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Abstract We propose a novel power-independent step size selection rule for the split-step Fourier
method which targets a desired simulation error on the signal to noise ratio of coherently received
signals.

Introduction
The numerical simulation of the nonlinear
Schrödinger equation (NLSE) is generally imple-
mented by the split step Fourier method (SSFM).
A trustworthy SSFM should simulate the NLSE
with the desired accuracy whatever the optical
link under investigation. Targeting a desired accu-
racy is crucial in nowadays time-consuming sim-
ulations of fully loaded wavelength division multi-
plexing (WDM) systems, where a SSFM fine tun-
ing is mandatory to save computational effort.

Over the past years some effort has been put
into ways to quantify the trade-off accuracy/run-
time1–4. The logarithmic step size1 and the non-
linear phase2 criteria are two popular SSFM step
selection rules that efficiently stretch the step
along propagation to follow the loss profile. On
the contrary, the walk off criterion2 puts focus on
the scaling properties of inter-channel dispersion
regardless of the loss profile. Some ways to me-
diate between these two requirements have been
proposed in2,4, respectively based on adaptive
step rule2 and on global simulation error scaling
properties4.

In this paper we review the SSFM error in the
general framework of the Gaussian noise (GN)
model5, which focuses on the signal to noise ratio
(SNR). We propose that the SSFM should target
a given relative error in SNR rather than in electric
field for a reliable simulation. Contrary to meth-
ods1–4 where the number of SSFM steps scales
with the transmitted power, with our proposal we
get a power-independent number of steps.

Moreover, we introduce a simple universal pa-
rameter at constant SNR relative error for trust-
worthy SSFM simulations.

SSFM Error on SNR
The SSFM error can be seen as a perturbation to
the information signal similarly to amplified spon-
taneous emission (ASE) and nonlinear interfer-
ence (NLI). This way we can express the SNR of

the received estimated sample as:

1

SNR
=

1

SNRASE
+

1

SNRNLI
+

1

SNRSSFM
(1)

where the subscripts refer to the SNR consider-
ing ASE, NLI and SSFM error alone, respectively.
SNRSSFM is the only term depending on the nu-
merical implementation of SSFM and should be
maximized. Since SNR is universally expressed
in decibels, a trustworthy simulation should target
a constant SNR error in [dB] by varying system
parameters. Such an idea is sketched in Fig. 1.
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Fig. 1: In our proposal, SNR due to SSFM error only (dashed)
should be a fixed multiple of the true SNR (solid) to give con-
stant error bars in [dB] scale.

According to GN model theory5, the variance
of SSFM error is expected to scale as P 3, P
being the signal power, like the scaling of the
NLI. Therefore, for increasing power we can tol-
erate more absolute SSFM error at fixed relative
accuracy on SNR. Unfortunately, this criterion is
not followed by common step-selection rules1–4

where the step size is decreased for increasing
transmitted power.

The two degrees of freedom to set up SSFM
simulations are i) the first step of the propaga-
tion and ii) the step updating rule with distance.
The step updating rule should account only for
the fiber loss profile, while the first step should
account only for dispersion, since the dispersion
induced error on SSFM is expected to be statisti-
cally identical from step to step.
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Fig. 2: SNR error (∆SNR) in 20×100 km link at variable channel power vs (Left): cumulated nonlinear phase ∆φ per SSFM step;
(Center): ∆φ normalized to total input WDM average power Ptot. 9 channel WDM signal. Dispersion D = 17 ps/(nm·km). (Right):
∆SNR vs ∆φ/Ptot per step at variable dispersions and WDM bandwidths. In this last case ∆φ/Ptot does not yield overlapping
curves. D is the fiber dispersion [ps/(nm·km)].

Numerical Results

Results are expressed in terms of relative error on
SNR, i.e., ∆SNR = SNR/SNRtrue, where SNR is
given in (1). SNRtrue is the most accurate result
available and was obtained for decreasing first
step lengths by factors

√
2 until observing conver-

gence of SNR within a tolerance of 0.001 dB. All
the remaining steps were scaled according to the
method under analysis.

