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Abstract Raman amplification will, in a closer future,
penetrate into the access network, bringing new challenges
and difficulties to be overcome. In this article, we present
the performance assessment of Raman amplification solu-
tions suitable for Coarse Wavelength Division Multiplexing
(CWDM) access networks applications. For this purpose, a
pumping scheme with three lasers allows a bandwidth of
78 nm which is suitable for four CWDM channels. For this
scheme, the gain and noise figure dependence with the pump-
ing configuration was evaluated. The gain equalization was
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experimentally obtained based on a previously developed
model using the Genetic Algorithm (GA) for pump alloca-
tion. A comparative study of Raman amplification in differ-
ent types of Raman fibers (single mode fiber and dispersion
shifted fiber) is also presented as well as the use of composite
links. Those applications were tested in a local network and
the obtained results comply with the modeling foreknowl-
edge, showing the feasibility of Raman amplification over
CWDM networks.

Keywords Raman fiber amplifiers - Access networks -
Coarse wavelength division multiplexing - Broadband
amplification - Pump allocation

1 Introduction

The increasing demand of broadband applications will soon
outgrow the capacity of first generation access networks.
Wavelength Division Multiplexing (WDM) seems to be a
good solution to extend the capacity of optical networks
without drastically changing the present fiber infrastructure.
Actually, this technology can provide a virtual point-to-point
link to each end user over Passive Optical Networks (PON)
with simple Media Access Control protocols. This procedure
enables the upgradeability of security levels and simplifies
the network management [1]. Nowadays, WDM exists in
two formats: Dense WDM (DWDM) working in the C and
L spectral windows, allocating a maximum of 150 channels
spaced by 100 GHz [2], and Coarse WDM (CWDM) work-
ing on the O, E, S, C, and L spectral windows, allocating a
maximum of 18 channels spaced by 20nm [3].

CWDM presents several cost benefits related to the use
of affordable components. Due to the wide channel spac-
ing, it is no longer necessary to stabilize the temperature of
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laser sources and filters. However, there are some impor-
tant issues such as the lack of an efficient optical amplifi-
cation over such a wide bandwidth. A possible upgrade for
a network is to first use CWDM and then insert DWDM
channels in the C-band without disturbing the existing trans-
mission, but optical amplification is still a matter of concern
[1]. The key challenge for the amplification in CWDM sys-
tems is the large optical spectrum that the amplifier must
cover.

Raman Fiber Amplifiers (RFA) are emerging as a promis-
ing technology owing to the theoretical possibility to obtain
gain at any spectral region. Thus, a wide and flat spectral gain
is achievable, thanks to the combination of several pump-
ing lasers operating at specific powers and wavelengths. The
composite amplification is determined from the mutual inter-
actions among the pumps and signals, and gain spectra as
wide as 100 nm were obtained using multiple pumping lasers
[4]. Initially, the expensive high-power pumping lasers
needed for Raman amplification have discouraged commer-
cial interest in that kind of solution. By the last decade of
the twentieth century, the Erbium Doped Fiber Amplifier
(EDFA) seemed to be the most convenient reasonable choice,
but the astonishing growing demand in terms of transmission
capacity has saturated the entire spectral band of the EDFA.
Hopefully, the development and commercialization at a rea-
sonable cost of high-power pump laser will renew the interest
in Raman amplification, which appears as a good solution for
broadband applications, such as CWDM.

Another relevant aspect in the evolution of the optical net-
works is the heterogeneity of the fiber structure, being pos-
sible to find in the same link spans with the different fiber
types. This could be due to several aspects, such as opera-
tional condition, upgrade strategy or even difficulty to replace
old spans with the same type of fiber. Therefore, the study of
Raman amplification in composite link could give guidelines
for the real network behavior.

