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On the Accuracy of Split-Step Fourier Simulations
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Abstract—We investigate the accuracy of wideband split-step
Fourier method (SSFM) simulations by treating SSFM numerical
noise as an additive distributed noise source, much like amplified
spontaneous emission and nonlinear interference. In this frame-
work, we emphasize that the step size of a numerical simulation
targeting a given error on the received signal-to-noise ratio (SNR)
should be launch-power independent, and should scale inversely
with the square of the signal bandwidth. From this we conclude
that the commonly used nonlinear phase criterion for the step up-
date along the distance is not optimal due to its power dependence
and its unawareness of signal bandwidth. We propose a general cri-
terion, based on four-wave mixing control, to set the first step of a
series of exponentially increasing steps at the desired received SNR
accuracy. Finally, we discuss the behavior of the SSFM accuracy
versus step-size showing that at practical accuracies of interest the
well-known arguments based on the Baker–Campbell–Hausdorff
formula may not hold, and explain how to set up a correct SSFM
simulation to target an acceptable SNR error.

Index Terms—Nonlinear phase criterion, numerical simulation,
split-step fourier method.

I. INTRODUCTION

S INCE a closed form solution of the nonlinear Schrödinger
equation (NLSE) does not exist in the general case, nu-

merical algorithms are necessary to estimate the evolution of
the electric field along an optical fiber. Among the algorithms
available in the literature, the split-step Fourier method (SSFM)
is the most widely used for its simplicity and efficiency [1]. The
SSFM discretizes the propagation distance in small steps, and
approximates the propagation within each step by the concate-
nation of elementary operations for which a closed form solution
is available. The elementary operations are usually identified in
the linear/nonlinear effects of the NLSE.

Such a split-step technique unavoidably introduces numer-
ical errors. However, since SSFM is a convergent method,
the numerical error can be mitigated by shortening the steps
at the expense of simulation complexity. The complexity is
generally dominated by the operations performed both in fast
Fourier transforms (FFT) and in the numerical computations
of exponential functions of the linear and nonlinear operators.
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Optimizing the number and the implementation of such opera-
tions is thus extremely important to reduce the computational
effort for a given accuracy.

The first attempt to improve SSFM was to adopt the symmet-
ric splitting technique for the step size, where nonlinearity is
sandwiched between two half-length linear steps. In numerical
analysis, such a rule is also referred to as the Strang splitting
scheme [2]. Although this choice increases the number of op-
erations per step, on a global scale after concatenating many
steps the scheme appears identical to the classical asymmetric
step selection rule except for the first/last step, hence at a minor
additional cost [3]. The symmetric split-step is generally pro-
posed as a better option than the asymmetric split-step because
of a higher order local accuracy, i.e., the local error approaches
zero at least cubically in the step length instead of quadratically
as for the asymmetric split-step. On these grounds, other more
complex methods to increase the order of accuracy with the step
length have been proposed [4], [5].

Most of the investigations in optimizing SSFM have been
focused on variable step-size selection rules [3], [4], [6]–[8].
Bosco et al. [6] proposed a logarithmic variable step-size in
order to efficiently suppress the numerical four-wave mixing
(FWM) enhancement typically arising in constant step dis-
cretization of the fiber [9]. Sinkin et al. [4] proposed an adaptive
step-size method based on estimating and bounding the local er-
ror along propagation. Another popular method is the nonlinear
phase criterion [4], which bounds the maximum amount of non-
linear phase shift in the step. Zhang et al. proposed a variable
step-size rule targeting a given global error [7], [8]. The key
point of this method is to increase the step length on the basis
of the scaling properties of the local error per step with sys-
tem parameters, such as fiber dispersion, attenuation, and signal
bandwidth.

All these studies focused on the relative error introduced by
SSFM, i.e., the numerical error variance normalized to the signal
power. Therefore they concentrate on the accuracy of the elec-
tric field calculation without considering its implications for
signal detection. However, the simulation of modern communi-
cation systems based on coherent detection usually targets an
estimate of the system performance such as the signal-to-noise
ratio (SNR) after matched filter detection. In this framework, a
reliable numerical SSFM should bound the error on the SNR.
From this novel perspective, the numerical error variance should
be compared to the variance of the amplified spontaneous emis-
sion (ASE) and the nonlinear interference (NLI) introduced by
the optical link rather than to the signal power. In this paper, we
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will show the implications that such a different point of view
has on the setup of a numerical SSFM simulation.

So far the computing resources available to simulate opti-
cal propagations have been more than adequate, thus a fine
calibration of SSFM accuracy did not capture much attention.
However, the situation is drastically changing in the near future
since bandwidth-hungry Internet applications are pushing the re-
search into studying the occupation of the whole optical C-band
and beyond [10], [11]. In this new scenario, the computational
effort of trustable SSFM simulations will skyrocket, resulting
in extensive time-consuming simulations even with the help of
graphics processing units (GPUs). A simple argument to under-
stand this claim is the following. For a reliable SSFM, the step
size should be comparable with the characteristic lengths of the
NLSE. Of particular interest is the dispersion length which ex-
presses the distance over which linear effects induce significant
changes on the electric field. Since the dispersion length scales
with the square of the bandwidth, it rapidly gets very small in
a wide bandwidth scenario, thus calling for huge computational
efforts. How the accuracy of the simulation is affected is also
yet to be precisely defined. It is therefore important to minimize
the computational effort of SSFM while being sure to maintain
an acceptable accuracy.

