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Parametric Gain in the Strongly Nonlinear Regime
and Its Impact on 10-Gb/s NRZ Systems With

Forward-Error Correction
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Abstract—In this paper, we show that the nonlinear parametric
gain (PG) interaction between signal and noise is a nonnegligible
factor in the design and analysis of long-haul dispersion-managed
optical 10-Gb/s ON–OFF keying nonreturn to zero transmission
systems operated at small signal-to-noise ratios (OSNRs) such as
those employing forward-error correction (FEC) coding. In such a
regime, we show that the in-phase noise spectrum exhibits a large
gain close to the carrier frequency, which is due to the higher
order noise terms accounting for the noise–noise beating during
propagation that is usually neglected in the nonlinear Schrödinger
equation. With a novel stochastic analysis that keeps such higher
order terms, we are able to analytically quantify the maximum
tolerable signal power after which PG unacceptably degrades
system performance. We verify such an analytical power threshold
by both simulation and experiment. We finally quantify the needed
extra OSNR, or equivalently FEC coding gain, required when
taking PG into account.

Index Terms—Karhunen–Loéve expansion, Kerr effect, modu-
lation instability, parametric gain.

I. INTRODUCTION

ANY optical signal of sufficiently large power propagating
in a single-mode fiber interacts with optical noise through

a four-wave mixing (FWM) process; on that account, the noise
experiences a frequency-dependent gain. This phenomenon is
known as parametric gain (PG), and in the anomalous prop-
agation regime it may cause modulation instability [1]. The
PG process can be positively exploited to build parametric
amplifiers and wavelength converters in short highly nonlinear
fibers [2], [3]. However, for optical transmission systems, it is a
potential source of system degradation because of the signal in-
teraction with the amplified spontaneous emission (ASE) noise.
The problem has been traditionally tackled through a small-
signal approach to the nonlinear Schrödinger equation (NLSE)
[1], [4], [5]. Whenever the received optical signal-to-noise ratio
(OSNR) is large enough, the signal field is little affected by
noise during propagation so that the propagated signal can be
evaluated without ASE. The small-signal model consists of a
linearization of the NLSE around the known noiseless signal
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field, which leads to two linear differential equations relating
the real (in-phase) and imaginary (quadrature) components of
the ASE noise [5]. Such a system can be solved exactly in
terms of Bessel functions when the signal is a continuous wave
(CW) [4], [5]. In the small-signal model, the initially white
Gaussian ASE thus remains Gaussian along the propagation
and changes its power spectral density (PSD), which becomes
frequency dependent, i.e., colored. Starting from the small-
signal model, Bosco et al. [6] evaluated the impact of PG
on the bit error rate (BER) of an ON–OFF keying (OOK)-
modulated signal by an exact analysis of the optical quadratic
detection process [7] (thereby avoiding the usual Gaussian
approximation for BER evaluation) and by calculating the deci-
sion variable statistics by expanding the PG-colored ASE on a
signal-dependent Karhunen–Loéve (KL) basis. Unfortunately,
such a model ignores the intersymbol interference (ISI) that
inevitably affects a modulated (non-CW) signal. An improved
model, which accounts for ISI while still adopting the small-
signal PG model, was introduced by Holzlöhner et al. [8],
where they were able to evaluate the BER through a covariance
matrix method. However, as pointed out in [8], the small-
signal model may fail when the noise is far from small with
respect to the signal, as for instance in the tails of the noise
probability density function (pdf) of the decision variable,
especially when the system is operated at small OSNR. Another
situation in which the small-signal model is clearly inappro-
priate occurs in systems operating close to the zero-dispersion
wavelength [9].

In [10], the limits of the small-signal model were investi-
gated by using a semianalytical BER evaluation method similar
to the one in [6] that utilizes the noise PSD estimated by
Monte Carlo simulations of propagation of a CW plus ASE.
At small powers, the results of the Monte Carlo-estimated
PSD coincide with the predictions of the small-signal model.
After a specific power threshold, instead, the simulated PSD
of the in-phase ASE component (the most important for the
BER evaluation of OOK systems [6]) tends to rapidly and
substantially inflate in the low frequency band, a feature not
captured by the small-signal model. Such a feature, which
dramatically affects system performance, is due to the quadratic
and higher order nonlinear noise–noise beating terms that must
therefore be included in the NLSE for a correct ASE PSD
estimation.

Our first objective in this paper is to develop a stochastic
analysis of the NLSE beyond the small-signal model. Since
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the results in [10] have shown that the ASE PSD grows up
very quickly after a specific power, we are interested in an
analytical expression of the power threshold at which the effect
appears. With this in mind, we focus our attention on the zero
frequency (i.e., the central wavelength of the signal spectrum in
its low-pass representation) of the in-phase ASE PSD. At such
a particular frequency, a perturbative stochastic analysis of the
NLSE is feasible and leads to an expression of the in-phase ASE
PSD inflation, from which we get the main analytical result of
the paper, a formula of the PG power threshold.

We then test our formula against both simulations and ex-
perimental results on a 15 × 100 km 10-Gb/s OOK nonreturn-
to-zero (NRZ) Teralight-based system in which an extra noise
source is inserted at each amplifier along the line in order to
control the amount of PG. For such a system, we observe a
strong correlation between the OSNR penalty and the ASE
in-phase PSD inflation, which both sharply increase when the
transmitted power is close to the power threshold predicted by
our formula.

The second objective of this paper is then to assess whether
practical long-haul systems, working with forward-error cor-
rection (FEC) coding at small OSNR, fall in the strongly
nonlinear PG regime or not, and to quantify the incurred
OSNR/FEC coding gain penalty with respect to what one would
predict by neglecting PG. To this aim, extensive use will be
made of the semianalytical BER evaluation model developed
in [10].