In this work, a methodology for the design of broadband
RFA for CWDM applications is presented. The article is
organized as follows: in Sect. 2, the Raman amplification the-
ory is presented. This section also focuses on the use of two
different types of optical fibers, standard single mode fiber
(SMF) and dispersion shifted fiber (DSF), in Raman appli-
cations. In Sect. 3, a draft of the use of Raman amplification
in access networks is presented with a procedure to enlarge
the gain bandwidth and flatten its profile that makes use of
Genetic Algorithms (GA). The experimental results are pre-
sented enhancing the effect of changes in the pumping power
and configuration in the system performance. Comparative
results of the use of DSF and SMF in fiber links are presented,
as well as the use of composite links. The gain flattening
results obtained from the GA simulations are also compared
with the experimental ones. Finally, in Sect. 4 the main con-
clusions are drawn.
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2 Raman amplification theory

Modeling of power evolution in multipump Raman amplifi-
ers, in steady state, is based on a unified treatment of
information carrying signals, pumping signals, and ampli-
fied spontaneous emission (ASE). The modeling accounts
the major interactions that include the pump-to-pump,
signal-to-signal, and pump-to-signal power transfer, attenu-
ation, Rayleigh backscattering, spontaneous Raman scatter-
ing, and their temperature dependence. The effects that were
excluded are anti-Stokes generation, polarization dependent
gain, time dependence, and nonlinear index effects. For a
system with N, pumping signals, Ns information carrying
signals and Nasg spectral components, the power evolu-
tion along the fiber distance is given by the following set
of Np + Ns + 2Nasg coupled differential Egs., [S]:
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The =+ signs stand for the forward or backward propagat-
ing waves, being o; and y; the coefficients of attenuation
and Rayleigh backscattering of the ith wave at frequency v,
respectively. & and kg are the Planck’s and Boltzmann’s con-
stants, respectively, whereas T is the fiber absolute temper-
ature. The Raman gain efficiency, g;; [W~Im~!], accounts
for the strength of the signal coupling via stimulated Raman
scattering. This quantity varies according to the fiber types,
depending upon their effective area, Aefr, and Raman coef-
ficient, gg, as follows:

_ 8r (v —v))

J— 2
8ij Mo (2)

From (2) it is clear that gain efficiency can be varied by using
different types of fiber. For comparison, SMF and DSF pres-
ent different values of Raman gain efficiency because they
differ in both effective area and Raman coefficient. Since,
DSF presents a smaller area and a higher Raman coeffi-
cient than SMF, its Raman efficiency is sensibly improved,
as depicted in Fig. 1.
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Fig. 1 Raman gain efficiency profiles for a 1,510-nm pump in two
different types of fiber: SMF and DSF [6]

When an amplification scheme has to be designed, the
proper selection of the fiber must be accounted for. In dis-
tributed amplification, the fiber losses are counterbalanced
along the transmission, since the amplification fiber is the
one used for transmission. For discrete amplification, a link
with a different type of fiber can be used, as well as a com-
posite link. Nevertheless, the fundamental issue is to increase
the gain efficiency.

The use of multipump amplification schemes instead of
single pump has proved to be valuable for CWDM systems
since gain exists at any wavelength as long as the pump wave-
length is properly chosen, multiple pumps will provide gain
spectra that are broader and flatter. A flat spectral gain profile
is achievable with the combination of several pumping lasers
operating at specific powers and wavelengths. The technique
that selects the appropriate wavelengths and power levels of
the pumps is known as pump allocation. Among the numer-
ical optimization methods available to perform this task,
Genetic Algorithms (pure or associated with other search
methods) appear as a suitable solution [7].

3 Raman amplification in access networks
3.1 Single pump versus multipump

An important feature to properly design an amplification
scheme is the evaluation of the information channels band-
width that is needed and the channel spacing. In CWDM,
both bandwidth and channel spacing are large, therefore, we
have to choose the most adequate pumping scheme that pro-
duces a flat spectrum gain as large as possible. The higher the
number of pumps the larger and flatter is the gain bandwidth.
Nevertheless, there are economic issues that prohibit the use

Fiber

(@)

Transmitter Receiver

Tx Rx

P1 Pz P3

Fig. 2 Scheme of the used experimental setup

of an arbitrary number of pumps. Hence, we have to find a
balance between system performance and cost.