This paper, which is an extension of [12] in terms of both
novel theoretical and numerical results, aims at finding general
scaling rules of the SSFM accuracy and providing simple guide-
lines on how to set up an efficient yet accurate SSFM simulation.
We propose a different framework for the SSFM error analysis,
which is more natural to the system designer that normally ex-
presses the performance in terms of the received SNR. We show
that a given error in decibels (dB) on the SNR is independent
of signal power, hence that there is no need to shorten the steps
at increasing power, as in popular adaptive step size methods
[4], [6]–[8]. Moreover, we discuss the reason of the SSFM ac-
curacy by showing that the global second/first order accuracy of
the symmetric/asymmetric split-step [4], [5], [8], respectively,
holds only at unrealistically high precisions. At practical preci-
sions, the advantage of the symmetric split-step is much more
limited compared to the asymmetric split-step.

In our simulations, we push the signal bandwidth up to 5 THz
so as to cover the whole C-band of Erbium-doped fiber ampli-
fiers (EDFA).

The paper is organized as follows: in Section II we analyze
the SSFM error in the framework of the SNR. In particular,
we propose a new parameter to set SSFM simulations at the
desired SNR error. In Section III we report the main results on
SSFM accuracy arising from such an approach. In Section V
we perform a computational analysis of the SSFM and compare
two popular step-size updating rules in terms of computational
effort. Finally, we draw our main conclusions.

II. SSFM ERROR ANALYSIS

The accuracy of a simulation should be referred to the tar-
get parameter on which performance is evaluated. In coher-
ent optical communications, the performance is typically ex-
pressed in terms of the SNR. The SNR can be usually directly

Fig. 1. Visual representation of an ideal simulation setup. The error bars
on the estimated SNR curve should remain constant whatever the transmitted
signal power. The dashed curve (SNRSSFM) represents the SNR due only to the
numerical error, that should have a fixed gap from the estimated SNR curve.

converted to bit error rate (BER), for instance under the assump-
tion of additive Gaussian noise. In this framework, the accuracy
of the simulation is therefore the accuracy in the SNR estima-
tion. Moreover, since the SNR is generally expressed in decibels,
a reliable SSFM simulation should be such that the SNR is es-
timated with a bounded accuracy error in dB, as sketched in
Fig. 1 by the constant error bars. The dashed line indicates the
SNR considering just the numerical error of the simulation, that
should have a fixed gap in a dB scale from the “true” SNR in
order to have a fixed accuracy. We proceed now to analyze the
numerical error under this novel point of view.

A. Perturbative Analysis of SSFM Error

The propagation equation within an optical fiber is well de-
scribed by the Manakov equation [13], [14], which provides
reliable estimations even over large bandwidths [15]. At coordi-
nate z and time t the Manakov equation in operator notation is:

∂A (z, t)
∂z

= (L + N )A (1)

where A (z, t) = [Ax, Ay ] is the optical signal with Ax and
Ay the polarization tributaries, and the linear and nonlinear
operators are defined respectively as:

L � j
β2

2
∂2

∂t2

NA ≡ N (A) � −j
8
9
γe−αz

(
A†A

)
A (2)

where β2 , α, γ are respectively the chromatic dispersion,
attenuation and nonlinear coefficient of the optical fiber, while
† means transpose-conjugate. With the change of variable
A (z, t) � eLzU (z, t) we can express the NLSE in integral
form (see Appendix A):

U (z, t) = U (0, t) +
∫ z

0
e−LξN (

eLξU (ξ, t)
)

dξ (3)

where U (z, t) is the optical field in a reference system that
tracks all the linear effects.
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There is no general closed-form solution to (3). Two popular
approximated methods properly fix the propagation coordinate
ξ within either U(ξ, t) or eLξ to simplify the problem. For in-
stance, if we force U(ξ, t) ≡ U(0, t) at any coordinate and let
eLξ free to vary with ξ, we can close the integral in (3) obtain-
ing the first-order regular perturbation (RP1), i.e., the first-order
Volterra solution of the NLSE [16]. In this framework, the vari-
ations of eLξ along ξ are analytically integrated for any L, but
unfortunately they are applied to the transmitted signal whatever
the coordinate. This assumption is reliable only if nonlinearity
induces a small perturbation on U from 0 to z.

