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A general theory of the parametric gain of amplified spontaneous emission (ASE) noise in periodic dispersion-
managed (DM) optical links is presented, based on a linearization of the nonlinear Schrödinger equation
around a constant-wave input signal. Closed-form expressions are presented of the in-phase and quadrature
ASE power spectral densities (PSDs), valid in the limit of infinitely many spans, for a limited total cumulated
nonlinear phase and in-line dispersion, a typical case for nonsoliton systems. PSDs are shown to solely depend
on the in-line cumulated dispersion and on the so-called DM kernel. Kernel expressions for both typical ter-
restrial and submarine DM links are provided. By Taylor expanding the kernel in frequency, we introduce a
definition of DM map strength that is more appropriate for limited nonlinear phase DM systems with lossy
transmission fibers than the standard definition for soliton systems. Various important special cases of PSDs
are discussed in detail. Novel insights, to our knowledge, into the effect of a postdispersion-compensating fiber
on such PSDs are included. Finally, examples of application of the PSD formulas to the performance evaluation
of both on–off keying and differential phase keying modulated systems are provided. © 2007 Optical Society
of America

OCIS codes: 060.2330, 190.4410.
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. INTRODUCTION
he performance of ultra-long-haul transmission systems

s significantly limited by the amplified spontaneous
mission (ASE) noise introduced by the in-line optical am-
lifiers. Even if the ASE is generated at each amplifier as
n additive white Gaussian process on each transmitted
ignal, its interaction with the signal through a Kerr-
nduced four-wave mixing mechanism can significantly
hange both its power spectral density (PSD) and its first-
rder statistics at the receiver. The ASE PSD normalized
ith respect to the white case is known as parametric
ain1 (PG).

Numerous attempts have been made to study the non-
inear Schrödinger equation (NLSE) describing the inter-
ction between the transmitted signal and the noise, but
he difficulty of treating a nonlinear operation on a non-
tationary stochastic process requires the introduction of
trong approximations.

Several recent studies2–4 introduced numerically inten-
ive perturbation methods, which are accurate but lead to
imited physical insight. Most PG studies instead deal
ith the simplest case of a continuous-wave (cw)

aunched signal and linearize the NLSE around a cw so-
ution at large optical signal-to-noise ratios (OSNRs) at
he end of the line.1,5–12 Since a Gaussian process after a
inear filtering remains Gaussian, the problem reduces to
nding an expression for the received ASE PSD. The ad-
antage of the cw linear PG model is its simplicity, which
eads to great physical insight.

Note in passing that also parametric amplification,
hich is a way to exploit PG to advantage, is commonly

tudied by means of a linearization around one or two cw
umps.13,14
0740-3224/07/040773-15/$15.00 © 2
Several papers based on the cw model deal with the ef-
ect of dispersion management on PG,6,10–12,15 but these
re all based on specific system configurations, and it is
ifficult to derive from them universal rules that apply to
ny dispersion-managed (DM) system.
This paper extends the cw small-signal PG model origi-

ally developed in Serena et al.16 for bit-error-rate (BER)
valuation of phase-modulated systems. The main pur-
ose of the paper is to obtain fundamental laws that allow
comprehension of PG in any DM periodic link. For
athematical convenience, the analysis is carried out in

he limit of infinitely many spans, for a limited total cu-
ulated nonlinear phase and in-line dispersion, a typical

ase for nonsoliton systems. Simulations for a finite num-
er of spans are then used to verify its range of applica-
ility. The analysis yields closed-form expressions of the
SE PSD, which are discussed in detail in various impor-

ant special cases. PSDs are shown to solely depend on
he in-line cumulated dispersion and on the so-called DM
ernel. Kernel expressions for both typical terrestrial and
ubmarine DM links are provided. The appearance of
odulation instability1 in any DM system is shown to be

imply related to the absolute value of its DM kernel. By
aylor expanding the kernel in frequency, we propose a
efinition of DM map strength that is more appropriate
or limited nonlinear phase DM systems with lossy trans-
ission fibers than the standard definition for soliton

ystems.17 Using the concept of equivalent map strength,
ystem parameters in widely different DM physical sys-
ems are found that yield identical ASE PSDs. It is found
hat nonlinearity in the dispersion-compensating fiber
DCF) at the end of each span has the effect of increasing
he equivalent strength. Also, the role of the fiber disper-
007 Optical Society of America
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ion slope is discussed. It is found that the average dis-
ersion slope acts like a scalar multiplier of the input–
utput system matrix and does not have any effect on PG.
ifferential dispersion slope, instead, is found to have an
ppreciable effect only at close-to-zero group-velocity dis-
ersion of the transmission fiber. The impact of a post-
ompensation fiber at the end of the DM link is also dis-
ussed, with emphasis on the key role of the PSD matrix
igenvalues, which represent the envelope of the in-phase
nd quadrature PSDs for all possible values of the post-
ompensation fiber dispersion. Finally, examples of appli-
ation of the PSD formulas to the performance evaluation
f both on–off keying (OOK) and differential phase-shift
eying (DPSK) modulated systems are provided, which
how that the PG linear model is much more successfully
pplied to DPSK than to OOK.
The paper is organized as follows. In Section 2 a uni-

ersal closed-form expression of the in-phase and quadra-
ure ASE PSDs holding for any DM link is derived. Gen-
ral PG-related properties of any kernel are derived in
ection 3. Section 4 provides kernel expressions for typi-
al terrestrial and submarine DM links. The concept of
quivalent map strength is introduced, and examples are
rovided of coinciding ASE PSDs in DM systems with the
ame equivalent map strength. Section 5 shows the im-
act of fiber dispersion slope on the ASE noise. In Section
novel insights, to our knowledge, into the effect of a

ostdispersion-compensating fiber on received ASE PSDs
re presented. Section 7 provides examples of application
f the proposed PSD formulas to the performance evalua-
ion of both OOK and DPSK modulated systems. Section
summarizes the main findings of the paper.