The paper is organized as follows. In Section II, we introduce
the system model and describe the main steps of the semiana-
lytical BER evaluation. In Section III, the small-signal model
is studied and its limits in the strongly nonlinear regime are
checked both by simulation and by experiment. Section IV
contains a novel stochastic analysis of the NLSE that leads to
the explicit power threshold formula. The mathematical details
are given in the appendixes. Section V discusses the system
implications of PG in long-haul systems. Finally, the main
conclusions are drawn in Section VI.

II. THE SYSTEM MODEL

The propagation of the normalized electric field A(z, t) in
a single-mode optical fiber link composed of N identical fiber
spans, z being the distance and t the time in the retarded signal
frame, is described by the NLSE

∂A

∂z
= j

β2(z)
2

∂2A

∂t2
− jγ(z)|A|2Aeg(z) + S(z, t) (1)

where β2(z) is the chromatic coefficient parameter; γ(z) is the
nonlinear parameter; g(z) ∆=

∑
k gkU(z − zk)−

∫ z

0 α(ζ)dζ is
the total logarithmic gain up to z, with α(z) being the fiber
attenuation and G = egk the power gain of the kth lumped
amplifier placed at the end of the kth fiber span, and the
unit step function is defined as U(z) = 1 for z > 0 and 0
otherwise; S(z, t) ∆=

∑
k n(zk, t)δ(z − zk) is the ASE noise

generated by the lumped amplifiers, where n(zk, t) are indepen-

dent identically distributed (i.i.d.) complex Gaussian random
processes with E[n(zk, t)] = 0 and E[n(zk, t)n∗(zl, t+ τ)] =
Naδ(τ)δkl, with δ(τ) being the Dirac delta function, δkl the
Kronecker delta function, and Na is the one-sided ASE PSD
generated by each amplifier. Equation (1) refers to a single
polarization and S is the component of the ASE copolarized
with the signal. Polarization effects are neglected in this analy-
sis. For a system with N spans, Na can be obtained from the
linear OSNR (i.e., the one in absence of PG) measurable at the
receiver as

Na
∆=

〈P 〉
2N OSNR∆ν

(2)

where ∆ν ∼= 12.5 GHz is the conventional 0.1-nm OSNR
measurement noise bandwidth, 〈P 〉 is the time-averaged signal
power, which we will express in the following as a fraction κ
of the peak power P , i.e., 〈P 〉 ∆= κP , and the factor 2 is due to
the inclusion of the ASE in the orthogonal polarization, which
we assume does not interact with the signal and remains white
at the receiver.

If the input is a CW signal A(0, t) =
√
P , then the

noiseless solution of (1) is A(z) =
√
P exp[−jΦNL(z)], with

ΦNL(z)
∆= P

∫ z

0 γ(ζ)eg(ζ)dζ being the cumulated nonlinear
phase up to coordinate z [1]. Such a situation corresponds, for
instance, to the transmission of a flat-top mark in an OOK NRZ
transmission with small pulse distortion during propagation. In
the presence of noise, we write the solution of (1) in the form

A(z, t) ∆=
(√

P + a(z, t)
)
e−jΦNL(z) (3)

where a(z, t) ∆= ar(z, t) + jai(z, t) is the complex envelope of
the cumulated ASE noise, with ar and ai being its in-phase
and quadrature components, respectively. When in each span
the gain perfectly recovers the loss, the photodetected current
corresponding to (3) can be expressed as

I(t) = P + 2
√
Par +

(
a2

r + a2
i

)
(4)

where for simplicity we assumed unit responsivity and ig-
nored the ASE in the orthogonal polarization. The second
term on the right-hand side, known as the spontaneous–signal
beat noise, is the one that mostly determines the perfor-
mance of an OOK system, while the last term, known as
the spontaneous–spontaneous beat noise, can only increase the
received power. If the PSD of the received ASE is known, one
can evaluate the corresponding BER by using a KL method for
quadratic detectors [6], [8]. The KL method becomes necessary
because it was shown that the standard Gaussian BER eval-
uation method fails in the presence of PG [6]. In this paper,
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we will evaluate the BER using a modified KL method along
the lines of [11], in which

1) we use the received OOK signal, solution of (1) in the
absence of noise, to evaluate the sampled current at the
sampling time;

2) we separately evaluate the PSD of the ASE a(z, t) on
marks by solving (1) with (3) by Monte Carlo simulation
using the peak transmitted power as the value of P in
(3). The ASE PSD on spaces is obtained as in a linear
propagation.

The lengthy details of the modified KL method, which
includes accurate optical and electrical filtering, are reported
elsewhere [12].

These steps, which implement a superposition of the effects
of self-phase modulation (SPM) and PG, imply that we ignore
the effects of pulse modulation on the ASE noise along the
transmission line and are thus expected to be accurate for
systems with moderate noiseless signal distortion, where PG
is expected to be the dominant impairment. In [8], it is shown
how to accurately account for the SPM–PG coupling due to
modulation, although in a linearized version of the NLSE. A
key novelty in this paper, however, is that we will keep the
ASE–ASE beating terms during propagation in the NLSE and
show under which circumstances they are responsible of system
breakdown.

III. THE SMALL-SIGNAL MODEL

The standard approach to the study of PG is a linearization
of the NLSE that one obtains by substituting (3) in (1) and
dropping all quadratic and higher order terms in a(z, t). In the
frequency domain, this leads to

{
∂ar(z,ω)

∂z = β2ω2

2 ai(z, ω) + Sr(z, ω)
∂ai(z,ω)

∂z = −β2ω2

2 ar(z, ω)− 2γPar(z, ω)eg(z) + Si(z, ω)
(5)

where ar,i(z, ω) is the Fourier transform of ar,i(z, t), and
Sr(z, ω) and Si(z, ω) are the Fourier transforms of the ASE
in-phase and quadrature components, respectively.1 The solu-
tion of (5) can be expressed in terms of a transfer matrix [5]
from which one can evaluate the PSD of the received noise and
finally the BER.