On the other side, we can concentrate linear effects at a given
coordinate 0 ≤ ξ0 ≤ z and let the approximated solution Û(ξ, t)
free to vary along ξ:

Û (z, t) = U (0, t) + e−Lξ0

∫ z

0
N

(
eLξ0 Û (ξ, t)

)
dξ . (4)

We can still integrate exactly (4) obtaining the SSFM solution,
as shown in Appendix A. In particular, if ξ0 = 0 we get the
asymmetric SSFM, while if ξ0 = z

2 we get the symmetric SSFM.
In this framework, SSFM is thus reliable when linear effects
induce small perturbations on U from 0 to z. The differences
between RP1 and SSFM are similar to the differences between
the Filon’s and the Gaussian quadrature methods for numerical
integration of functions [17].

Both RP1 and SSFM approximate the integral in (3). The
SSFM error eSSFM � U (z, t) − Û (z, t) appears as an additive
perturbation as much as the nonlinear interference (NLI) in-
duced by the Kerr effect on the signal. Hence, under perturbative
assumptions [18]–[21], we may modify the received SNR as:

ŜNR =
P

σ2
ASE + σ2

NLI + σ2
SSFM

(5)

where P is the signal power while σ2
ASE, σ2

NLI and σ2
SSFM are

the variance of amplified spontaneous emission (ASE) noise,
nonlinear interference and SSFM error eSSFM, respectively, all
assumed mutually uncorrelated for simplicity. In the following
we will refer to SNR � ŜNR(σ2

SSFM = 0) as the true, unknown,
SNR. A first consequence of (5) is that the estimation ŜNR is
always smaller than SNR for any link, under the uncorrelation
assumption.

The relative SNR error due to SSFM can be defined as:

SNR

ŜNR
� 1 +

σ2
SSFM

σ2
NLI + σ2

ASE
.

Since all variances are positive, the relative SNR error is a
monotonically decreasing function of σ2

ASE, hence in dB the
error is bounded by:

0 ≤
(

SNR

ŜNR

)

dB

≤
(

1 +
σ2

SSFM

σ2
NLI

)

dB

. (6)

Values of the ratio
(

SNR
ŜNR

)
dB closer to zero indicate accurate

simulations. In the following we will focus on the upper bound
of the SNR error as a worst case target.

Since nonlinearity N in (1) scales as P
√

P , it is convenient
to factor out P 3 and define

aNL � σ2
NLI/P 3 , aSSFM � σ2

SSFM/P 3 . (7)

By the same arguments that show aNL to be almost power in-
dependent at small NLI [21], even aSSFM is reasonably power-
independent at small numerical errors. As a consequence, a
trustable SSFM simulation should target a fixed aSSFM/aNL to
bound a given error in dB on the SNR independently of the
signal power. This criterion is not followed by popular step-size
choices as we will discuss in the next section.

B. Step-Updating Rule and First Step Selection

The SSFM solution consists of discretizing the integral in (4)
as a concatenation of steps. Given a certain number of steps
N , a way to effectively improve the accuracy without affecting
the computational effort is to use variable step-size along the
distance [6]. Different variable step-size updating rules exist
in the literature [3], [4], [6]–[8]. The most widely used is the
nonlinear phase criterion (NLP) [4], which sets the kth step
length hk based on the maximum tolerable nonlinear phase Δφ
accumulated in the step. The value of hk , k = 1, . . . , N , can be
inferred by solving the implicit equation:

Δφ � γPkLeff (hk ) (8)

with γ the nonlinear coefficient of the fiber, Pk the signal peak
power at step input and Leff (hk ) � (1 − e−αhk )/α the step
effective length, with α the power attenuation. The rationale
behind the NLP is that the error is expected to be proportional
to the strength of the nonlinearity. Since nonlinearity manifests
locally as self-phase modulation (SPM), such a strength can be
expressed by the maximum SPM phase Δφ. By matching Δφ
of two consecutive steps the updating rule can be expressed as:

Leff (hk+1) = Leff (hk )
Pk

Pk+1
� Leff (hk ) eαhk (9)

where the last approximation ignores the peak power fluctua-
tions due to chromatic dispersion, thus yielding a step updating
rule coinciding with the logarithmic step-size rule [6]. Since
power decreases along the distance because of attenuation, such
a criterion stretches the step along propagation, thus reducing
the computation time.

Another method proposed by Zhang et al. scales the step
along the distance in order to keep a constant local error (CLE)
[7], [8]. This yields the following step updating rule:

hk+1 = hk

(
Pk

Pk+1

) 1
q

� hke
α
q hk (10)

with q = 2 or 3 depending of the SSFM step type, i.e., asym-
metric or symmetric, respectively.

Note that all such step updating rules are iterative along the
distance, hence a starting value h1 must be chosen. The idea is
that once the starting value has been set with a certain criterion,
the simulation error is kept under control by the step-updating
rule. The first step for the NLP can be inferred from (8) by
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forcing a maximum value to Δφ, obtaining:

h1 =

⎧
⎨

⎩

1
α

log
(

γP1

γP1 − αΔφ

)
γP1 > αΔφ

L else
(11)

with L the fiber length. For the CLE the following expression
for the first step can be inferred from the scaling laws of the
local error with system parameters [7], [8]:

h1 =
ΨG

(γP1)
1

q −1 |β2 |B2
WDM

(12)

with BWDM the WDM signal bandwidth and ΨG a constant
depending on the target global error.