. THEORY
he NLSE describes the propagation of an electric field
�z , t� at distance z and retarded time t (in engineering
otation) as1,16

�A

�z
= j

�2�z�

2

�2A

�t2 +
�3�z�

6

�3A

�t3 − j��z��A�2A +
g�z�

2
A + WA�z,t�,

�1�

here �2�z� is the local (group-velocity) dispersion param-
ter; �3�z� is the third-order dispersion coefficient, related
o local dispersion slope; ��z� is the local nonlinear index;
�z�=−��z�+�kGk��z−zk� is the net logarithmic power
ain–attenuation per unit length, where ��z� is the local
ber attenuation, ��.� is the Dirac’s delta function, and eGk

s the power gain of the kth lumped amplifier of the link
laced at z=zk; and WA�zk , t� is a zero-mean complex cir-
ular Gaussian noise introduced by the kth amplifier,
ith a white PSD. Equation (1) deals with the ASE com-
onent copolarized with the signal.
We can now normalize time to the supporting pulse

uration T of a reference digitally modulated signal
y letting �= t /T. We can also normalize the signal
�z , t� to the power at coordinate z, i.e., A�z , t�
�PU�z , t�exp� 1

2�0
zg�x�dx�=�Pf�z�U�z , t�, where f�z��exp

��0
zg�x�dx� is the net power gain from input to coordinate

and P is a reference power. Equation (1) thus becomes
�U

�z
= j

1

2Ld

�2U

��2 +
1

6Ld�

�3U

��3 − j
f�z�

LNL
�U�2U + WU�z,��, �2�

here we introduced1 the dispersion length
d�z��T2 /�2�z�, the slope length Ld��z��T3 /�3�z�, and the
onlinear length LNL�z��1/ ���z�P�. Ld and Ld� have the
ign of �2 and �3, respectively.

If the transmitted field is a cw of power P, in the ab-
ence of noise the solution of Eq. (2) is U�z�=exp�
j�NL�z��, where �NL�z���0

z�f�x� /LNL�x��dx is the nonlin-
ar phase cumulated by the cw. By adding the noise con-
ribution, we search for a perturbed solution of Eq. (2) of
he kind1

U�z,�� = �1 + u�z,���exp�− j�NL�z��, �3�

here u�z ,�� is a complex perturbation field. By inserting
q. (3) into Eq. (2), and with the fundamental assumption

u�2	1 that allows neglecting quadratic and higher-order
SE terms, we obtain the linearized NLSE for the pertur-
ation:

�u

�z
= j

1

2Ld

�2u

��2 +
1

6Ld�

�3u

��3 − j
f�z�

LNL
�u + u*� + WU, �4�

here the asterisk denotes complex conjugation and the
onstant phase rotation �NL in Eq. (3) does not change
he statistics of the circularly symmetric noise WU. We
ow indicate the Fourier transforms of u�z ,�� and WU�z ,��
s ũ�z ,
� and W̃U�z ,
�, respectively, where 
 is the angu-
ar frequency normalized to 1/T. Even if such transforms

ay not exist for stationary stochastic processes, one can
lways interpret them as the transforms of time-
runcated versions of the signals over a suitable time win-
ow T0, which allows one to compute the PSD according
o the Wiener–Khinchin theory.18 Hence, in the frequency
omain,

�ũ

�z
= − j


2

2Ld�z�
ũ�z,
� − j


3

6Ld��z�
ũ�z,
�

− j
f�z�

LNL�z�
�ũ�z,
� + ũ*�z,− 
�� + W̃U�z,
�. �5�

Now assume the link is composed of identical spans of
ength L, so that f�z�, Ld�z�, Ld��z�, and LNL�z� are periodic
unctions, and let �h	� �1/L��0

Lh�x�dx indicate the span
verage of the generic function h�z�. Decompose the local
ispersion and slope lengths as 1/Ld�z�= �1/LD�
�1/L��z�� and 1/Ld��z�= �1/LD� �+ �1/L�� �z��, where
/LD� �1/Ld	 and 1/LD� � �1/Ld�	 are the span-averaged

nverse dispersion and slope lengths, respectively. The
erms 1/L� and 1/L�� account for the local deviation from
uch average values. Inside each span, we recognize two
ifferent dynamics along z due to the fiber dispersion10,17:
verage or slow dynamics due to LD, LD� and fast dynam-
cs due to L�, L�� . We next move into a reference system
hat follows the fast dynamics by making the change of
ariable10,17:
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ũ�z,
� = ã�z,
�exp
− j
���z,
�

2 � , �6�

here

�� = 
2�
0

z 
 1

L��x�
+




3L�� �x��dx.

ubstituting Eq. (6) in Eq. (5) yields

�ã

�z
= − j


2

2LD
ã�z,
� − j


3

6LD�
ã�z,
� − j

f�z�

LNL�z�

��ã�z,
� + ã*�z,− 
�exp�j���� + W̃U�z,
�, �7�

here again the phase rotation in Eq. (6) does not change
he Gaussian statistics of the noise W̃U. For a given finite
eceived nonlinear phase, when the number of spans Ns


, the infinitesimal nonlinear phase rotation per span
rives the evolution of ã�z ,
� as a slowly varying z func-
ion span by span: ã�z ,
� cannot follow the fast variations
ithin each span due to LNL�z�, f�z�, and ���z ,
� but

ather only their average effect. Hence, by the method of
veraging,19 one substitutes the rapidly z-varying coeffi-
ients in Eq. (7) with their span-averaged values. Define
he kernel of the transmission link17 as