In order to demonstrate a proper pumping scheme (one,
two, or three pumps), some experiments were carried out. An
optical multiplexer with a set of three CW high power lasers
was used as a pumping unit, being one, two, or three lasers
used in each experiment. The copropagating pumps are cen-
tered at 1,470, 1,490, and 1,509 nm, each one with an output
power of 158 mW. The propagation medium is a span of SMF
fiber with 40km, were @ = 0.22 dB/km, and Acr = 80 um?.
The experiments were carried out with the measurement of
the on/off gain for each scheme, using a forward pumping
configuration. The scheme depicted in Fig. 2 reproduces the
implemented experimental setup.

A comb of 12 wavelengths is used, but only three are
turned on in each measurement. The three active channels
are equally spaced by 20nm (the CWDM channel spacing),
starting with the triplet (1,530, 1,550, 1,570 nm), then rigidly
shifting the three wavelengths by 10 nm.

Usually, this kind of measurements are taken with only one
active channel but measurements using three active channels
simultaneously instead of only one, provide a more accurate
assessment of the system performance. For a single pump
scheme, both simulation and experimental gain results are
displayed in Fig. 3.

We observe that the results comply with the theoretical
statement that the gain peak is obtained for a wavelength
upshifted from the pump by 100 nm [8]. This peak decays rap-
idly with the wavelength, decreasing 1 dB for a small wave-
length variation. A 1dB decay is equivalent to a declining
of 20% of the maximum gain, in linear units, and used to
define the effective gain bandwidth. Therefore, the effective
average gain bandwidth is equal to 39 nm, allowing the use
of only two active channels for CWDM purposes. It must be
noted that all three pumps present the same behavior.

After assessing the system performance using a single
pump, we perform the evaluation for multipump schemes,
using the three pumps simultaneously. The obtained gain
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Fig. 3 Gain spectrum for the (a) 1,470 nm, (b) 1,490 nm and
(¢) 1,509 nm single pump scheme. Only the experimental bandwidth is
assigned in the graphs
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Fig. 4 Gain spectrum for multipump scheme. Only the experimental
bandwidth is assigned in the graphs

spectrum is plotted in Fig.4. As opposed to the single pump
case, the deployed gain is higher and broader; being the
effective bandwidth equal to 48 nm. A 78 nm bandwidth was
measured at 3dB. Since the channel spacing in CWDM is
20nm, this pumping configuration allows the allocation of
three active channels.

The use of two pumps instead of one also provides a higher
and broader gain spectrum but the situation where the effect
of the increase in the number of pumps is more evident is the
three pumping scheme, as depicted in Fig. 5. In these graphs,
the gain spectra obtained by the three pumps configuration
and the possible combinations of two pumps are displayed.

These pictures show that the gain profile for the two pumps
situation presents an intermediate performance between the
three pumps and single pump configurations. The associ-
ation of the more spectrally aparted pumps (1,470nm with
1,509 nm) produce a lower valued gain than the other possible
associations. Since the Raman gain created by pumps at dif-
ferent wavelengths is due to the partial overlap of each pump
gain, only the pumps with closer emitting wavelength can
form a consistent composite gain. For more aparted pumps
this overlap does not occur and the gain is not reinforced.

3.2 Pump allocation—Optimized Gain

As referred above, the use of a multipump scheme results
in a broader gain bandwidth, but the pump allocation is still
needed to attain a gain as flat as possible. If the number
of pumps and their wavelengths are constrained, the power
level can be adjusted. The gain equalization is numerically
attained by the minimization of its ripple. Since this process
requires the use of multimodal search, robust optimization
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Fig. 5 Comparison between gain spectra obtained with the 3 pumps
schemes and the two pumps one at (a) 1,470 and 1,490 nm (b) 1,470
and 1,509 nm (c¢) 1,490 and 1,509 nm