Please note that P1 is the peak power of the WDM signal,
hence it is a function of BWDM. For instance, in a WDM comb
of evenly spaced channels with equal power, P1 scales almost
linearly with BWDM.

It has been shown in [6], [9] that the numerical error of
constant-step size SSFM simulations is mainly given by an over-
estimation of FWM fluctuations along a step. The FWM is best
described in frequency domain, where eq. (3) at frequency f
reads as:

Ũ(z, f) = Ũ(0, f) − j
8
9
γ

∫ z

0

∫∫ ∞

−∞
e−αξ ejΔβξ Ũ(ξ, f + f1)

×
[
Ũ †(ξ, f + f1 + f2)Ũ(ξ, f + f2)

]
df1df2dξ .

The tilde indicates Fourier transform, while FWM is lo-
cally weighted by the function e−αξ ejΔβξ , with Δβ �
(2π)2 β2 (f − f1) (f − f2) the phase matching coefficient1 [1],
[6], [9]. SSFM indeed substitutes ejΔβξ , hence the oscillating
function eLξ in (3), with a ξ-independent operator within each
step. Nonlinearities are thus integrated over a “virtual zero-
dispersion fiber” for such a step length, thus over-estimating the
local FWM accumulation.

In this paper we propose to set h1 to limit the maximum
variation of Δβξ. Since the worst case first-order FWM occurs
for frequencies spaced apart by the signal bandwidth BWDM, a
FWM-aware first step h1 can be set as:

h1 =
ΦFWM

|β2 | (2πBWDM)2 , (13)

where ΦFWM is the maximum tolerable FWM phase shift set by
the user. Such a choice is power independent, thus it does not
affect the accuracy at variable launch power, in agreement with
our discussion in Section II-A. It is worth noting that (13) scales
with BWDM differently of (12) because of the above-mentioned
dependence of P1 on BWDM. All the remaining steps can be
set by using the step updating rule of choice. From now on we
will refer to the NLP and CLE triggered with our FWM-aware
criterion by FWM-NLP and FWM-CLE, respectively.

Each step-updating rule calls for a different value of ΦFWM

for a given accuracy. In Section IV-B (see Fig. 5) we will show

1Such a Δβ neglects third-order dispersion, which may be of concern at very
low values of β2 . However, it is worth noting that SSFM for β2 ,3 = 0 yields
the exact solution.

by numerical simulations that a reasonable and almost universal
value for ΦFWM is 20 rad for the FWM-CLE and 4 rad for the
FWM-NLP.

III. SIMULATIONS SETUP

We investigated the accuracy of the SSFM in a wide range of
scenarios. The tested signal was composed of a wavelength di-
vision multiplexing (WDM) comb of polarization division mul-
tiplexing (PDM) 16 quadrature amplitude modulation (QAM)
channels spaced by Δf = 50 GHz. Each channel had symbol
rate R = 49 GBaud, with root-raised cosine supporting pulses
with roll-off 0.01. The number of channels was varied between
1 and 101 to check the SSFM accuracy at different WDM band-
widths. We thus reached a maximum simulated bandwidth of
B = 5.05 THz, i.e., about the whole C-band. The optical link
was composed of 20 spans, each of length L = 100 km, atten-
uation α = 0.2 dB/km, nonlinear coefficient γ = 1.3 1/W/km
and zero polarization mode dispersion. The fiber dispersion was
varied between 2.125 and 17 ps/nm/km with a third order dis-
persion of 0.057 ps/nm2 /km. All dispersive effects were always
fully recovered at the receiver side. Fiber loss was recovered
by noiseless optical amplifiers span-by-span. We simulated the
link with MATLAB by applying the SSFM to (1). The transmit-
ted sequence length was set longer than the maximum walk-off
length over the whole link between the two border channels of
the WDM comb, with a minimum value of 4096 symbols. Each
symbol was discretized with enough samples to correctly re-
produce at least the bandwidth enlargement of first-order FWM
without aliasing. A more detailed explanation of the choice of
these two parameters is discussed in Appendix B. For efficient
FFTs, both parameters have been rounded off to the closest
larger integer with factorization containing only powers of 2,
3, 5. The receiver detected the central channel of the comb at
λ = 1550 nm. It was optimized for linear transmission, hence
based on a cascade of a matched filter followed by a one tap
least squares butterfly equalizer able to recover the average po-
larization/phase mismatch.2

Since a closed form solution of the NLSE is unavailable, we
define the SSFM error variance σ2

SSFM at the end of the link as:

σ2
SSFM � var

[
Â − Aacc

]

with Â the current SSFM estimation under investigation and
Aacc our most accurate SSFM solution. We obtained Aacc by
running simulations at increasing accuracy until observing sat-
uration of ŜNR. Saturation was reached when the difference of
ŜNR between two consecutive runs was less than 0.0005 dB.
From Aacc we also estimated the unit-power NLI variance aNL

(7) from the constellation clouds.3 The accuracy of the variable
step-size rules under analysis was investigated by varying the
first step size h1 over a logarithmic grid, i.e., by reducing h1 by
a factor

√
2 between two consecutive runs.