R�
� �
 f�z�ej���z,
�

LNL�z� � =
1

L�0

L f�x�ej���x,
�

LNL�x�
dx, �8�

nd note that for a link of length z it is R�0�z=�NL, so
hat R�0� is the nonlinear phase rotation per unit length.
ith the additional definition of the operator
�
��R�0�+ �
2 /2LD�+ �
3 /6LD� �, Eq. (7) becomes, after
pan averaging of its coefficients,

�ã

�z
= − j�L�
�ã�z,
� + R�
�ã*�z,− 
�� + W̃�z,
�, �9�

here, since we treated each span as a differential dz, we
ubstituted the white ASE W̃U with a Langevin noise pro-
ess W̃, completely distributed along z with PSD at coor-
inates �z1 ,z2� equal to20

E�W̃�z1,
�W̃*�z2,
�� = 2�2��z1 − z2�, �10�

ith E�.� indicating statistical averaging and 2�2 indicat-
ng the one-sided ASE PSD per unit length in absence of
G. Note that even if W̃ does not have continuous paths,
q. (9) makes sense from a mathematical point of view
sing the Ito interpretation of a stochastic differential
quation.21 Note also that in Eq. (9) the operator L ac-
ounts for the slow dynamics, while R accounts for the
ast dynamics. It can be immediately observed that the
low dynamics are responsible for a phase shift on ã,
hile the fast dynamics allow the energy transfer to the
oise. A lengthy but straightforward computation shows
hat Eq. (9) coincides with a linearization of the so-called
M-NLSE17 (extended to include dispersion slope and in
hich space z is the only dimensional quantity left)
round the ansatz [Eq. (3)].
Decompose now the noise as ã�z ,
�= ãp�z ,
�+ jãq�z ,
�,
here ãp�z ,
�= 1

2 �ã�z ,
�+ ã*�z ,−
�� and ãq�z ,
�
1/2j�ã�z ,
�− ã*�z ,−
�� are the (complex) transforms of

he (real) noise components ap�z ,�� and aq�z ,�� in phase
nd quadrature with the cw signal. Note that ãp is the
ominant source of noise in the envelope detection of an
OK signal, while ãq mainly affects phase-modulated sig-
als. Since ãp and ãq are two Hermitian signals, it is use-

ul to similarly decompose the operators L and R as L
Lp+ jLq and R=Rp+ jRq, having defined Kp�
�= 1

2 �K�
�
K*�−
�� and Kq�
�=1/2j�K�
�−K*�−
��, where K stands

or either L or R. Note that Kp and Kq are, in general,
omplex numbers. Explicitly, the slow operator compo-
ents are

Lpz = �NL −

2

2
�in,

Lqz = − j

3

6
�in� , �11�

here �in�−z /LD represents the normalized in-line cu-
ulated dispersion (having the sign of dispersion in pico-

econds per nanometer) and where we also introduced the
ormalized dispersion slope �in� �z /LD� .
By exploiting the properties of Hermitian signals, we

an write Eq. (9) in matrix notation as

�a�z,
�

�z
= M�
�a�z,
� + W�z,
�, �12�

here a= �ãp , ãq�T and W= �W̃p ,W̃q�T are column vectors,
ith T indicating transposition, and M=LqI+A is a 2
2 matrix, with I as the identity matrix and

A = 
 Rq Lp − Rp

− Lp − Rp − Rq
� .

The closed-form solution of Eq. (12) is19

a�z,
� = eM�
�za�0,
� +�
0

z

eM�
�xW�z − x,
�dx. �13�

The autonomous solution, eM�
�za�0,
�, in the absence
f ASE, can be used to study the DM system response to
n input OOK modulation in the case of a small extinc-
ion ratio. However, in this paper we will not pursue this
ssue, and we will concentrate on the ASE forced solution
n the case of a noiseless cw input, a�0,
�=0. The forced
olution, the second term in Eq. (13), tells us that the to-
al noise at the link output z is the sum of all white ASE
oise contributions generated at the generic distance x
rom the output, filtered by the system matrix eMx seen
rom the generation point to the output. The system ma-
rix eMz can be evaluated as follows. The traceless matrix

has eigenvalues ±k, with

k = �Rp
2 + Rq

2 − Lp
2. �14�

Using a corollary of the Cayley–Hamilton theorem,22

e can express eMz in the form
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eMz = eLqz
cosh�kz�I +
sinh�kz�

kz
Az� , �15�

hich clarifies that the system transfer matrix is com-
letely specified by the operators Lp ,Lq and Rp ,Rq. Note
hat the small-signal transfer function (15) reveals that
he average dispersion slope, expressed by Lq, acts like a
calar multiplier and could thus, in principle, be compen-
ated for by a lumped slope compensator at the end of the
ink.

Using the Wiener–Khinchin theorem, we can now
valuate the PSD matrix of the output ASE as

S�z,
� = lim
T0→


E�a�z,
�a†�z,
��

T0
� 
Spp Spq

Sqp Sqq
� , �16�

here Spp is the PSD of the in-phase component, Sqq is
he PSD of the quadrature component, and Spq=Sqp