Table 1 Simulation and experimental gain using pump allocation

Asignal (nm) Gsimulation (dB) Gexperimental (dB) AG (dB)
1,570 7.05 7.08 0.03
1,590 7.05 7.12 0.07
1,610 7.05 7.20 0.15

algorithms are required. Our methodology is based upon a
hybrid combination of the Genetic Algorithm with the Nel-
der—Mead simplex method. The use of a hybrid GA instead of
asimple GA enhances the efficiency of the searching process,
making it suitable for practical use [9]. First, the optimiza-
tion using the hybrid GA was numerically implemented and
only then the experiments were performed. Thus, the same
pumps centered at 1,470, 1,490, and 1509 nm are used in
the copropagating scheme depicted in Fig. 2, being the infor-
mation carrying signals represented by a set of three CW
lasers, centered at 1,570, 1,590, and 1,610 nm, respectively.
The numerical gain target was set equal to 7 dB due to the lim-
itation on the maximum pump powers. The obtained power
levels for pumps at 1,470, 1,490, and 1,509 nm are equal to
128.08, 64.94, and 146.87mW, respectively. Table 1 shows
the simulated and experimental optimized power pumps and
the gain for each channel. Experimental and simulated gain
results show a good agreement.

3.3 Comparison SMF versus DSF

The heterogeneity of the fiber structure could lead to situ-
ations where a link is constituted by the concatenation of
several spans with different fiber types, being necessary to
understand the performance imposed by their different gain
characteristic as shown in Fig. 1. The experiments make use
of SMF and DSF fiber with a length equal to 8.8 km. The DSF
fiber presents a smaller effective area and higher Raman gain
coefficient when compared with a SMF and consequently
it is possible to achieve higher levels of Raman gain. This
experiment was carried out as previously, by changing only
the type of fiber. The powers for the pumps are set equal to
158 mW each. In Fig.6 the gain spectra of SMF and DSF
are reported. As expected from the Raman efficiency data
depicted in Fig. 1, the DSF induces an improvement in the
on/off gain value when compared with a SMF with same
length.

The different behaviors of SMF and DSF fibers enable fur-
ther studies, like the use of composite links (DSF+SMF). In
the analyzed setup, two configurations were used, differing
in the position of the fibers: in the first configuration the DSF
fiber (8.8 km) is placed closer to the transmitter and a 40 km
SMF fiber span closer to the pumps, and in the second con-
figuration the fiber order is reversed. The pumps centered at
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Fig. 7 On/off gain for a composite link: SMF fiber of 40km and for
DSF fiber of 8.8km

1,470, 1,490, and 1,509 nm are used in a counterpropagation
scheme with power levels equal to 158 mW.

The obtained gain is displayed in Fig. 7. By looking at the
gain spectra, we observe that the profile is higher in the sec-
ond configuration. This behavior was expected, as DSF fiber
has a higher Raman gain and is placed nearer the pumps.
However, this could result in an extra signal quality degrad-
ing, due to the excitation of nonlinear effects on the DSF
fiber.
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4 Conclusions

In this article, the Raman pump allocation configuration for
CWDM transmission system is presented. We demonstrate
that the multipump configuration, in addition to presenting
a broader and flatter spectral gain than the single pump con-
figuration, is also able to guarantee the compensation of the
fiber attenuation losses. For that very reason, the multipump
configuration is preferable to the single pump, for large chan-
nels spacing applications such as CWDM, being possible to
support amplification in three CWDM channels with three
pumping lasers. Since the latter also require the use of equal-
ized gain bandwidth, we have shown that the pump power
allocation computed by hybrid Genetic Algorithms is effi-
ciently feasible, exhibiting good agreement with experimen-
tal results. The effect of composite links was studied, show-
ing an increase on the gain when the DSF fibers are located
closer to the pumps.

Finally, we show that the simple equations that describe
the Raman amplification can be implemented for CWDM
signals, producing results comparable with the experimental
ones, resulting, therefore, on an efficient planning tool.
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