2By increasing the number of taps we did not observe any significant change
in the SNR (<0.01 dB).

3aNL is defined as the variance of A acce
−j ϕ −A tx

P
√

P
with Atx the transmitted

signal and ϕ the average phase rotation induced by the link.
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Fig. 2. Estimated cross-channel âNL (7) of a 2-channel simulation at variable
channel spacing. Solid lines: Original NLP at various values of Δφ; dashed-line:
Accurate SSFM with FWM-NLP at ΦFWM = 4 rad.

IV. NUMERICAL RESULTS

A first evidence of the importance of relating the step size to
the signal properties is reported in Fig. 2. The figure shows the
estimated unit-power NLI variance âNL, affected by numerical
noise, for a 2-channel WDM at variable channel spacing. The
NLI variance refers to cross-channel interference only, being
estimated by removing self-channel distortion from the detected
signal. Power was 0 dBm while the link was just one SMF
span. In this simplified scenario âNL is expected to be inversely
proportional to the channel spacing [23]. However, this is not the
case for the original NLP (solid curves) which saturates after
a given channel spacing, depending on the value Δφ. This is
a numerical artifact that can be removed by accounting for the
signal bandwidth in the step-size selection, e.g., by starting NLP
with our FWM-aware first step choice, as we did for the dashed
line in Fig. 2 with ΦFWM = 4 rad.

We proceed now to show the accuracy dependence on signal
and fiber parameters of fully loaded WDM signals.

A. Power Dependence of the SSFM Error

We first checked the dependence of the symmetric SSFM
accuracy with the signal power. We compared the nonlinear
phase (9) and the constant local error (10) step-updating rules,
started with either their corresponding original first step-size
choices (11)–(12), or with our FWM-aware choice (13) based
on fixing the maximum FWM phase ΦFWM in the first step.

The SSFM accuracy, expressed in terms of the ratio
aSSFM/aNL (see (7) where σ2

SSFM/σ2
NLI ≡ aSSFM/aNL) is re-

ported in Fig. 3 for a 20 × 100 km single mode fiber (SMF)
link (D = 17 ps/nm/km) versus channel power. Small values
of aSSFM/aNL indicate an accurate simulation, as visible in the
graph by looking at the right vertical axis reporting the SNR rel-
ative error, which is related to aSSFM/aNL by (6)–(7). Although
the SNR error is the key performance estimator, it may be more
useful to evaluate aSSFM/aNL which is more sensitive to small
variations of SSFM noise. Please note that at P = 0 dBm our
most accurate estimation yielded aNL = 9.3 · 10−3 mW−2 .

We set the first step per span h1 equal to 20, 40 or 400 m at
P = 0 dBm (Fig. 3(a), (b) and (c), respectively). For different
powers we either chose h1 according to the original indications

of the NLP, eq. (11), and the CLE, eq (12), respectively, or by
keeping it constant as suggested by our FWM-aware proposal
(13) (FWM-NLP/FWM-CLE). From the figures we note that our
choice (13) grants an almost constant error whatever the power,
thus conforming to our expectations, as discussed in Section II
and Fig. 1. The original NLP and the CLE methods instead
shorten the first step at increasing power, thereby excessively
increasing the accuracy at large powers, thus resulting in an
increasing waste of computational resources.

For big first step-size (Fig. 3c) even for FWM-NLP/FWM-
CLE the accuracy becomes non-flat at high power, although
resulting in decreasing SNR error, thus keeping the estimations
conservative.

B. Dispersion and Bandwidth Dependence of SSFM Error

To study the dependence of the accuracy on dispersion and
bandwidth, we analyzed the scaling of the ratio aSSFM/aNL at
variable ΦFWM in a 101 channel WDM signal at fixed launch
power per channel P = 0 dBm. We first report the SSFM relative
error versus fiber dispersion in Fig. 4(a), for the symmetric
SSFM and the two step-size updating rules considered in the
previous section started with our FWM-aware first step choice
(13), namely FWM-NLP and FWM-CLE. Each curve refers to
a different value of fiber dispersion. Note that increasing ΦFWM

means increasing the step size, i.e., decreasing the accuracy of
the simulation. Both step-size updating rules show overlapping
curves at the various dispersions. Hence, fixing a value of ΦFWM

grants the same accuracy at all considered dispersions. Our
FWM-aware choice on the first step (13) is thus able to track the
accuracy variations due to fiber dispersion. This is not the case
for the original NLP (11), reported in Fig. 4(b), which is unaware
of the fiber dispersion. It is worth noting that for the 101 channel
WDM system at a typical channel launch power of 0 dBm an
SNR error smaller than 0.01 dB calls for a Δφ < 2 · 10−4 rad at
D = 17 ps/nm/km, a value well below the typical values usually
found in the literature.