Even if the small-signal model can be successfully applied to
many practical systems, it is possible to find cases of interest
for which it fails. For instance, Marcuse [9] pointed out that
systems working at β2 = 0, no matter how large the linear
OSNR, exhibit a catastrophic build up of the ASE PSD that
rapidly destroys the BER. For such systems, the small-signal
model (5) erroneously predicts an evolution of ar as in a linear
system (γ = 0), and a nonlinear growth of ai that would imply
an eye opening on marks, according to (4), and thus a BER

1Here and in the rest of the paper, we will use the same letter to denote
both a time-domain function and its frequency-domain Fourier transform. The
argument of the function, when omitted, will be clear from the context.

Fig. 1. Normalized in-phase ASE PSD versus frequency and signal power P .
Top: Small-signal model. Bottom: Monte Carlo simulation. Teralight five-span
map with OSNR = 16 dB.

improvement. We will see that practical systems with finite
dispersion β2 behave like systems at zero dispersion when the
linear OSNR is sufficiently small.

Since the ASE propagation in (5) depends on the product
β2ω

2, a similar inconsistency of the small-signal model can
be observed in its prediction of the ASE PSD at ω = 0. In
Fig. 1, we show a plot of the PSD of the in-phase ASE
component normalized to its value in the absence of PG versus
both frequency and CW power P for a dispersion-mapped
5 × 100 km system with Teralight transmission fiber (dis-
persion D = 8 ps/nm/km and γ = 1.7 W−1km−1), with full
inline compensation, and working at an OSNR = 16 dB. The
top plot refers to the PSD predicted by the small-signal model
while the bottom plot was obtained by estimating the PSD by a
direct Monte Carlo simulation of the noise with the averaged
periodogram method [13] for a total of 216 noise samples.
Comparison of the two figures reveals the failure of the small-
signal model in predicting the PSD inflation at low frequencies
when the power P is large. We note from (4) that such an
inflation has a major impact on BER.

We experimentally verified the effect of the low-frequency
PG inflation of the in-phase PSD by analyzing a 15 × 100 km
Teralight system in a recirculating loop whose setup is
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Fig. 2. Experimental setup of a 15 × 100 km Teralight system.

described in Fig. 2. We transmitted a signal channel at λ =
1545.6 nm, externally OOK modulated at R = 10 Gb/s with
NRZ supporting pulses, and a 215 − 1 pseudorandom bit se-
quence (PRBS) with an extinction ratio of 13 dB. Each span
is compensated at its end by a dispersion-compensating fiber
(DCF) within a dual-stage amplifier with+30 ps/nm of residual
dispersion after compensation (it will be referred to as inline
residual dispersion). The first stage provides Raman amplifi-
cation within the Teralight while the second stage uses hybrid
backward Raman in the DCF and final erbium amplification so
as to completely recover the span loss.

In order to let the erbium amplifiers work linearly for the
desired signal, we added 13 dummy channels, placed starting
at 5 nm to the right of the signal wavelength, and similarly
13 dummy channels to the left, away enough from the signal
so as to avoid any cross nonlinear effects. Optimized pre- and
postcompensating fibers were also provided at the transmitter
(−200 ps/nm) and receiver (+250 ps/nm), respectively [14].

At the end of the loop, a dynamic gain equalizer restored a
flat optical spectrum. In front of the receiver, an optical filter of
bandwidth 0.23 nm selected the signal channel while a variable
attenuator was used to set the desired BER.

We isolated the effects of SPM from those of PG by toggling
ON/OFF an extra inline noise source, also shown in the figure.
When ON, we set the end-line OSNR (see figure) to either 16
or 19 dB, while with the noise source off the end-line OSNR
was greater than 30 dB, hence with a negligible PG. Since the
end-line OSNR was fixed, we measured the received OSNR that
yields a BER = 10−5 by acting on the final attenuator so as to
vary the preamplifier noise figure.

Fig. 3 reports in solid lines the measured received OSNR
at BER = 10−5 versus the average signal power both without
PG (SPM and white ASE) and with PG. When operating at an
end-line OSNR = 16 dB, we observe an extra penalty due to
a PG of nearly 1 dB at large power. For comparison, we also
report in dashed lines the corresponding results obtained in a
numerical simulation where the small-signal model for the ASE
PSDs was used. The results of the numerical model are slightly

Fig. 3. OSNR versus the average power at a BER = 10−5 for the 15-span
Teralight experimental setup. Solid lines: Experimental data. Dashed lines:
Numerical results obtained with the small-signal ASE PSD. Circles: End-
line OSNR = 16 dB. Squares: End-line OSNR = 19 dB. Crosses: End-line
OSNR > 30 dB (no PG).

offset for ease of visualization. The important observation is
that the small-signal model incorrectly predicts an improvement
of performance in the presence of PG.

In order to theoretically investigate the limits of the small-
signal model, in the next section we present an analysis of the
NLSE by including the noise–noise beating terms.

IV. THE STRONGLY NONLINEAR REGIME

We already observed that the noise–noise beating terms can
deeply affect the PG in the strongly nonlinear regime. Hence, a
correct description of PG in such a regime must keep such terms
in the NLSE (1). Let us introduce a normalized noise field u
so that

ar,i =

√
N Na

2
ur,i (6)
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and a parameter σ
∆= P

√
κ/(4∆νOSNR) so that the NLSE,

with the inclusion of the quadratic noise terms, can be written
in the time domain as

{
∂ur

∂z = −β2
2

∂2ui

∂t2 + 2γσuruie
g(z) + Ŝr

∂ui

∂z =
β2
2

∂2ur

∂t2 −
(
2Pur + 3σu2

r + σu2
i

)
γeg(z) + Ŝi

(7)

where Ŝ is the normalized ASE forcing term. The term σ shows
that the effect of the quadratic noise terms scales as the ratio
between the power and the square root of the OSNR so that they
become relevant either at a large P or at a very small OSNR.