* is the
ross PSD. The symbol † indicates transpose–conjugate.
sing E�W�x ,
�W†�y ,
��=�2��x−y�I, from Eq. (13), one

hen gets the PSD normalized to the case without PG as

Ŝ �
S

�2z
=

1

z�0

z

eMxeMtxdx =
1

z�0

z

eAxeA†xdx, �17�

here in the last step we used the fact that Lq is imagi-
ary and thus cancels out. Hence the average dispersion
lope effects, which come into play through the scalar
ultiplier eLqz, do not affect the PSDs. Using Eq. (15), one

ets

Ŝ = f1I + f2AA† + f 3
*Az + f3A†z,

here

f1 =
1

z�0

z

�cosh�kx��2dx =
1

2
 sinh�2kr z�

2kr z
+

sin�2kiz�

2kiz
� ,

f2 =
1

z3�
0

z � sinh�kx�

k �2

dx

=
1

2�kz�2
 sinh�2kr z�

2kr z
−

sin�2kiz�

2kiz
� ,

f3 =
1

z2�
0

z cosh�kx�sinh�k*x�

k* dx

=
1

2k*z
 cosh�2kr z� − 1

2kr z
+ j

cos�2kiz� − 1

2kiz
� , �18�

n which k=kr+ jki, with real kr ,ki, and clearly f1 , f2 are
eal. The normalized PSD matrix entries are

Ŝpp = f1 + f2��Rq�2 + �Lp − Rp�2�z2 + 2R�f3Rq
*�z,

Ŝqq = f1 + f2��Rq�2 + �Lp + Rp�2�z2 − 2R�f3Rq
*�z,
Ŝpq = − 2�R�f3Rp
*�z + f2R�Rq�Lpz2 + j�I�f3�Lpz

+ f2I�RqRp
*�z2��, �19�

here R�.� and I�.� indicate real and imaginary parts of
heir complex argument. In the limit 
→0, the ASE PSD
atrix reduces to

Ŝ = �
1 − �NL

− �NL 1 +
4

3
�NL

2 � , �20�

hich clarifies that the quadrature component exhibits
n inflation proportional to the square of the nonlinear
hase and is an approximation of the nonlinear phase
oise.23 Note that at large nonlinear phases the negative
hase–quadrature correlation becomes significant. In the
pposite limit we have Ŝ�z ,
→
�=I; i.e., away from the
G region of influence, the PSD is white, as can be di-
ectly deduced from Eq. (9), since the kernel R�
→
�

0.

. GENERAL KERNEL PROPERTIES
e now focus our discussion on the kernel for the general
M link shown in Fig. 1. Here, an individual map period

or span) of length L is composed of N different fiber
ypes, possibly interleaved with lumped amplifiers. The
M link is the repetition of Ns identical periods. Figure 1

hows a possible power gain profile within a period. The
th fiber of the span has length Lk, attenuation length
Ak�1/�k, average dispersion length LDk, average slope

ength LDk� , and differential dispersion and slope lengths
�k, L�k� , respectively.
The gain profile inside the kth fiber, k=1, . . . ,N, of a ge-

eric period is

f��� = f��k�exp�− �� − �k�/LAk�, �k � � � �k+1,

here � is the local coordinate of the generic period; �k
�n=1

k−1Ln is the starting coordinate of the kth fiber, with
1=0; and f��k�=�n=1

k−1Gn exp�−Ln /LAn�, with Gn as the
ain of the lumped amplifier placed at �=�n, and by the
eriodicity assumption f��1�= f�L�=1. The cumulated dis-
ersion and slope phase rotations from �=0 to �=�k are
ccounted for in ����k ,
�, which can be expressed as

ig. 1. Power gain profile f��� within a single period of a general
eriodic DM link. The overall link is the repetition of N periods.
s
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����k,
� = �
n=1

k−1 � 
2

L�n
+


3

3L�n�
�Ln,

ith ����1 ,
�=0. Note that by periodicity also �� �L ,
�
0 at the end of the period. We now have all the ingredi-
nts for evaluating the kernel R in expression (8), with
he result

R�
�z = �
k=1

N

ej����k,
�Hk�Lk,
�, �21�

here z=NsL is the DM link length, and we introduce the
lter Hk�x ,
� that weights the effects of the fast dynamics

n the kth fiber:

Hk�x,
� = �NLk

LAk

Lk
eff

1 − exp�−
x

LAk
+ j
2

x

L�x
+ j


3

3

x

L�k�
�

1 − j
2
LAk

L�k
− j


3

3

LAk

L�k�

,

�22�

here Lk
eff=LAk�1−exp− �Lk /LAk�� is the effective nonlin-

ar length of the kth fiber in the period and
NLk�Ns�Lk

eff /LNLk�f��k� is the nonlinear phase cumu-
ated within the Ns fibers of type k of the DM link.

Note that the above model also includes the case in
hich some fiber type has a negative distributed loss fac-

or �k=1/LAk; i.e., it has distributed gain, as in the case of
umped Raman amplification in the last fiber section of
he period.

From now on, we will deal with the zero-dispersion
lope case, except for Section 5 in which we will show that
lope has indeed a negligible impact on PG in practical
M single-channel systems, unless the local dispersion is

lose to zero. In the absence of fiber dispersion slope, the
perator L=Lp is real �Lq=0�, as well as the operators Rp
nd Rq, which thus represent the real and imaginary
omponents of the kernel R. Let us define the normalized
ernel as r�
��R�
� /R�0�, so that R�
�z=�NLr�
�. From
q. (14) the eigenvalue thus becomes

kz = �NL��r�
�2 − 
1 − sgn��in�� 



c
�2�2

, �23�

here the critical frequency is defined as

c��2�NL/ ��in�=�2�LD� /LNL and is thus �2 times the soli-
on order.1 Let kr, ki be the real and imaginary compo-
ents of k. There are two possibilities: either (a) k=kr
0 and ki=0, a condition that leads to modulation insta-

ility (MI) of the noise for increasing z,1 or (b) k= jki, ki
0, and kr=0, a condition of the absence of MI, which

eads to a limited ASE PSD for increasing z. Since

�Rz� = ��
0

L f�x�ej���x,
�

LNL�x�
dx� ��

0

L f�x�

LNL�x�
dx = �NL,

hen �r�
��2�1 for all 
, the equality holding at 
=0.
hus by inspection of Eq. (23), one concludes that, for any
M scheme, MI can appear only with anomalous in-line
ispersion, �in�0, at frequencies satisfying the following
I condition:
�r�
�� � �1 − � 



c
�2� . �24�

he fact that �in�0 ensures absence of MI was already
roven for a symmetric lossless two-section map using
loquet theory.24

. Map Strength
o compare different DM systems having different ker-
els, it is useful to expand the normalized kernel in a Tay-

or series around 
=0. From the Taylor expansion of the
xponential term in expression (8), we get

r�
� = �
n=0


 �− j�nSn

n!

