the
guidelines of the so-called fixed-modulus model, introduced to describe polarization mode
dispersion in single mode fibers [24], we assume the coefficients αB(z) and αE(z) to be constant
for birefringence and ellipticity, respectively. As a consequence, the overall coupling strength ∆κ
is also constant along the fiber, and we can write

B(z) = D +M(θ(z))
[
αBKB0 + αEKE0

]
MT(θ(z)), (19)

where θ(z) is the common orientation of the perturbations, and KB0 and KE0 are the coupling
matrices of the corresponding reference perturbations reported in Eqs. (10) and (12). According
to this model, the values of birefringence ∆nh and of elliptical deformation γh should be chosen
to have reference perturbations of normalized strength; whereas the coefficients αB and αE
determine the ratio between the two perturbations and the overall coupling strength ∆κ. Regarding
the orientation of the perturbations, again following the fixed-modulus model, we describe θ(z)
as a Wiener process [24, 25]:

dθ
dz
= −ση(z), (20)

where η is a Gaussian white noise of zero mean and unitary variance, and σ parametrizes the
correlation of the process. According to [24], we define the correlation length LF = 1/(2σ2).
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The above model has been numerically implemented by using the wave-plate model, which
consists in discretizing the propagation through a cascade of D fiber sections, called plates [25–28].
The operator Uk , that describes propagation from the fiber input to the k-th plate is given by
Uk =WkUk−1, where Wk accounts for the propagation through the k-th plate. The length Ls of
each plate is chosen to be so short that the coupling matrix K(z) can be assumed constant within
the plates. Therefore, Wk = exp (− jBkLs) where

Bk = D +M(θk)
[
αBKB0 + αEKE0

]
MT(θk), (21)

and θk is the constant orientation of the perturbations inside the k-th plate. According to Eq. (20),
θk − θk−1 = −Lsσηk , where ηk are i.i.d. Gaussian variables of zero mean and unitary variance.

4.2. Application to hollow ring-core fiber

We analyzed a hollow ring-core fiber, whose index profile is defined in Fig. 1. Modal properties
have been numerically calculated with ComSol at 1550 nm; the fiber supports 26 information
bearing OAM modes and the two parasitic TE0,1 and TM0,1 modes. The corresponding effective
refractive indexes are represented in Fig. 2, where degenerate OAM modes are grouped in the
2-mode groups OAM±

±`,p and OAM∓
±`,p; the fiber modal beat-length is Lβ = 161 µm. Note that

OAM 7 modes are present only within the OAM±
±7 group, which is close to the cut-off and far

from the other groups in terms of propagation constants. For these reasons, we expect these
modes to be less affected by coupling than the others.

r ef
r ac

tiv
ein

dex

⫽

radial coordinate [�m]

⫽

1.000

1.438
1.444

1.474

0 9.1 11.3 16.2 25
À Á Â Ã

Outer Refractive
Radii [�m] Indices

À Air-hole 9.1 1.000
Á Ring-core 11.3 1.474
Â Trench 16.2 1.438
Ã Cladding 25 1.444

Fig. 1. Hollow ring-core fiber index profile with h = 4 rings.

The mode coupling coefficients have been calculated by computing numerically the overlap
integrals of Eq. (7) for the reference perturbations in Eqs. (10) and (12). In particular, for stress
birefringence, we assume that the birefringence ∆n is equal for all the rings, except for the inner
air core, for which of course ∆n = 0. Similarly, regarding core ellipticity, we assume that the
elliptical deformation γ is the same for all rings. Figure 3 shows the coupling coefficients for
both stress birefringence and core ellipticity, each normalized to their corresponding absolute
maximum. The figure should be read in relation to the selection rules of Tables 2 and 3. In
particular, to show the agreement with the selection rules, different marks have been used to
highlight the strongest modal interaction that origins the coupling. Marks "�" describe coupling
between dominant components, which is generally the strongest; marks "^" describe coupling
between the secondary ones, which is the weakest; and marks "◦" describe dominant-secondary
mixed coupling. Coupling coefficients marked with "◦" or "^" become negligible in weakly
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and symbols. Colors indicate different OAM orders.