The dependence of the accuracy on the signal bandwidth is
instead reported in Fig. 5 for the symmetric SSFM. We plotted
the ratio aSSFM/aNL versus the maximum FWM phase shift
ΦFWM in the first step for both the FWM-NLP and FWM-CLE.
Each curve in the plots refers to a WDM signal with a different
number of channels, starting from a single-channel transmission
and up to 101 channels, i.e., a full C-band WDM system. All
the curves with more than 3 channels overlap, which highlights
the insensitivity of our choice (13) based on ΦFWM to the total
system bandwidth. As we can see from Fig. 5, a reasonable
target SNR error of 0.01 dB can be reached with ΦFWM equal
to � 20 rad and � 4 rad for the FWM-CLE and the FWM-NLP,
respectively.

C. Distance Dependence of SSFM Error

The dependence of SSFM accuracy on propagation distance
is shown in Fig. 6. We plotted the variations of aSSFM/aNL

versus the number of spans at a fixed value of FWM phase shift
in the first step, chosen equal to ΦFWM = 20 rad, which yields
a practical value of accuracy for the FWM-CLE as reported
in the previous section. We observe that aSSFM/aNL in Fig. 6
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Fig. 3. SSFM accuracy aSSFM/aNL vs channel power. The right vertical axis also reports the corresponding SNR relative error. We compare the original
nonlinear phase criterion (NLP, eqs. (9), (11)) and the original constant local error method (CLE, eqs. (10), (12)) with our FWM-aware extensions FWM-CLE
and FWM-NLP. The first step was set at P = 0 dBm to (a) h1 = 20 m, (b) h1 = 40 m and (c) h1 = 400 m and scaled by varying signal power according to the
method under analysis. 27 channels WDM signal, 20 × 100 km SMF link. SSFM with symmetric step.

Fig. 4. (a) aSSFM/aNL as a function of ΦFWM in the first step. (b) Same as
plot (a) but with only the NLP started with its original criterion (11) based on
Δφ. 101 channel WDM signal (bandwidth of 5 THz). 20 × 100 km link with
variable dispersion. Symmetric SSFM. The corresponding SNR error is shown
in the right vertical axis.

decreases for increasing number of spans at all bandwidths under
investigation, reaching saturation after roughly ten spans. The
one span case is thus a worst case for accuracy. The reason
for such a decrease is that aNL grows faster with distance with
respect to aSSFM, as shown in the inset of Fig. 6. Here we plot
separately the accumulation of aNL and aSSFM along the spans
for 101 and 51 channel signals. The reason of such a faster-than-
linear growth of aNL with distance [21], [22] is related to either
the spatial-correlation of NLI [20] and to the impact of signal
higher-order statistics in the first spans [19]. On the other hand,
we found that aSSFM approaches asymptotically a linear growth

Fig. 5. aSSFM/aNL as a function of ΦFWM in the first step for the two different
step-updating rules indicated in the graph. Variable number of WDM channels
from 1 to 101 (bandwidth of 5 THz). 20 × 100 km SMF link. Symmetric SSFM.
The right axis shows the corresponding SNR error.

Fig. 6. aNL/aSSFM versus number of spans (× 100 km) at fixed ΦFWM =
20 rad. 101 and 51 channel WDM over SMF. Symmetric SSFM with FWM-
CLE. Inset: accumulation of aNL and aSSFM along the number of spans. The
curves have been normalized to their value at 1 span for an easy comparison.

for both shown bandwidths. This observation suggests that the
SSFM error accumulates approximately incoherently along the
distance, a point that we will explore in more detail in the next
Section. Even if not reported here to not overcrowd the figure,
similar results have been found for all the other considered
bandwidths.
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Fig. 7. aSSFM/aNL vs ΦFWM in the first step for a 7 channels WDM signal
over a single SMF span. FWM-NLP and FWM-CLE with asymmetric and
symmetric SSFM.

V. COMPUTATIONAL ANALYSIS

According to the Baker-Hausdorff formula, the asymmet-
ric and symmetric SSFM error scales locally with O(h2) and
O(h3), respectively, with h the step length. Common wisdom
is that the corresponding global error with constant step-size
scales respectively with O(h) and O(h2) [4], [5], [8], similarly
to what happens in approximating the integral of a function
with the left-point or mid-point rectangle rule. This observation
is motivated by the similarities between SSFM and numerical
integration, as shown in Section II-A.

