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Abstract We propose an alternative analysis of the impact of nonlinear phase noise in DPSK systems with realistic
receivers, showing that ASE noise is Gaussian after practical optical filtering, which allows using known exact BER
formulae.

Introduction
The most limiting impairment for phase-modulated
long-haul optical systems is nonlinear phase noise, i.e.,
the amplitude to phase-noise conversion due to the in-
teraction between the transmitted signal and the am-
plified spontaneous emission (ASE) noise of the in-line
amplifiers in presence of Kerr nonlinearities. Because
of such interaction, also known as parametric gain
(PG) [1], the Gaussian white ASE noise gets colored
during propagation and its statistics are changed. Sev-
eral models have been proposed for the performance
evaluation of differential phase shift keying (DPSK)
systems in presence of nonlinear phase noise [2–5].
For instance, Ho [3] computed the probability density
function (PDF) of nonlinear phase noise at zero group
velocity dispersion (GVD). In the same case, Mecozzi
[2] computed the n-th order moments of the optical field
before the receiver. In [4] the authors showed that
the received phase difference noise can be assumed
Gaussian when GVD is included. However, all these
models do not realistically take into account the im-
pact of practical optical and electrical filters on phase
noise statistics at the receiver. In this work, we tackle
the bit-error rate (BER) of DPSK modulated signals
when realistic receivers are used, showing that optical
filtering at the receiver recovers the Gaussian statis-
tics of the optical ASE noise. To this aim, we prefer
not to focus on the statistical behaviour of the received
differential phase, but concentrate on the statistics of
the real and imaginary optical ASE components. We
prove that after optical filtering such components well
follow a jointly Gaussian PDF both without and with
the inclusion of fibre GVD. In the first case, the exact
BER is computed and validated down to BER = 10−10

making use of a multicanonical Monte Carlo (MMC)
method [6]. In the second case, we already proposed
a small-signal model for ASE noise statistics [1], that
here we compare to MMC numerical simulations of 10
Gb/s dispersion-managed DPSK systems.

Theory
We now focus on the exact BER evaluation based
on the sampled current Ik = ℜ{E(t)E∗(t − T )} ⊗
hR(t) |t=tk , where E(t) is the received signal (plus
noise) after optical filtering, T is the bit time delay due
to the Mach-Zehnder interferometer, hR(t) is the post-
detection electrical filter and ⊗ indicates linear convo-
lution. In the absence of GVD, even in nonlinear regime
the ASE noise remains white over the bandwidth of the

in-line amplifiers. If such bandwidth is much larger than
that of the optical filter (Bo), as it usually happens, at
the optical filter output the ASE noise turns out to be a
complex Wiener process, which is Gaussian whatever
the distribution of the input noise. Consequently, the
statistics of the process E(t) are completely identified
by its covariance matrix and average value, and they
are sufficient for BER evaluation. Hence, there is no
need of computing the exact PDF of phase noise [3,4].
The n-th order moments of the optical field are explicitly
given in [2] for an infinite-span link before optical filter-
ing and they are referred to a proper optical bandwidth
BM (at most that of the in-line amplifiers) which repre-
sents the PG bandwidth of the link. From linear system
theory such moments can be related to those of E(t).
By exploiting the covariance matrix’s eigenvalues and
the average value of E(t) the exact moment generat-
ing function (MGF) of Ik can be evaluated as in [1]. By
means of the numerical inverse Laplace transform of
such MGF the exact BER is also derived. For instance,
in the case of a rectangular optical filter and an inte-
grate and dump electrical filter, the MGF is:
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where: M = BoT ; ηR and ηI are the energy per bit of
the real and imaginary parts of E(t), including noise-
induced depletion [2]; the terms β1,2 = 2λ1,2σ2 ac-
count for PG effects, being λ1,2 the eigenvalues of
the ASE covariance matrix and σ2 the ASE one-sided
power spectral density per component in absence of
PG. In (1) the ASE on the orthogonal polarization has
been neglected.
In presence of both GVD and Kerr nonlinearities, we
will see that ASE can still be assumed Gaussian af-
ter optical filtering. Plausibility of such a result comes
from the following observations: 1) with only the linear
effect of GVD, ASE noise is exactly Gaussian; 2) with
only self-phase modulation (SPM), as above demon-
strated, ASE is Gaussian after the optical filter provided
that BM � Bo; 3) in the middle case, when GVD and
SPM interact, the noise is filtered over a PG bandwidth
depending on the system parameters. If such band-
width is still larger than Bo, at the optical filter output a
Wiener process is still obtained. However, it is worth
noting that fibre dispersion introduces a memory effect
which, during propagation, limits the noise PG-inflation
and accelerates the convergence towards a Gaussian
PDF. We prove these statements in the next section.