Since the system performance, as noted from (4), mainly
depends on the in-phase component, we are interested in the
PSD of ur, which can be calculated from the Wiener–Kinchine
theorem [15] as

Grr(z, ω) = lim
T→∞

1
T
E
{
|urT (z, ω)|2

}
(8)

where the index T indicates a truncated field within a window
of width T centered at t = 0. For simplicity, we will drop the
T subscript whenever it is clear that we are dealing with the
truncated field.

Since an exact evaluation of Grr(z, ω) for all ω is too
involved, we will focus on the calculation of Grr(z, ω = 0)
only, which is sufficient to get to the sought power threshold
formula.

We evaluate the in-phase PSD noise at ω = 0 by applying the
regular perturbation (RP) method [16], [17] in σ to (7). From
Appendix I, the first-order RP solution is

Grr(z, 0) ∼= Grr0(z, 0) + σ2Grr1(z, 0) (9)

where Grr0(z, 0) = 1 is the (normalized) unperturbed PSD ob-
tained from the small-signal model while a new termGrr1(z, 0)
appears whose closed-form expression for long systems
(N � 1) working at zero inline residual dispersion is derived
in Appendix I as

Grr(0) = 1 +

√
2α
|β2|

Φ4
NL

24κ3∆νOSNR
Λ(N) (10)

where ΦNL = γNκP/α is the average received nonlinear
phase for dispersion maps in which the transmission fiber is
much longer than its attenuation length 1/α, and Λ(N) is a
function of N , monotonically increasing to 1 for large N , as
given in (28). A more accurate but more cumbersome expres-
sion, valid even in the case of nonzero residual dispersion,
is also derived in Appendix I. Equation (10) reveals some
interesting features that can be summarized as follows.

1) The PSD at ω = 0 of the normalized ur is inversely pro-
portional to the OSNR, thus the effect of the noise–noise
beating terms becomes large for systems operating at a
small OSNR such as very long systems employing FEC

codes. The small-signal model would predict instead an
in-phase PSD value not affected by PG.

2) The dependence on a nonlinear phase is quartic. This
implies an extremely fast degradation of performance
with launched power, which leads to a power threshold
effect.

3) The PSD inflation at ω = 0 does not depend on the sign
of β2 of the transmission fiber. For systems with low β2,
the inflation is larger because of the increased efficiency
of FWM among noise frequencies.

Regarding 2), we can reasonably use as a threshold value the
transmitted power at which the in-phase PSD doubles with
respect to the linear case (no PG). From (10), we find such an
average power threshold to be

Pth
∆=

(
24
√

|β2|α
7
2κ3∆νOSNR√

2γ4N4Λ(N)

) 1
4

. (11)

We tested our RP solution (10) as well as the more complete
formula (25) against the numerical simulation of propagation
in a periodic transmission system composed of N identical
compensated spans of 100 km of Teralight each and a given
inline residual dispersion as in Fig. 2.2

We estimated the normalized in-phase ASE PSD by the
averaged periodogram method [13] applied to long sequences
of 216 noise samples added to a CW signal and propagated
along the line by the split-step Fourier method [1].

Fig. 4 (top) shows the normalized in-phase ASE PSD gain
at ω = 0 with full inline compensation evaluated with the com-
plete formula (25) (solid line), its approximation (10) (dashed
line), and the periodogram-based simulations (circles) for two
values of the end-line OSNR = 10 dB (filled circles) and
16 dB (open circles) in a Teralight-based five-span system. A
good match is observed between the analytical formulas and
the simulations up to a gain inflation of about 5 dB for both
values of OSNR.

The bottom plot of Fig. 4 shows the 3-dB power threshold,
derived from the complete formula (25), versus the end-line
OSNR at an inline residual dispersion per span of 0 ps/nm
[solid line, coinciding with (11)], +50 ps/nm (dashed line),
and +100 ps/nm (dashed–dotted line), while the symbols refer
to the periodogram-based simulation. Besides the good match
between theory and simulation, we note that a nonzero positive
inline dispersion lowers the PG power threshold, although by
only 1 dB in a wide range of 100 ps/nm per span.

V. SYSTEM IMPLICATIONS OF PG

Since the formulas well reproduce the PSD inflation, in this
section we investigate the impact of such an inflation on the
BER of a dispersion-managed system.

We performed numerical simulations of the 15 × 100 km
10-Gb/s experimental system shown in Fig. 2, but now we al-
lowed the transmission fiber to be either Teralight or NZDSF+

2Note that the presence of linear pre- and postcompensation fibers does
not change the PSDs at ω = 0 since there is no GVD-induced phase rotation
at ω = 0.
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Fig. 4. Top: Normalized in-phase ASE PSD gain at ω = 0 versus power
evaluated at an end-line OSNR = 10 dB (filled circles) and 16 dB (open
circles) by the periodogram-based simulations and by the complete formula
(25) (solid line) and its approximation (27) (dashed line) for a Teralight system.
Bottom: 3-dB power threshold versus OSNR with inline dispersion per span of
0 ps/nm (solid line), +50 ps/nm (dashed line), and +100 ps/nm (dashed–dotted
line). Symbols: Simulation.