2n = 1 − jS1
2 −

1

2
S2
4 + j

1

6
S3
6 − . . . ,

�25�

here the nth-order DM strength is defined as

Sn �
 f�z�

LNL�z�
�0

z dx

− L��x��n��
 f�z�

LNL�z�� . �26�

The frequency range over which the Taylor expansion
Eq. (25)] is accurate increases as we add higher-order
erms. Suppose now the first-order strength S1 term is
ominant. When �S1�
2	1, i.e., when 
	
��1/��S1�,
hen r�
��1− jS1
2 is a good approximation of the true
ernel [Eq. (25)].
For our general kernel [Eq. (21)], a Taylor expansion to

econd order in 
 of its main term gives

Hk�Lk,
� � �NLk
1 + j
2
LAk

L�k
�1 −

Lk

Lk
effe

−Lk/LAk�� ,

o that from the Taylor expansion of r�
�=R�
�z /�NL one
nds

S1 = − �
k=1

N

�k
�
n=1

k−1 Ln

L�n
+

LAk

L�k
�1 −

Lk

Lk
effe

−Lk/LAk�� , �27�

hich shows that the contribution of each fiber type in
he span to the (first-order) strength scales with the frac-
ion of nonlinear phase in that type

�k �
�NLk

�NL
=

Lk
eff

LNLk
f��k�

�
n=1

N Ln
eff

LNLn
f��n�

,

ith �k=1
N �k=1. The periodicity constraint ���L ,
�=0

ranslates here into the constraint

�
n=1

N Ln

L�n
= 0. �28�

e will see the importance of the strength S1 as we pro-
eed to the numerical evaluation of specific kernels.

. General Power Spectral Densities
n the absence of slope, the normalized ASE PSDs [Eqs.
19)] become explicitly
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Ŝpp�
� = c0�
� + �c2�
�rr�
� − c1�
�ri�
��,

Sqq�
� = c0�
� + �c2�
�rr�
� − c1�
�ri�
��,

Spq�
� = − �c1�
�rr�
� + c2�
�ri�
��, �29�

ith real coefficients:

c0 = f1 + f2��NL
2 �r�2 + �Lpz�2�

= 1 + �NL
2 �r�2
 sinh�2kz�

2kz
− 1�� �kz�2,

c1 = 2�NLf3 = 2�NL�cosh�2kz� − 1�/�2kz�2,

c2 = 2�NLf2Lpz = �NL
2 
1 − sgn��in�� 



c
�2�

�
 sinh�2kz�

2kz
− 1�� �kz�2, �30�

ith kz given in Eq. (23). Note that c0 is half the physi-
ally observable normalized PSD Ŝpp+ Ŝqq of the overall
SE process, commonly referred to as MI spectral
ain.10,12 From the above formulas, it is clear that PG for
ny kernel scales with the following three dimensionless
ey parameters: (1) nonlinear phase �NL (rad); (2) nor-
alized total in-line dispersion �in (through kz and 
c);

nd (3) map strength S1 that determines the kernel r
hen 
	
�. Higher-order strengths are required to
niquely determine PG over a larger frequency range.

. SOME KERNELS OF INTEREST
e now specialize the theory in Section 2 to several peri-

dic DM links of interest, which can all be described as
pecial cases of the general case shown in Fig. 1.

. Long-Span Terrestrial Link
ach map period in a standard terrestrial DM link is com-
osed of N=2 fiber types: a transmission fiber of length
uch longer than its attenuation length, which is fol-

owed by a dispersion-compensating fiber (DCF). If the
CF is ideal, i.e., no nonlinearity is present in the DCF

e.g., a grating11 or a DCF with low input power), then

Rz � HT�LT,
� =
�NL

1 + jS
2 , �31�

here subscript T refers to the transmission fiber, and we
efine S=−LAT /L�T as the map strength of the long-span
errestrial system. S has the sign of the dispersion coeffi-
ient DT [ps/(nm km)] and is, in fact, the first-order
trength as defined in expression (26). A graphical repre-
entation of the functions of 
 on both sides of expression
24) is plotted in Fig. 2 versus normalized frequency
n�
 /2�, where the monotonically decreasing kernel
odulus is shown for various strength values. In the ab-

ence of DM �S=0� and at positive in-line �in�0, we see
hat MI is confined to the range 0�
��2
c. As compared
ith the non-DM case, at the same � and in-line � , we
NL in
ote that DM shrinks the frequency range over which MI
ppears by an increasing amount as the strength S in-
reases and independently of the sign of S. At small �S�,
nly one root 
c�
1��2
c of expression (24) is present,
hile at a critical strength (here �S�=0.1) tangency be-

ween the right and the left functions in expression (24) is
eached, so that at larger strengths two more roots 
2 and
3 appear (we assume 
1�
2�
3) so that MI is confined

o the range 
� �0,
1�� �
2 ,
3�. At large �S� the interval

2 ,
3� shrinks around 
c.

In the following we verify the accuracy of our theoreti-
al asymptotic PG formulas (29) against direct solution of
he linearized propagation equation with ASE using the
plit-step Fourier method1 (SSFM).