5 6 7 8 9 10 11 12 13
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

OSNR [dB]

B
ER

B
M

 = 160 GHz
B

M
 = 80 GHz

back−to−back 
MMC
 

Fig. 1: BER vs OSNR in absence of GVD. ΦNL = 0.2π.
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Fig. 2: Joint PDF of ASE real and imaginary parts after
optical filter. (Left) MC simulations; (right) theory.

From these arguments, a small-signal assumption on
ASE is reliable to derive the noise covariance matrix.
In the hypothesis of a transmitted continuous wave, a
closed-form of such a matrix can be found in [1] or, al-
ternatively, it can be numerically inferred from the mod-
els in [5,6]. The BER is then evaluated with a Karhunen
Loéve method for quadratic receivers [1].

Results and discussion
In Fig. 1 we compare our theoretical BER to MMC sim-
ulations in the case of a constant envelope DPSK sig-
nal propagating in absence of GVD on a N × 100 km
link, N = 20, with fibre attenuation α = 0.2 dB/km and
nonlinear coefficient γ = 1.7 1/W/km. The average cu-
mulated nonlinear phase ΦNL = γLe f f PavN was 0.2π
rad, being Le f f the fibre effective length and Pav the
transmitted average power. At the receiver a 6-th or-
der Butterworth optical filter with B0 = 15 GHz and a
5-th order Bessel electrical filter with bandwidth of 6.5
GHz were used. Thanks to the efficient MMC numeri-
cal technique [6], 5 ·104 samples were enough to eval-
uate BER down to 10−12 with 15 iterations. We investi-
gated the two cases BM = 80 GHz and BM = 160 GHz,
which give at least 2 dB penalty for PG. Theory shows
an excellent agreement with MMC for both bandwidths,
confirming the validity of the Gaussian model even at
low OSNR and with strong PG.
In Fig. 2 the contour plots of the joint PDF of real and
imaginary ASE components are measured after a 6-
th order Butterworth optical filter with B0 = 30 GHz.
A constant envelope signal with ΦNL = 0.2π rad was
propagated on a 20× 100 km link with a transmission
fibre dispersion DT x = 4 ps/nm/km. Each span had an
in-line dispersion of -35 ps/nm. We applied our small-
signal model [1] in the right figure, while the left one
was obtained with 2 · 10−6 samples of a pure Monte
Carlo (MC) simulation which allowed to reliably resolve
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Fig. 3: (Left) Q factor vs DT x; (right) average CDF for
DT x = 2 ps/nm/km

the PDF tails down to 10−5 (last level in the contours).
Simulations well resemble the elliptical shape of the
theoretical Gaussian PDF contours [1].
In Fig. 3 we show the Q factor Q =

√
2erfc−1 (2BER)

of a single-channel DPSK signal propagating at 10
Gb/s on a 20 × 100 km link with varying DT x. The
in-line dispersion was fixed to 88%, while the pre-
and post-compensation dispersions were optimized for
each DT x. The same receiver and ΦNL of Fig.1 were
used with a transmitted 32-bit pseudo-random bit se-
quence. The results given by our small-signal model
(solid line) are compared to MMC simulations (circles).
The Q factor of the back-to-back system was 15.1 dB.
A good match between theory and MMC simulations
is shown for each fibre dispersion. The reason of the
good match is understood from the right figure, where
the cumulative distribution function (CDF), averaged
over the received 1s, is drawn vs. the normalized cur-
rent for DT X = 2 ps/nm/km. Theory (solid line) and
MMC simulation (circles) are seen to well agree down
to 10−10. To clarify the role of PG on this DPSK sys-
tem, in Fig. 3 (left) we also included (dashed line) the
performance of a 37-channel system propagating on
the same link in absence of PG and with a channel
spacing of 50 GHz, where cross-channel nonlinearity
dominates. We see that PG dominates over cross-
channel nonlinearity for DT x larger than 2.5 ps/nm/km.

Conclusions
In this work we proposed an alternative analysis of the
nonlinear phase noise impact on DPSK systems. The
basic idea is focusing on the statistics of the real and
imaginary ASE components before photo-detection,
which are shown to recover their Gaussian shape after
usual optical filtering. With only SPM, an exact BER
formula can be derived by inverting the current MGF.
When GVD is non-zero, a small-signal model for PG
can be applied to BER evaluation. We validated our
analysis by MMC simulations down to BER of 10−10.
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