(non-zero dispersion shifted fiber, D = 2.9 ps/nm/km,
γ = 2.1 W−1km−1) or SMF (single-mode fiber, D =
17 ps/nm/km, γ = 1.4 W−1km−1). For the NZDSF+ and
the SMF fibers, we set the inline residual dispersion to zero
and optimized the pre- and postcompensation fibers for each
transmitted power so as to obtain the lowest simulated BER
in the presence of SPM but in the absence of PG. The re-
ceiver had a Gaussian optical filter of bandwidth 0.23 nm
and an electrical second-order Butterworth filter of bandwidth
6.5 GHz. We transmitted a 26 − 1 PRBS at different powers.
As in the experiment, the OSNR was uniformly degraded at
each amplifier along the line to get the desired end-line OSNR
while the desired BER at the receiver was reached by changing
the preamplifier noise figure through a variable attenuator. BER
was estimated by the semianalytical method.

All results will be expressed in terms of the average nonlinear
phase, which is used in the optimization of single-channel
dispersion-mapped transmission systems impaired by SPM [18]
since performance scales as the product of transmitted power
and number of spans. The PG nonlinear phase threshold Φth =
γNPth/α ∝ Λ(N)−1/4 obtained by using (11) converges to a
fixed value with an increasing number of spans, as shown for
instance in Fig. 5, which refers to an NZDSF+-based system
with an end-line OSNR of 16 dB. From the figure, we observe
that Φth nearly stabilizes after ten spans since the system tends

Fig. 5. Nonlinear phase threshold versus number of spans. NZDSF+-based
system with end-line OSNR = 16 dB and zero inline residual dispersion.
Solid line: analytical formula. Circles: simulation.

to look like a distributed system. Hence, when N is large, even
in the presence of PG, the performance still scales with the
nonlinear phase.

We measured the received OSNR penalty with respect to
back-to-back BER = 10−5 for a signal distorted by SPM and
group velocity dispersion (GVD) and with either white ASE
or PG-colored ASE so as to measure the relative impact of
PG. Fig. 6 shows such an OSNR penalty (top graphs) versus
nonlinear phase for the three different transmission fiber types.
With PG, the end-line OSNR was fixed at either 16 or 19 dB.
The bottom row of Fig. 6 shows the corresponding PG-induced
in-phase ASE PSD inflation as obtained by (10), which clearly
demonstrates the correlation between the in-phase ASE PSD
inflation and the disruption of system performance with the
increase of the nonlinear phase for all transmission fiber types.

We note the large difference of 1.5π radians between the
PG threshold and the SPM threshold (i.e., the ΦNL at which
SPM + GVD + white ASE cause an error floor) in the NZDSF+

case, while for Teralight and SMF such a difference is much
reduced.

We also report the experimental points for the Teralight case
already given in Fig. 3, whose reasonable match with the sim-
ulation is a good indicator of the validity of our semianalytical
BER evaluation method.

We repeated the simulations for the Teralight-based system
in the absence of the final preamplifier so that the end-line
OSNR coincides with the received OSNR. Fig. 7 (top) shows
the contour plot of the BER versus the OSNR and the average
nonlinear phase both without (dashed lines) and with (solid
lines) PG. The dashed line indicated by (a) shows the PG
nonlinear phase threshold as obtained from (11), which well
delimits the region of strongly nonlinear PG. We note that,
at small nonlinear phases well below the PG threshold, the
systems with PG have a slightly lower BER than those without
PG because of the squeezing of the in-phase ASE in the opti-
mized map.

Fig. 7 (bottom) shows on the same plane the contour plot of
the OSNR penalty of the system with PG relative to the sys-
tem without PG at equal BER. Clearly, to the right of curve (a),
penalties due to PG become significant from a system perspec-
tive and lead to system disruption when the OSNR is small.
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Fig. 6. Received OSNR penalty with respect to the back-to-back BER = 10−5 (top row) and in-phase ASE PSD gain at ω = 0 (bottom row) versus an average
nonlinear phase for an NZDSF+ (left), Teralight (center), and SMF-based (right) 15-span 10-Gb/s system including PG at end-line OSNR of 16 dB (solid) and
19 dB (dashed). Curves without PG: Dashed–dotted line. Top center: Symbols indicate the experimental results (same points as in Fig. 3).

The figure can also be used to prove that PG in the strongly
nonlinear regime does have a significant impact in long-haul
systems employing FECs, which are operated at a very small
OSNR. For instance, in Fig. 7 (top), curve (b) in bold line
represents the OSNR, derived from (2), for the same dispersion-
mapped system extended to N = 60 spans and with a noise
figure per span of 5.5 dB. The points on the curve correspond
to different launched powers. We note that, while by assuming
the received noise as white one would conclude that the system
can work at a BER < 10−5 for ΦNL > 0.7π, with the realistic
inclusion of PG such a conclusion is clearly false.

The additional penalty introduced by PG can be com-
pensated for in two alternative ways, as it can be deduced
from Fig. 8, which shows for instance the BER evaluated
at ΦNL = 0.75π [drawn from the contour in Fig. 7 (top)]
both without (circles) and with (diamonds) PG. The dashed
lines show the corresponding coded BER for a standard
(255 239) Reed–Solomon code [19]. Suppose that one wishes
to operate the system at an uncoded BER of 10−5, cor-
responding to a coded BER of about 10−22. Then, when
neglecting PG, one finds from the open circle solid curve
that an OSNR = 13.5 dB should be used. However, PG
worsens the BER to about 5× 10−4 in the diamond curve
case, leading to a coded BER of about 10−8. The first tech-
nique to restore the desired coded BER is by working at
the same OSNR and using a more powerful code, whose
additional coding gain at BER = 10−8 should roughly be
∆G ∼ 2.2 dB, as shown in the figure. The second way
is by keeping the same FEC but increasing the OSNR by
∆OSNR ∼ 1.5 dB [a value that can also be read off Fig. 7
(bottom)] so as to leave the uncoded BER at 10−5.