In the framework of numerical integration, the global trun-
cation error of the composite left/mid-point rule applied to the
integral

∫ z

0 f(ξ)dξ is [24]:

eG =

⎧
⎨

⎩

∑N
k=1

1
2 h2f ′ (ξk ) Asymm. step

∑N
k=1

1
24 h3f ′′ (ξk ) Symm. step

(14)

where f ′ and f ′′ indicate the first and second derivative of the
integrand function, respectively. ξk is an unknown coordinate
inside the kth step, thus f ′ (ξk ) and f ′′ (ξk ) are random pro-
cesses. In the limit of h → 0, hence N → ∞, the approxima-
tion

∑
k f (n)(ξk )h ∼ ∫

f (n)(ξ)dξ, whose result is independent
of h, is used to prove the mentioned scaling properties of local
and global error [24]. The variance of eG thus scales with O(h2)
and O(h4) for the left and mid-point rule, respectively.

However, it is worth noting that for increasing step-size such
an approximation breaks down. In this scenario, the function f
is likely to experience many fluctuations within a step, hence the
local errors of both the left and mid-point rule are expected to be
independent step-by-step. Under ergodic assumptions, they are
also identically distributed step-by-step. This way, the numerical
integration is more similar to Monte Carlo integration, where
the global error variance scales with the inverse of the number
of steps, i.e., linearly with the step length h. It is worth noting
that such an observation corresponds to having in (14) hf ′ (ξk )
and h2f ′′ (ξk ) independent and identically distributed random
processes in k.

Such a reasoning holds even for SSFM, as confirmed by Fig. 7,
which shows the ratio aSSFM/aNL for a 7 channel WDM signal

Fig. 8. (a) aSSFM/aNL vs number of steps for a 101 channels over a single
SMF span and (b) corresponding complexity increment of FWM-NLP with
respect to FWM-CLE for asymmetric and symmetric SSFM.

at P = 0 dBm over a single SMF span versus ΦFWM in the first
step. We chose such a small bandwidth to push the simulations
up to very high accuracy in a reasonable amount of time. Here
the step size is adaptive with different algorithms, hence we
focused on the scaling properties with respect to the first step
h1 . Instead of h1 we report on the x-axis ΦFWM according to (13)
which is our target parameter for setting up a SSFM simulation
as shown in the previous sections. It is worth noting that the
scaling properties predicted by the Baker-Hausdorff formula
appear only at h1 
 1, i.e., at very small SNR errors usually
not of interest, while for coarse steps all the methods converge
to the Monte Carlo integration scaling described above. The
Monte Carlo region is indeed of particular interest in coarse
approximations of SSFM, such as for digital back-propagation
techniques for nonlinearity mitigation [25].

In order to compare how such error scaling rules affect the
computational effort, we plotted in Fig. 8 a the target aSSFM/aNL

versus the number of steps for both the FWM-NLP and the
FWM-CLE either with asymmetric and symmetric SSFM. The
signal here was composed of 101 channels, i.e., the whole C-
band. The symmetric SSFM was implemented by combining
the linear operators of two consecutive steps as in [3] to have
a complexity comparable with that of the asymmetric SSFM.
The first observation is that, with the FWM-NLP, asymmetric
and symmetric SSFM curves overlap, thus they perform iden-
tically at practical accuracy. Moreover, the CLE step-updating
rule, which was derived in the region for h 
 1, is not opti-
mal anymore. With coarse steps, we found more efficient the
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FWM-NLP as depicted in Fig. 8(b) for the same 101 channel
signal. Here we plot the percentage increment of complexity by
using the FWM-NLP with respect to the FWM-CLE versus the
target aSSFM/aNL. The increment is defined as NNLP−NCLE

NCLE
, with

NNLP and NCLE the number of steps yielding a given accuracy
for the two above-mentioned rules, respectively. At small values
of aSSFM/aNL the FWM-CLE is more and more efficient, both
with symmetric and asymmetric SSFM, while for higher values
of aSSFM/aNL the saturation of the curves on a negative percent-
age indicates a complexity reduction by using the FWM-NLP.
Even if not reported here, similar results have been found for all
the bandwidths under analysis.

VI. CONCLUSION

We investigated the accuracy of SSFM in the framework of
the perturbative solution of the Manakov equation, thus treat-
ing the SSFM error as a distributed additive interference. We
pushed the signal bandwidth up to 5 THz, i.e., the whole C-
band. With our new FWM-aware suggested choice of the initial
step size, eq. (13), we showed that the numerical relative error
on the SNR at the receiver side is signal-power independent,
with a variance scaling with the square of the bandwidth. This
behavior is in contrast with the widely used nonlinear phase
criterion for step size setup which is power-dependent and un-
aware of the signal bandwidth, and with the constant local error
criterion, which is bandwidth-aware but still power-dependent.
In particular, the nonlinear phase criterion showed to be reliable
in our 5 THz setup at 0 dBm only for a maximum nonlinear
phase per step smaller than 2 · 10−4 rad, a value usually smaller
than what is used in the literature. Our initial step choice pro-
posal (13) based on bounding the amount of FWM phase shift
inside the first step grants an almost-constant accuracy of the
simulation at variable signal power, fiber parameters and signal
bandwidth. This is extremely useful as a plug-and-play univer-
sal SSFM setup in today’s ultra-wideband systems simulations
with guaranteed SNR accuracy.