guiding fibers but are non-negligible in this strongly guiding fiber. Note that marks in Fig. 3 do
not describe exhaustively all the modal interactions occurring between the components of two
modes, but just denote the strongest possible one; whereas the intensity of the coefficients are
given by the contribution of all of them. Furthermore, given the fields expressions of Eqs. (2)
and (5) and the perturbations in Eqs. (10) and (12), the coupling coefficients are all reals except
for those involving TE modes, which are imaginary. This is denoted in Fig. 3 by a black dot in
the corresponding cells.
As theoretically predicted, stress birefringence and core ellipticity induce the same coupling

pattern among modes, but with different intensities. Indeed, most of the dominant-dominant
interactions ("�") for the birefringence correspond to dominant-secondary interactions ("◦") for
the ellipticity and vice versa. Moreover, while the two perturbations induce coupling of the same
sign on the fundamental modes, which is in agreement with [23], the coupling coefficients of
higher order modes and close to the main diagonal appear of opposite sign. As a consequence,
since the coupling coefficients along the main diagonal are the ones that mostly affect coupling,
the contributions of birefringence and ellipticity tend to partially compensate one another. The
compensation depends on the relative strength of the perturbations; however, when the two
contributions to the fundamental modes are comparable, as pointed out in [23], the compensation
is in general small. This is exactly the case represented in Fig. 3, where the ellipticity-induced
coupling close to the main diagonal is weak because due to dominant-secondary interactions and
cannot compensate the birefringence-induced one.
Finally, the coupling coefficients for the parasitic modes are not negligible, with TE01 and

TM01 coupling significantly to OAM±±1 and OAM∓
±3 groups. Therefore, we expect the coupling

involving parasitic modes to be significant during propagation.

4.3. Numerical propagation

The propagation along the fiber has been numerically simulated for coupling strength values
in the range of Lβ/Lκ ∈ [10−4, 10−1] and for two different fiber correlation lengths, LF ∈
{1m, 10m} [29]. For each value of coupling strength, different combinations of birefringence
and ellipticity coefficients αB and αE have been considered. However, we report just the cases

                                                                                                    Vol. 27, No. 6 | 18 Mar 2019 | OPTICS EXPRESS 8317 



T
E
0· L 0· R
+
1
L

-
1
R

+
2
L

-
2
R

T
M

+
2
R

-
2
L

+
3
L

-
3
R

+
3
R

-
3
L

+
4
L

-
4
R

+
4
R

-
4
L

+
5
L

-
5
R

+
5
R

-
5
L

+
6
L

-
6
R

+
6
R

-
6
L

+
7
L

-
7
R

TE
0·L
0·R
+1L
-1R
+2L
-2R
TM
+2R
-2L
+3L
-3R
+3R
-3L
+4L
-4R
+4R
-4L
+5L
-5R
+5R
-5L
+6L
-6R
+6R
-6L
+7L
-7R

Birefringence

T
E
0· L 0· R
+
1
L

-
1
R

+
2
L

-
2
R

T
M

+
2
R

-
2
L

+
3
L

-
3
R

+
3
R

-
3
L

+
4
L

-
4
R

+
4
R

-
4
L

+
5
L

-
5
R

+
5
R

-
5
L

+
6
L

-
6
R

+
6
R

-
6
L

+
7
L

-
7
R

TE
0·L
0·R
+1L
-1R
+2L
-2R
TM
+2R
-2L
+3L
-3R
+3R
-3L
+4L
-4R
+4R
-4L
+5L
-5R
+5R
-5L
+6L
-6R
+6R
-6L
+7L
-7R

Ellipticity

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

[a.u.]

Fig. 3. Coupling coefficients computed numerically from the overlap integral in Eq. (7), for
stress birefringence and core ellipticity, each normalized to their corresponding absolute
maximum. Marks indicate the strongest interaction that contribute to the coefficient: "�"
represents interactions between dominant components, "◦" refers to dominant-secondary
mixed interactions, and "^" indicate interactions between secondary components. All the
elements are real except those marked with a black dot, which are purely imaginary.

in which either only birefringence (αB = 1 and αE = 0) or only ellipticity (αB = 0 and αE = 1)
affects the fiber, since the intermediate cases are trivial combinations of the two and do not
provide further insight. The fibers were modeled with 100 000 plates of length Ls = LF/100, so
as to have the perturbation orientation almost constant within plates. An ensemble of 15 000
random realizations of the fiber has been collected for the statistical analysis.
We have used averaging over the statistical ensemble to characterize the power coupling

between the degenerate mode groups OAM±
±`,p and OAM∓

±`,p , which has a direct impact on the
complexity of multi-input multi-output (MIMO) receivers [5], while we chose not to treat here
the coupling within each degenerate OAM group. We characterize power coupling by showing:
1) the average power as a function of distance in each group of degenerate modes; and 2) the
cross-talk at 1 km, defined as the average normalized power transfered from one input group to
all others after 1 km.
The normalized average power on each group when the power is launched on that group