Note that OSNR/coding gain penalties are expected to be
much larger for transmission fibers with a lower dispersion than
Teralight, as inferred from the OSNR curves in Fig. 6.

As for the limits of our semianalytical BER evaluation
method, a critical assumption is that the received ASE noise
statistics remain Gaussian even after nonlinear propagation.
However, in the same simulations used to estimate the ASE
PSD, we also verified that the histograms estimating the true
joint pdf (jpdf) of the in-phase and quadrature noise compo-
nents, for nonlinear phase values up to the power threshold,
reasonably resemble a Gaussian jpdf, characterized by elliptical
contours. As the nonlinear phase is increased further, the true
jpdf contours tend to bend, as shown in the left column of
Fig. 9 (top), which also shows (bottom) the Gaussian jpdf
having the true covariance matrix estimated by the simulation,
i.e., the one used by our semianalytical method. From the
jpdf’s, we evaluated the cumulative distribution function (CDF)
of the sampled current Y on marks, i.e., the probability that
Y is lower than the decision threshold θ, which we plot in
the right graph of Fig. 9. Although the Gaussian jpdf fails
to capture the bending of the exact jpdf, even at a nonlinear
phase value of 0.75π, slightly exceeding the PG threshold,
there is still a reasonable match between the exact (a) and the
Gaussian-approximated (b) CDF, with a slight underestimation
by the Gaussian approximation. Finally, curve (c) reports the
Gaussian-approximated CDF that uses the covariance matrix
obtained from the small-signal PG model, which largely un-
derestimates the exact CDF. The underestimation of the BER
by our semianalytical method beyond the PG threshold can
also be observed in Fig. 6, in which a good match between
experiment and analysis is found for nonlinear phases up to PG
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Fig. 7. Top: contour plot of log10 (BER) versus an end-line OSNR and an
average nonlinear phase for the Teralight-based 15-span system in the absence
of PG (dashed lines) and with PG (solid lines). (a) PG nonlinear phase threshold
Φth. (b) OSNR from (2) for the same map with N = 60 spans and a noise
figure per span of 5.5 dB. Bottom: OSNR penalty (decibel) versus OSNR and
the average nonlinear phase.

threshold. Beyond threshold, experimental penalties are seen to
grow faster with nonlinear phase than those predicted by our
method.

VI. CONCLUSION

In this paper, we have proved for the first time, both ex-
perimentally and numerically, that parametric gain (PG) is a
nonnegligible factor in the design and analysis of long-haul
dispersion-managed optical 10-Gb/s ON–OFF keying (OOK)
nonreturn-to-zero (NRZ) transmission systems operated at
“small” optical signal-to-noise ratio (OSNR) values, a regime in
which the amplified spontaneous emission (ASE)–ASE beating
along the fiber cannot be neglected.

Although the complete stochastic analysis of the propaga-
tion equations is prohibitively complex, we managed to derive
meaningful analytical results by using perturbative techniques
to solve the nonlinear Schrödinger equation (NLSE) and by
concentrating on the power spectral density (PSD) of the in-
phase ASE noise at the carrier frequency. We proved that the
PG-induced inflation of such a PSD for increasing values of
the average nonlinear phase is strongly correlated with the

Fig. 8. Uncoded BER (solid lines) and coded BER (dashed lines) versus an
end-line OSNR for a Teralight map. Diamonds: SPM + PG; Circles: SPM +
white noise. ΦNL = 0.75π. N = 15 spans.

Fig. 9. (Left) jpdf of the received optical field (after optical filter) ob-
tained by (a) Monte Carlo simulation and (b) its Gaussian fit with exact
covariance matrix. (Right) CDF of the sampled current Y in cases (a) and
(b). Case (c) is the same as (b), but the covariance is obtained from a
small-signal model. 15 × 100 km Teralight system, 30 ps/nm/span inline
dispersion, optimized pre- and postcompensation, ΦNL = 0.75π, end-line
OSNR = 16 dB.

corresponding inflation of the required OSNR to achieve a
given bit error rate (BER) level. We derived a very simple
formula for the nonlinear phase threshold beyond which the
system designer should not neglect the ASE–ASE beating
along the transmission line when deriving the system BER.
Such a formula can also be used to judge when the OSNR is
“small” enough that PG becomes significant.

We have shown that a BER evaluation method that includes
the ASE–ASE beating during propagation is mandatory to
assess the effective gain of forward-error corrections (FECs)
in long-haul 10-Gb/s systems operated at small OSNR. We
verified that more than 1 dB of extra coding gain may be
required when operating the system beyond the PG threshold
with respect to what one can plan when evaluating system
performance by ignoring the ASE–ASE beating along the line.

Note from Fig. 6 (top) that when increasing the fiber dis-
persion, the self-phase modulation (SPM) threshold tends to
get closer to the PG power threshold and eventually becomes
smaller so that performance is eventually limited by SPM
instead of PG. Since performance scales as the product of bit
rate squared times fiber dispersion, then increasing the bit rate
by a factor of 4 has the same effect as increasing the dispersion
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by a factor of 16. Hence, moving from 10 to 40 Gb/s, we expect
the SPM to become the dominant impairment, and one needs
not to worry about PG anymore.

APPENDIX I

A. Perturbative Approach

In this Appendix, we evaluate the PSD of ur(z, ω = 0)
through a perturbative approach. Consider the N -span system
described in Fig. 2. We note that the pre- and postcompensating
fibers can be neglected in the analysis since they usually operate
in the low power regime; therefore, that they cannot alter the
received ASE PSD at our target frequency ω = 0.