Moreover, we compared in terms of complexity two popular
step-updating rules, i.e., the one implicit in the nonlinear phase
criterion and another one based on keeping a constant local error
in the step, for a wide range of SNR accuracy. We showed that
the assumptions at the basis of the constant local error rule hold
only for very accurate simulations, i.e., for very small steps. On
the contrary, for coarse steps we found more efficient the step-
updating rule given by the nonlinear phase criterion, which can
thus find application in coarse SSFM implementations such as
digital back-propagation. Finally, we gave general indications
on how to set up a correct SSFM simulation in terms of sequence
length and signal discretization.

APPENDIX A
SSFM AS NUMERICAL INTEGRATION

In this Appendix, we derive the asymmetric and symmetric
step SSFM from the integral form of the NLSE. We start from
the NLSE:

∂A

∂z
= (L + N )A

where L and N are defined in (2). In the reference system
tracking linear effects, i.e., A(z, t) � eLzU(z, t), we have:

∂U

∂z
= e−LzN (

eLzU
)

where eLz can be read as a shorthand notation for the linear
convolution with linear effects. In integral form the differential
equation takes the expression:

U (z, t) = U (0, t) +
∫ z

0
e−LξN (

eLξU (ξ, t)
)

dξ.

The key idea of SSFM is to substitute eLξ with eLξ0 , with ξ0 a
fixed coordinate within the step [0, z], such that we get:

U (z, t) � U (0, t) + e−Lξ0

∫ z

0
N (

eLξ0 U (ξ, t)
)

dξ .

By the change of variable E (z, t) � eLξ0 U (z, t) we have

E (z, t) = E (0, t) +
∫ z

0
N (E (ξ, t)) dξ

whose closed form solution is E (z, t) = e
∫ z

0 NdξE (0, t). Since
E (z, t) = eL(ξ0 −z )A (z, t), in the original reference system we
have:

A (z, t) � eL(z−ξ0 )e
∫ z

0 Ndξ eLξ0 A (0, t) .

Finally, by substituting ξ0 = 0 and ξ0 = z
2 we obtain the asym-

metric and symmetric step SSFM:

A(z, t) �
{

eLz e
∫ z

0 NdξA (0, t) asymm-step

eL
z
2 e

∫ z
0 Ndξ eL

z
2 A (0, t) symm-step .

APPENDIX B
SIGNAL DISCRETIZATION

In this Appendix we provide general rules to set up an accurate
SSFM simulation.

A. Numerical Bandwidth

Signals have to be sampled in a numerical simulation. The
correct number of samples Nt per symbol to avoid frequency
aliasing on a digital signal is given by the Nyquist-Shannon
theorem and must satisfy:

BNt � NtR ≥ κ · BWDM

where R is the channel symbol rate and BWDM the bandwidth
of the signal entering the fiber. κ ≥ 1 is an expansion factor
to account for the signal bandwidth enlargement due to FWM.
Such a factor is set by the user depending on how much FWM
one wants to correctly reproduce. For example, to avoid aliasing
on the first-order FWM, the simulation bandwidth should be set
to BNt ≥ 3BWDM as sketched in Fig. 9. By defining FWMout,
FWMin and FWMCUT the first order FWM falling outside the
WDM bandwidth BWDM, inside the WDM bandwidth and inside
the bandwidth of the channel under test (CUT), Table I reports
the minimum value of BNt needed to avoid aliasing on each
FWM component.
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Fig. 9. Sketch of the FWM-aliasing problem due to discretization. The first-
order FWM does not induce aliasing for a simulation bandwidth BNt ≥ 3BWDM.
BCUT is the bandwidth of the channel under test.

TABLE I
NUMERICAL BANDWIDTH BNt SETUP TO CORRECTLY

REPRODUCE FIRST ORDER FWM

B. Sequence Length

While propagating a WDM signal along an optical link, each
channel experiences a specific group delay. Since digital se-
quences are intrinsically periodic due to discrete Fourier trans-
form operations, if the walk-off is longer than the sequence
length temporal-aliasing occurs, which can lead to artificial
correlations in circular convolutions. To completely avoid this
numerical artifact the sequence length Nseq should be longer
than the maximum walk-off between the side frequencies of the
WDM signal, i.e.:

Nseq = |Dcum|BWDM
λ2

c
R · 10−3 [symbols]

where BWDM [GHz] is the WDM bandwidth, R [Gbaud] the
channel symbol rate, λ [nm] the central wavelength of the WDM
comb, c [m/s] the speed of light, Dcum [ps/nm] the peak-to-peak
accumulated dispersion along the link. In particular, for disper-
sion uncompensated links Dcum is the dispersion accumulated
from input to output.

As a reference, the 101-channel curves of Fig. 5 (BWDM =
5 THz) call for Nseq > 66709 symbols.
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