. Case S=0
e start with the simplest case of an uncompensated sys-

em, in which the local dispersion matches the average
ispersion and thus S=0.
Figure 3 shows the normalized ASE PSDs versus nor-
alized frequency fn in a system with S=0 and �NL
0.5� rad. SSFM simulations (solid curves) have been
erformed for Ns=5,10,15,50 spans. The top row shows
he PSDs Ŝqq and Ŝpp on a decibel scale, while the bottom
ow shows Ŝpq on a linear scale. The left column refers to
normal transmission fiber with �in=−0.1275, while the

ight column reports the same quantities in the anoma-
ous case �in=0.1275. To appreciate the meaning of the
ormalized quantities in the figure, for instance, for a ref-
rence nonreturn-to-zero (NRZ) signal at 10 Gb/s, the
ormalized frequency fn=1 corresponds to 10 GHz, while
in=0.1275 corresponds to an in-line cumulated disper-
ion of ±1000 ps/nm at �=1550 nm. In all figures, dashed
urves correspond to our asymptotic formulas (29). We
ote the well-known features of the inflation of Ŝpp above

ts linear value of 1 in the anomalous regime and its de-
ation below 1 in the normal regime (noise squeezing).7

n the figures, we also see that the SSFM-simulated ASE
SDs converge to the theoretical asymptotic formulas (29)

or increasing Ns, which becomes practically indistin-
uishable from simulations beyond Ns=50. However,
e see that already at Ns=10 spans the prediction

s less than 0.7 dB on the whole frequency range. The

ig. 2. Plot of �r� (solid curves) and �1− �
 /
c�2� (dashed curve)
ersus normalized frequency fn=
 /2�, at �NL=0.5� and �in
0.1. Critical frequency fc�
c /2�.
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ormulas represent a lower bound (at most frequencies) of
he simulated PSDs for finite spans, which in the present
ase includes a booster with the same noise figure as the
ine amplifiers. We verified that without such a booster
he formula yields an upper bound on the simulated
SDs.
We also note that at a small number of spans �Ns=5�

here are significant sideband instability (SI) lobes, which
isappear at larger Ns. This is fortunate, since the aver-
ged NLSE is able to reproduce only the main lobe of MI,
hile SI lobes are captured only when the higher harmon-

cs in the Fourier expansion of the periodic NLSE param-
ters are also taken into consideration.9

Note that when S=0 we have r�
�=1, and we already
oted that MI is present in the range 0�
��2
c. Using

ig. 3. (Color online) Normalized ASE PSDs (top: Ŝpp and Ŝqq; bo
S=0� with �NL=0.5�, and �in=−0.1275 (left), �in=0.1275 (right)
heory [Eqs. (29)].

ig. 4. (Color online) Normalized ASE PSDs versus normalize
NL=0.5�, S=−0.1275 (left), and S=0.1275 (right). Solid curves

29)].
r=1 and ri=0 in Eqs. (29), it is easy to see that Ŝpp and
ˆ

qq cross only when �in�0, and such a crossing occurs at
=
c. Also, since kz→0 as 
→�2
c, then from Eqs. (29)
e find that for all �in�0: (i) Ŝqq��2
c�=1, which provides
simple way of spotting out from the plot of the quadra-

ure PSD the value of �2
c, which is also an estimate of
he width of the main lobe of Ŝqq; (ii) Ŝpp��2
c�=1

4
3�NL

2 , which equals the value of Ŝqq at 
=0 and is close
o the actual peak value; and (iii) Ŝpq��2
c�=−�NL.

. Case �in=0
e now tackle the special case of a terrestrial DM system
ith full in-line compensation, �in=0. Figure 4 shows the

ˆ
pq) versus normalized frequency fn in an uncompensated system
curves: SSFM simulations for Ns=5,10,15,50. Dashed curves:

uency fn in a DM system with full in-line compensation, with
simulations for Ns=5,10,15,50. Dashed curves: theory [Eqs.
ttom: S
. Solid
d freq
: SSFM
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ormalized ASE PSDs versus frequency fn, for S=
0.1275 (left column), S=0.1275 (right column), and
NL=0.5� rad. The strength can be expressed in terms of
hysical parameters as

S =
�

�
�DT −

Dn

NsL
� , �32�

here �� �1/2�c��� /T�2, c is the light speed, Din=�in/�−

usually expressed in ps/nm) is the overall in-line cumu-
ated dispersion, while DT is the transmission fiber dis-
ersion coefficient [usually in ps/(nm km)]. Hence S
0.1275 could be, for instance, the map strength of an
RZ system at R=40 Gb/s at �=1550 nm, with a nonzero
ispersion-shifted �NZDSF+� transmission fiber �DT
2.92 ps/ �nm km��. Comparing Fig. 4 with Fig. 3, we note

hat both Ŝpp and Ŝqq are much less inflated by PG in both
he anomalous and the normal regimes. In the figures we
ee both theory [Eqs. (29)] (dashed curves) and SSFM
imulations (solid curves) for increasing number of spans
s=5,10,15,50, and we note a quick convergence to the

heory for increasing Ns. Already at five spans the predic-
ion is within 1 dB of the actual value over the whole fre-
uency range. Using expression (31), Eqs. (29) become ex-
licitly

Ŝpp = 1 −
1 − cos �

2�NLS
2 ,

Ŝqq = 1 +
1 − cos �

2�NLS
2 +
2

S2
A�1 −
sin �

�
� ,

Ŝpq = −
1 − cos �

2�NLS2
4 +
1

S
2�1 −
sin �

�
� , �33�

here ��−2�NLS
2 /�1+S2
4. Thus we easily see that
ˆ

pp is always inflated (above 1) for normal transmission
ber �S�0� and deflated for anomalous fiber. However,
ven in the normal case we have that an upper bound on