is plotted in Fig. 4 as a function of distance for both birefringence and ellipticity and for
Lβ/Lκ = 2 × 10−4, 2 × 10−3, 2 × 10−2, which represent weak, medium and strong perturbation
regimes, respectively. Only the results for LF = 1 m are shown, because those for LF = 10 m
are the same provided that the z-axis is proportionally rescaled. In general, all the curves in the
graphs decay with distance, meaning that each launched group couples to some extend with some
of the others during propagation. However, the decay is not simply exponential, as it would occur
in the single-mode case [30], but has different behaviors as well as different asymptotic limits,
depending on the considered groups and parameters.
Defining a decay rate coefficient to describe the average power evolution is therefore not
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possible. For this reason, we evaluate the cross-talk at 1 km, which gives an insight on how
much power spreads from one group to the others because of coupling. Figure 5 represents the
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cross-talk generated by each group versus Lβ/Lκ , for both birefringence and ellipticity and for
both LF = 1m and LF = 10m. Not surprisingly, cross-talk increases with the strength of the
perturbations. The increase is linear for small and medium values of Lβ/Lκ (weak and medium
perturbation regimes), while it saturates for large ones (strong perturbation regime). However,
such high values are not likely reached in real strongly-guiding fibers and represent extreme
scenarios. Moreover, Fig. 5 shows that for weak and medium perturbations the crosstalk increases
by about 10 dB when LF decreases from 10 m to 1 m.
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length, represented as a function of Lβ/Lκ in case of birefringence- and ellipticity-induced
coupling, with fiber correlation length of either LF = 1m or LF = 10m.

Results confirm that stress birefringence and core ellipticity have different effects on modes
propagation even if they induce the very same coupling pattern among modes (Fig. 3). In
particular, birefringence is the one causing the higher cross-talk because it strongly affects groups
with low phase-mismatch, while this is not true for ellipticity. Indeed, the birefringence coupling
matrix has the most intense coefficients closer to its diagonal, whereas the most intense coefficients
for ellipticity involve modes that are more separated in terms of propagation constants. Still,
both kinds of perturbation cause parasitic TE and TM modes to couple with the OAM±

±1 and the
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OAM∓
±3 (Fig. 3). Results show that these interactions are not negligible from the power coupling

point of view, and they should be carefully considered in the design of the transmission system.
Moreover, the coupling between TE and OAM±

±1 explains the one experimentally observed
in [18], confirming the ability of the developed model to reproduce coupling mechanisms in
ring-core fibers. Finally, OAM±

±7 seems the group less affected by coupling, especially in case of
birefringence. We believe this represents an extreme case, due to the group being close to its
cut-off condition.

4.4. Theoretical assessment of power coupling

Power coupling in multimode and multi-core fibers has been theoretically analyzed in previous
literature, and average power flow is modeled as [31, 32]

dPµ(z)
dz

=
∑
ν,µ

hµν(z)
(
Pν(z) − Pµ(z)

)
, (22)

where Pµ(z) is the average power of mode µ, and hµν are the coefficients that describe the average
power coupling between modes µ and ν along the propagation direction. These coefficients
depend on matrix B(z) of Eq. (15) and on its statistical properties. The exact calculation of
coefficients hµν involves stochastic calculus and can be quite involved. Nonetheless, in [32] it has
been proven that, assuming a negative exponential autocorrelation function of the stationary fiber
perturbation process along z, an analytical approximation of such coefficients, valid for small z, is

hµν =
2K2

µνLF

1 +
[
∆βµνLF

]2 , (23)

where ∆βµν = |βν − βµ |. Since the coefficients hµν are z-independent, the mode powers in
Eq. (22) can be easily calculated. Although this coupling result was derived for single-mode
multi-core fibers with a different theoretical model of coupling, we have verified empirically that
the formula provides a good approximation for the present case. This verification is given in
Fig. 6, which shows the difference in dB between the crosstalk at 1 km obtained from Eq. (23)
and that of the numerical crosstalk reported in Fig. 5. The coefficients hµν in the theoretical
solution have been obtained by using the numerical values for βµ and Kνµ (Eq. (7)) for our OAM
fiber. As can be seen from Fig. 6, the theoretical crosstalk approximation is always within about
1 dB from the true numerical results. We can therefore conclude that Eqs. (22) and (23) yield
reliable mode power results, provided that the actual OAM propagation and coupling coefficients
are used in Eq. (23).