The terms proportional to σ in (7) are a small perturbation to
the equation, so we search a perturbed solution in the form

{
ur(z, ω) = ur0(z, ω) + σur1(z, ω) + O(σ2)
ui(z, ω) = ui0(z, ω) + σui1(z, ω) + O(σ2)

(12)

where O(σ2) represents higher order terms in σ, while the
unperturbed field ur,i0 and the perturbed one σur,i1 can be
found by substituting (12) in (7) and equating matching powers
in σ [16]. Note that ur,i0 is the solution of the small-signal
model in (5). Even if the expression of ur1 is quite involved,
at ω = 0 it takes the simple form

ur1(z, 0) = 2γ

z∫
0

eg(ζ)F (ζ)dζ (13)

where

F (z) ∆=
1
2π

ur0(z, ω)⊗ ui0(z, ω)
∣∣∣∣
ω=0

(14)

and ⊗ denotes convolution in ω. We can now approximate the
PSD of ur as

Grr(z, 0) � lim
T→∞

1
T
E
{
|ur0(z, 0) + σur1(z, 0)|2

}
.

From (13) and (14), we infer that

E {ur0(z, 0)u∗r1(z, 0)} = E {u∗r0(z, 0)ur1(z, 0)} = 0

since they involve third moments of jointly Gaussian random
variables of zero mean [20]. The PSD of ur is therefore the
sum of the unperturbed PSD of ur0, which we indicate as Grr0,
and a perturbative term σ2Grr1

3

Grr(z, 0) = Grr0(z, 0) + σ2Grr1(z, 0). (15)

3Note that the term Grr0(z, 0) comes from ur0(z, ω) while the term
σ2Grr1(z, 0) comes from σur1(z, ω). However, if we also include
σ2ur2(z, ω) in the expansion of ur(z, ω), then the term ur0(z, ω)σ2ur2(z,
ω) contributes an extra term of order σ2 to Grr(z, 0). In the following, we
will ignore such a contribution, which is as hard to compute as the overall
PSD. In the results section, we check against simulation that (15) well matches
the “exact” PSD at ω = 0, and therefore we conclude a posteriori that the
contribution of the terms that we overlooked, at the tested values of OSNR,
is negligible.

Let us consider the unperturbed PSD first. The solution of (5)
can be expressed in terms of a transfer matrix H(z, s, ω) [5] that
accounts for propagation from s to z at frequency ω, so that
within the mth span, i.e., for zm−1 < z < zm, we can write

[
ar(z, ω)
ai(z, ω)

]
=

m−1∑
k=1

H(z, zk, ω)
[
nr(zk, ω)
ni(zk, ω)

]
(16)

with n(zk, ω) being the noise field generated by the kth lumped
amplifier, and we assume a noiseless source. The unperturbed
PSD can be evaluated from the theory of linear systems [20]
applied to (16). However, from (5), we immediately observe
that at the reference frequency ω = 0 the in-phase noise com-
ponent is invariant along z, and so is its unperturbed PSD, i.e.,
Grr0(z, 0) = 1 for all z.

The perturbed PSD is proportional to

Grr1(z, 0)
∆= lim

T→∞

1
T
E
{
|ur1(z, 0)|2

}

=

z∫
0

z∫
0

e g(ζ)+g(µ) lim
T→∞

4γ2

T

× E {F (ζ)F ∗(µ)} dζ dµ (17)

where

E {F (ζ)F ∗(µ)}

=
∫∫
E {ur0(ζ, λ)ui0(ζ,−λ)u∗r0(µ, η)u∗i0(µ,−η)}

dλ
2π
dη
2π

.

(18)

In order to evaluate (18), we define the PSD matrix

G(ζ, µ, ω) ∆=
[
Grr0(ζ, µ, ω) Gri0(ζ, µ, ω)
Gir0(ζ, µ, ω) Gii0(ζ, µ, ω)

]
(19)

whose elements are the unperturbed PSDs of the kind
Gxy0(ζ, µ, ω)

∆= limT→∞(1/T )E{ux0(ζ, ω)u∗y0(µ, ω)}, (x, y)
∈ (r, i).4 In Appendix II, we show that

lim
T→∞

E {F (ζ)F ∗(µ)}
T

=
∫
[Grr0(ζ, µ, λ)Gii0(ζ, µ, λ)

+ Gri0(ζ, µ, λ)Gir0(ζ, µ,−λ)]
dλ
2π

∆=
∫

w(ζ, µ, λ)dλ. (20)

The elements of G(ζ, µ, ω), which are building blocks of the
integrand w(ζ, µ, λ), can be calculated as follows.

4When ζ ≡ µ, we prefer to write such coordinate only once, as for instance
in Grr0(z, 0).
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If ζ ∈ nth span and µ ∈ mth span, since all the n(zk, t) noise
terms are i.i.d. with zero mean, from (16) and the definition of
G(ζ, µ, ω) we get

Gnm(ζ, µ, ω) =
1
N

min(n,m)−1∑
k=1

H(ζ, zk, ω)HT(µ, zk, ω)

(21)

where 1/N is the (normalized) PSD of the ASE noise of one
amplifier, and we emphasized the dependence on n and m
by adding the index nm. For an optical system composed
of identical dispersion managed spans of length L, we have
H(zk+1, zk, ω) = H(L, 0, ω) ∆= HL(ω), so that (21) becomes

Gnm(ζ, µ, ω) = H(ζ, zn−1, ω)
1
N

min(n,m)−1∑
k=1

Hn−k−1
L

×
(
HT

L

)m−k−1
HT (µ, zm−1, ω). (22)

For a given total nonlinear phase rotation, when the number
of spans is sufficiently large the nonlinear phase rotation per
span is small, so that we can approximate the local propagation
matrix H(z, zk−1, ω), zk−1 < z < zk in (22) with its expres-
sion in the presence of GVD only

H(z, zk−1, ω)

�


 cos

(
ω2
∫ z

zk−1

β2(η)
2 dη

)
sin
(
ω2
∫ z

zk−1

β2(η)
2 dη

)
− sin

(
ω2
∫ z

zk−1

β2(η)
2 dη

)
cos
(
ω2
∫ z

zk−1

β2(η)
2 dη

)



(23)

which becomes exact in the limit N → ∞. We now define the
matrix Tnm(ω), whose elements we denote as tnm

ij , as

Tnm(ω) ∆=
1
N

min(n,m)−1∑
k=1

Hn−k−1
L

(
HT

L

)m−k−1
(24)

so that the perturbed PSD Grr1(z, 0), by using (22) in (20),
yields (25), where the integrals in ζ and µ were solved by

assuming that the transmission fiber length is much longer
than its attenuation length 1/α and that the amplifiers exactly
recover the span losses. Equation (25), which is displayed at
the bottom of the page, can be rapidly evaluated by numerical
integration.