ˆ
pp is 1−1/ ��NLS
2�. Hence the in-phase component does
ot diverge for increasing nonlinear phase, since systems
ith full in-line compensation do not display MI, as al-

eady noted in Section 3. Note that ��� varies from 0 to
�NL as 
 increases. The frequency 
 at which the mid-
alue ���=�NL is reached is obtained by solving the equa-
ion 1=4S2
4 / �1+S2
4� and turns out to be 
̄=
�/4�3
0.76
�, with 
� defined in Subsection 3.A. We note that

ig. 5. (Color online) Normalized ASE PSD Ŝpp and Ŝqq versus f
nd with �NL=0.72� rad for the (left) SMF system �S=0.0485
0.0058�. Solid curves: SSFM simulations for N =5,10,15,50. D
s
¯ is also close to the maximum (if S�0) or minimum (if
�0) of Ŝpp. The width of the main lobe of the function
c0� Ŝpp+ Ŝqq, i.e., the PSD of the ASE process a�z , t�, can
e taken as an estimate of the range over which PG in-
ates the PSDs. We define the PG bandwidth 
PG as that

requency at which c0�
PG�= �c0�0�+c0�
�� /2, i.e., is half-
ay between c0�0�=1+ 2

3�NL
2 [from Eq. (20)] and c0�
�=1.

e search 
PG in the neighborhood of 
=0, so that, by ap-
roximating f1,2 with their fourth-order Taylor expansion
round kz=0, we find


PG ����NL
4 + 25 − �NL

2

5
�
�, �34�

ccording to which 
PG decreases for increasing �NL.
uch a formula has been verified to be accurate to within
% of the true value in the range 0��NL��.

. Case �in�0, S�0
e consider three sample DM long-span terrestrial sys-

ems. Type 1 has single-mode (SMF) transmission fiber
DT=17 ps/ �nm km� at 1550 nm], type 2 is NZDSF+ �DT
2.92 ps/ �nm km��, and type 3 is NZDSF− �DT
−2.60 ps/ �nm km��, all with attenuation �=0.2 dB/km.
eferred to an NRZ 10 Gb/s transmission, in the limit of
s→
 and for a finite in-line dispersion, from Eq. (32) the

hree systems have strenghts S=0.0485,0.0095, −0.0058,
espectively. We now compare links of different number of
pans, at fixed nonlinear phase, strength, and in-line dis-
ersion.
Figure 5 shows the in-phase and quadrature ASE PSDs

or all three types of fiber according to our asymptotic for-
ula [Eqs. (29)] (dashed curves) and the SSFM-simulated

urves (solid curves) for Ns=5,10,15,50 spans, all at the
ame nonlinear phase �NL=0.72� and �in=0.1275. Again,
e note that at five spans there are some contributions
ue to SI, which disappear for increasing Ns. Complete
onvergence to our formula is achieved roughly around
s�50. Hence the main system parameter to ensure con-

ergence is the nonlinear phase rotation per span, which
hould be smaller than 0.1 rad, although the convergence
peed slightly depends also on the details of the map. A
heoretical investigation of convergence of the DM-NLSE
an be found in Ablowitz et al.25 Note also that a closed-
orm expression for the PSDs for any Ns is known,11

hich matches the simulated PSD curves in the main PG

cy fn, in a DM system with �in=0.1275 (1000 ps/nm at 10 Gb/s)
ter) NZDSF+ system �S=0.0095�; (right) NZDSF− system �S=
curves: theory [Eqs. (29)].
requen
�; (cen
ashed
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obe but does not capture the SI, since such a formula is
lso based on an averaged NLSE.
From comparison of the two NZDSF plots in Fig. 5, one

oncludes that the sign of the transmission fiber disper-
ion does not significantly affect the shape of the PSDs.
his is confirmed by the MI condition (24), whose solu-
ions depend on strength S only through �r� and thus are
ndependent of the sign of S. A related interesting obser-
ation was made in Ciaramella and Tamburrini12 regard-
ng the discrepancy of the PSDs between an unmapped
ink �S=0� and a DM link operated at the same �NL and
in. It was noted that at large in-line dispersion �in the
trength does not contribute to setting the PSDs. How-
ver, how large an in-line dispersion is required was
uantified only in the special case of an SMF-based link.12

e are now able to generalize that result. From Fig. 2,
ne may guess that if the graph of the curve �1− �
 /
c�2�
ntercepts the graph of �r�
 ,S�� at a frequency 
 close to
2
c, then the behavior of the eigenvalue kz, and thus of
he PSDs, should be similar to the unmapped case. This
equires that the kernel near the intercept frequency
2
c be described by r�1− jS
2, with �S�
2	1. Hence no
ignificant difference in PSDs between the mapped and
he unmapped cases is expected when

��in� � 4�NL�S�. �35�

Using the same system values as in Fig. 2, we show in
olid curves in Fig. 6 the in-phase (concave curves) and
uadrature (convex curves) ASE PSDs at S=0.1 and S
0.001, while the unmapped case is shown in dashed
urves. The largest strength does not satisfy expression
35), although the smaller one does. Condition (35) holds
n fact for any kernel, by using the first-order strength in-
roduced in Subsection 3.A.