4.5. Assessment of SNR penalty from crosstalk

With knowledge of crosstalk at a given distance, we can determine the perturbation strength where
the linear coupling starts to impact higher order modulation formats, such as quadrature phase-
shift keying (QPSK) or quadrature amplitude modulation (QAM). Increasing the modulation
format order induces stringent crosstalk requirements [33], particularly on OAM fibers that target
limited 2 × 2 MIMO. These requirements have a direct impact on perturbation tolerance and
provide insight on the fiber design constraints.

In [33] the signal-to-noise ratio (SNR) penalty due to crosstalk, i.e., SNR increment needed to
provide the same bit error rate (BER), was quantified for a targeted BER and different modulation
formats. For instance, in [33] by simulation, it has been shown that at a given BER of 10−3 the
maximum tolerable crosstalk to have an SNR penalty of at most 1dB is about −17 dB for QPSK,
−23 dB for 16-QAM, and −29 dB for 64-QAM. Those values can be straightforwardly combined
with the results reported in Fig. 5 to determine which coupling strength results in a 1 dB change
in SNR.
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Assuming that the crosstalk X is a Gaussian noise on the desired mode, we can approximate
the SNR penalty at a targeted BER for the desired modulation formats. The SNR penalty (∆SNR)
can be written in the following manner:

∆SNR =
1(

1 − (SNRBER) · X
) (24)

where SNRBER is the SNR that provides a targeted BER. For QAM with Gray coding SNRBER is
written as follows [34]:

SNRBER =
M − 1

3
·
©«Q−1 ©«

1 −
√

1 − BER · log2 M

2
(
1 − 1√

M

) ª®®¬
ª®®¬

2

(25)

where M is the modulation format order.
This approximation shows good agreement with the results in [33] up to 2 dB of SNR penalty.

Beyond this limit, the Gaussian approximation becomes pessimistic. This allows us to connect
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the coupling strength with the SNR penalty at a given BER for the desired modulation formats. In
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Fig. 7 we plot the SNR penalty vs. coupling strength for both stress birefringence and ellipticity
for three different modulation formats (QPSK, 16-QAM, and 64-QAM) at BER of 10−3. Only
the LF = 1 case at 1 km is reported for the sake of space. This approach can be repeated on all
the perturbation correlations, link lengths, perturbation types, and modulation formats, that cause
penalties below 2 dB.
In Fig. 7 we see how increasing the modulation format increases the crosstalk requirements.

While these fibers are designed to avoid crosstalk, for high modulation formats, such as 64-QAM,
even small modal interactions from these intrinsic fiber perturbations can significantly affect
system performance. We note that already at 1 km in the case of QPSK and medium perturbation
strength, the penalty due to birefringence is greater than 2 dB for most propagating modes.
When increasing the modulation order to 64-QAM, a consistent portion of modes pass the 2 dB
threshold even for the weakest investigated perturbation strength. These observations suggest
that, when only a 2 × 2 MIMO on polarization is targeted and the investigated fiber is employed,
the fiber reach is limited to short or ultra-short distances (i.e., data-centers).

To validate the theoretical results experimentally, including link reach for specific modulation
formats, we must characterize all coupling strengths along the link. Such an effort could be
feasible for short or ultra-short links where this fiber design may find its application. While
outside the scope of this paper, an experimental examination would clarify the relative importance
of the two contributions to coupling, birefringence and ellipticity.

5. Conclusions

We have applied classic perturbation theory for modal coupling to a very strongly guiding,
air core fiber design. We identified the specific coupling mechanisms among OAM modes,
highlighting the impact of modal impurities in OAM mode propagation (leading to dominant and
secondary). We assess propagation properties, providing power coupling analysis in terms of
accumulated crosstalk versus distance and coupling strength for stress birefringence and core
ellipticity. Moreover, we observed that the theoretical crosstalk approximation of [32] is in good
agreement with our numerical results. The methodology developed could be used for other
strongly guiding ring core fibers.

Our results can assist in the design and development of new strongly guiding multimode fibers.
First, in the context of transmission system performance simulation and prediction, accounting
for both linear and nonlinear effects, a realistic and formal approach to the linear coupling in
strongly guiding optical fibers is fundamental to provide accurate and meaningful results. Indeed,
nonlinear effects and linear crosstalk contribute simultaneously to the propagation, and the
nonlinear term cannot be simplified by the so-called generalized Manakov approach [35, 36],
because of the selective coupling and the large propagation constants difference. Second, in
terms of system performance analysis, an accurate knowledge of crosstalk enables, resorting
to [33], a quick evaluation of penalties due to mode coupling, obtaining the maximum tolerable
coupling strength at the targeted system performance at a given distance or, conversely, the
maximum achievable distance given a coupling strength. Finally, our results could be used to
devise experiments to better parameterize the perturbations observed in fabricated fibers.
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