B. Approximate Formula

We observe from (25) that the principal contribution to
Grr1(z, 0) comes from the first integral in the square brackets
whose integrand is a very sharp low-pass filtering [of corner
frequency λ0 = (1/2 π)

√
(α/|β2|)] of the entries of matrix

Tnm. If HL(ω) is a slowly varying function of ω around
ω = 0 up to such a corner frequency, we can approximate
Grr1(z, 0) as

Grr1(z, 0) � γ2 3
√
2

4
√

|β2|α
3
2

×
N∑

n=1

N∑
m=1

(tnm
11 (0)t

nm
22 (0) + tnm

12 (0)t
nm
21 (0)). (26)

The case that best meets the above requirement on HL(ω)
occurs when the inline dispersion is zero, since it can be proven
that in such a case the Taylor expansion of HL(ω) = HL(0) +
H(2)

L (0)ω
2/2 +H(4)

L (0)ω
4/4! + . . . has a null matrix coeffi-

cient of the term in ω2.

Now, since HL(0) =
[

1 0
−2γP/α 1

]
, we can evaluate

Tnm(0) in (24) and close the double sum in (26). For N � 1,
as required for approximation (23) to be valid, we obtain

Grr(0) � 1 +
√
2γ4P 4N4κ

24∆νOSNR
√
|β2|α

7
2
Λ(N) (27)

where

Λ(N) ∆=
(N − 1)(N − 2)(20N3 − 48N2 + 31N − 21)

20N5

(28)

Grr1(z, 0) = 4γ2

+∞∫
−∞

z∫
0

z∫
0

eg(ζ)+g(µ)w(ζ, µ, λ)dζdµdλ

= 4γ2
N∑

n=1

N∑
m=1


 +∞∫
−∞

α2

(α2 + 16π4β2
2λ

4)2
(tnm

11 (λ)t
nm
22 (λ) + tnm

12 (λ)t
nm
21 (λ)) dλ

+

+∞∫
−∞

4π2αβ2λ
2

(α2 + 16π4β2
2λ

4)2
[(tnm

21 (λ) + tnm
12 (λ)) (t

nm
22 (λ)− tnm

11 (λ))] dλ

+

+∞∫
−∞

8π4β2
2λ

4

(α2 + 16π4β2
2λ

4)2
(
(tnm

11 (λ))
2 + (tnm

22 (λ))
2 − (tnm

12 (λ))
2 − (tnm

21 (λ))
2
)
dλ


 (25)
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so that, by introducing the average nonlinear phase, (27) is
written as in (10).

APPENDIX II

Consider the Gaussian real processes xn(t), n = 1, 2, with

zero mean and correlation functions Rik(τ)
∆= E{xi(t)xk(t+

τ)}, whose corresponding Fourier transforms are the PSD
Gik(ω). Let the gated Fourier transform of xn be Xn(ω) =∫ T/2

−T/2 xn(t)e−jωtdt. In (18), we face the problem of calculating
quantities of the kind

lim
T→+∞

1
T

∫∫
E {X1(λ)X2(−λ)X∗

1(η)X
∗
2(−η)}dλdη. (29)

Equation (29) is thus a joint moment of order 4 of Gaussian
processes. The calculation of the average value can be de-
composed as the sum of products of second-order moments
according to the Isserlis formula [21]

E {X1(λ)X2(−λ)X∗
1(η)X

∗
2(−η)}

= E {X1(λ)X2(−λ)}E {X∗
1(η)X

∗
2(−η)}

+ E {X1(λ)X∗
1(η)}E {X2(−λ)X∗

2(−η)}
+ E {X1(λ)X∗

2(−η)}E {X2(−λ)X∗
1(η)} . (30)

The terms in the above equation are of the kind
E{Xi(λ)X∗

k(η)} =
∫

T

∫
T Rik(t1−t2)e−j(λt1−ηt2)dt1dt2. Af-

ter the change of variables τ
∆= t1 − t2, θ

∆= t1, we have

E {Xi(λ)X∗
k(η)} =

0∫
−T

Rik(τ)e−jητ




τ+ T
2∫

−T
2

e−j(λ−η)θdθdτ




+

T∫
0

Rik(τ)e−jητ




T
2∫

τ−T
2

e−j(λ−η)θ


dθdτ. (31)

Note that in the limit T → +∞, the terms in square brackets
become delta functions, so that limT→+∞ E{Xi(λ)X∗

k(η)} =
2πGik(λ)δ(λ− η). Dividing (31) by T and taking the limit,
we finally obtain the PSD as given by the Wiener–Kinchine
theorem

lim
T→+∞

1
T
E {Xi(λ)X∗

k(η)} =
{
Gik(λ) λ = η
0 λ �= η.

(32)

Since the limit (32) is finite, using (30) we finally get

lim
T→+∞

1
T

∫∫
E {X1(λ)X2(−λ)X∗

1(η)X
∗
2(−η)} dλdη

= 2π
∫
[G11(λ)G22(λ) +G12(λ)G∗

21(−λ)] dλ.
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