We analyzed a WDM comb at variable num-
ber of channels Nch ∈ [3, 9, 27, 54] with spac-
ing 37.5 GHz, up to a WDM bandwidth of 2
THz. Each channel was modulated with po-
larization division multiplexing quadrature phase
shift keying (PDM-QPSK) with root raised cosine
pulses at symbol rate R = 32 GBaud and roll-
off r = 0.01. Channel power was varied among
P ∈ [−6, −3, 0, 3, 6] dBm. The number of trans-
mitted symbols per channel was set longer than
the maximum walk-off between the edge chan-
nels of the WDM comb, with a minimum of 4096
symbols. To correctly capture at least first order
four wave mixing (FWM) each symbol was dis-
cretized at a rate twice the WDM bandwidth. The
optical link was dispersion uncompensated (span
length 100 km; attenuation α = 0.2 dB/km; nonlin-
ear coefficient γ = 1.3 1/(W·km)) with dispersion
D ∈ [17, 8.5, 4.25, 2.125] ps/(nm·km). Span loss
was recovered after each span, while dispersion
was fully compensated at the coherent receiver.
ASE noise was not included in this work, since it is
generally loaded at the receiver side, hence with-
out impacting the SSFM results. SSFM solved
the Manakov NLSE by using a symmetric SSFM
and step-update rule according to i) the nonlin-
ear phase criterion2, or, ii) constant local error4.
Finally, the signal was coherently detected by us-
ing a matched filter and a data aided 1-tap least

squares butterfly equalizer.
Fig. 2(Left) shows ∆SNR vs. the nonlinear

phase parameter per step ∆φ = γPpLeff(h), with
Leff the effective length in the step of length h,
and Pp WDM peak power. In this graph the num-
ber of channels was 9. ∆φ is the parameter to
setup SSFM according to the nonlinear phase cri-
terion. The smaller the value of ∆φ the longer the
simulation but the better is the accuracy in SNR.
However, the curves are not coinciding at different
channel powers P , thus indicating that the nonlin-
ear phase criterion does not grant a constant rel-
ative SNR error. Normalizing ∆φ to the total input
WDM average power Ptot = Nch · P indeed col-
lapses all curves into one as shown in Fig. 2 (Cen-
ter). This minor modification, besides yielding a
more universal parameter for the SSFM, confirms
that SSFM error scales with P 3 as the NLI. Most
important, Fig. 2 (Center) shows that the accu-
racy, hence the computational effort, is indepen-
dent of transmitted power, as desired.

However, besides the normalization of ∆φ, the
nonlinear phase criterion is unaware of group ve-
locity dispersion (GVD), as visible in Fig. 2 (Right)
where we varied the dispersion and the number
of channels. To solve such a problem we pro-
pose to scale the first step h1 to keep a fixed
maximum FWM phase matching coefficient in that
step: ΦFWM = h1 |β2| (2πBWDM)

2, with β2 the
fiber dispersion and BWDM the WDM signal band-
width. The rationale is that the SSFM should track
the worst case of GVD variation along distance,
hence the highest FWM phase-matching coeffi-
cient. All the remaining steps should be scaled
as in4 to keep a constant local error per step.

Fig. 3 shows ∆SNR versus ΦFWM in the first
step at different number of channels (Left), or
different values of chromatic dispersion (Right).
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Fig. 3: SNR error (∆SNR) vs max ΦFWM in the first SSFM step of a 5× 100 km link by varying (Left): the number of channels and
(Right): the fiber dispersion. Constant local error step updating rule. Each marker refers to set of curves at different input powers
in the range [−6, 6] dBm. The collapse of the curves indicates that ΦFWM is a good parameter to setup the first SSFM step.
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Fig. 4: SNR error (∆SNR) vs max ΦFWM in the first step at
variable number of spans (×100 km). 27 channels WDM sig-
nal. Dispersion D = 17 ps/(nm·km). Input power per channel
P = −6 dBm. Constant local error step updating rule.

Each marker in Fig. 3 is a whole set of curves re-
garding different input powers. Results here are
evaluated after 5 spans since 54 channels simula-
tions at larger distances were not feasible in prac-
tical time. However, this choice is a worst case
for accuracy as we will show next. The collapsing
of the curves supports the choice of ΦFWM as the
right parameter to set up simulations at variable
bandwidth and fiber dispersion.

Fig. 4 shows the dependency of the SNR er-
ror on the number of spans. The main observa-
tion is that the relative SNR error is decreasing
for increasing number of spans. The explanation
is that SSFM error cumulates along distance al-
most incoherently. On the contrary, NLI shows
some spatial coherence, i.e., correlation, along
propagation5, thus growing faster than SSFM er-
ror. The single span is thus a worst case for set-
ting the accuracy of simulations and can be taken
as a conservative choice to setup SSFM.

Conclusions
We analyzed the scaling properties of the numer-
ical error in SSFM simulations focusing on coher-
ent WDM systems up to bandwidths of 2 THz.
We found out that the SSFM error scales with
the cube of power as much as NLI, such that the
relative error on SNR is transmitted power inde-
pendent. We thus suggest to avoid scaling the
step size with the transmitted power as in popu-
lar methods like the nonlinear phase criterion. We
showed that a good way to pick the first step of the
simulation granting a constant SNR error is given
by fixing the maximum FWM phase shift on the
first step. Moreover, we showed that SSFM error
grows along distance at a smaller rate than NLI,
such that sizing SSFM in the single span case is
a conservative choice.
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