. General Terrestrial Link
onsider again a terrestrial DM link, with N=2 fiber

ypes per span, but now we account for nonlinearity in the
CF and for the possibility that the transmission–DCF fi-

ig. 6. (solid curves) ASE PSDs versus frequency for a long-
pan terrestrial link with �NL=0.5�, �in=0.1, and both S=0.1
nd S=0.001. (dashed curves) S=0 unmapped case.
ers may be of length comparable with their attenuation
ength. From Eq. (21), the kernel explicitly is

Rz = HT�LT,
� + ej
2LT/L�THC�LC,
�, �36�

here we used subscript T for the transmission fiber and
for the compensating one.
Figure 7 (left) shows normalized ASE PSDs versus fre-

uency fn with a cumulated in-line dispersion �in=
0.025 (−200 ps/nm at R=10 Gb/s). Symbols denote
SFM simulations for Ns=20 spans, each span being com-
osed of LT km of transmission fiber [DT=8 ps/ �nm km�,
T=0.2 dB/km, �T=2 W−1 km−1], LT being 10, 50, or
00 km, followed by a DCF [DC=−100 ps/ �nm km�, �C
0.6 dB/km, �C=6 W−1 km−1], and with a single amplifier
t the end of the DCF to recover the span losses. The non-
inear phase was �NL=0.72� rad in all three length
ases.26 Solid curves denote theory [Eqs. (29)], making
se of Eq. (36), and well agree with simulations. We note
hat shortening the transmission fiber length from
00 to 10 km implies increasing the fraction of nonlinear
hase inside the DCF. This has the effect of significantly
hifting the dip of the in-phase PSD to higher frequencies,
s in an equivalent long-span terrestrial system (a terres-
rial system with transmission fiber much longer than its
ttenuation length and no nonlinearity in DCF, as in Sub-
ection 4.A) with smaller transmission fiber dispersion, as
hown in Fig. 7 (right), where the best fit of the PSDs in
he LT=10 km case was found at an equivalent transmis-
ion fiber dispersion of Deq=1.9 ps/ �nm km�.

For the same system with DT=8 ps/ �nm km� and LT
100 km of Fig. 7, Fig. 8 (left) shows the effect of using

he DCF within a dual-stage amplifier, with relative
ower into the DCF PDCF/P=0,−3,−20 dB, the third
alue corresponding to the previous case of the absence of
he first amplifier. The PSDs were derived by using Eqs.
29) and (36). We note that the effect of increasing the
ower (and thus the nonlinear effect) into the DCF is that
f shifting the dip of the in-phase PSD to lower frequen-
ies, as in an equivalent long-span system with smaller
ransmission fiber dispersion, as shown in Fig. 8 (right),
here the best fit of the PSDs in the PDCF/P=0 dB case
as found at an equivalent fiber dispersion Deq
12.8 ps/ �nm km�.
The explanation of the above-observed equivalence of

SDs is rooted in the concept of map strength. In both
revious cases the fraction of nonlinear phase into the
CF is

�c = �CLC
eff

PDCF

P ���TLT
eff + �CLC

eff
PDCF

P � ,

here the ratio PDCF/P reaches its lowest value e−LT/LAT

n the absence of the amplifier preceding the DCF. Define
he strength of the transmission fiber as ST�−LAT /L�T,
nd define SC similarly for the DCF. Then constraint (28)
ere gives SC=−ST�LT /LAT��LAC /LC�. Thus Eq. (27) fi-
ally gives the equivalent (first-order) strength of the ter-
estrial DM link as
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S1 = ST��1 − �c��1 −
LT

LT
eff e−LT/LAT�

+ �c

LT

LAT

1 −

LAC

LC
�1 −

LC

LC
effe

−LC/LAC��� . �37�

t was, in fact, using Eq. (37) that the strength of the best-
atching equivalent long-span system was found in Figs.
and 8. Also note that the largest frequency for an ac-

eptable PSD matching extends roughly up to 
�

1/��S1�.
We show in Fig. 9 S1 /ST versus LT obtained from Eq.

37) for different values of �c, having used the same at-
enuation and dispersion values as in Fig. 7. We note that
or a fixed LT the first-order map strength increases with
he nonlinear phase cumulated in the DCF. If both types
f fiber are significantly longer than their attenuation
engths, Eq. (37) simplifies to S1�ST��1−�c�
�c�LT /LAT��. For example, for typical 100 km terrestrial
pans with standard transmission fiber, one has LT /LAT
5. Hence if 75% of the nonlinearity takes place in the

ransmission fiber and 25% in the DCF, the first-order

ig. 7. (Color online) Normalized ASE PSD Ŝpp and Ŝqq versus
0.025 (−200 ps/nm at R=10 Gb/s). Left: theory [Eqs. (29)] (dash
ith DT=8 ps/ �nm km�, DC=−100 ps/ �nm km�, and various leng

dashed curves) and equivalent long-span system with Deq=1.9 p

ig. 8. (Color online) Normalized ASE PSD Ŝpp and Ŝqq versus
rial map with LT=100 km. Left: two-section span with
100 ps/ �nm km�, and various ratios PDCF/P=−20, −3, 0 dB. Rig
quivalent long-span system (dashed curves) with Deq=12.8 ps/ �
ap strength S1 is increased from ST by a factor 0.75
0.25�5�=2, as can be checked in Fig. 9.

. Submarine Link
e consider a typical submarine map, whose period is

omposed of L = l km of a fiber with dispersion +D, fol-

ncy fn at �NL=0.72� rad and cumulated in-line dispersion �in=
es) and SSFM simulations (symbols) for 20-span terrestrial map

=10,50, 100 km. Right: PSDs for LT=10 km case as in left plot
km� (solid curves).

ncy fn, in a system with �NL=0.72� rad, �in=−0.025, and terres-
within dual-stage amplifier, with DT=8 ps/ �nm km�, DC=

Ds for the PDCF/P=0 dB case as in left figure (solid curves) and
�.

ig. 9. (Color online) S1 /ST versus transmission fiber length LT
or varying �c. Same attenuation and dispersion values as in
ig. 7.
freque
ed curv
ths LT
freque
DCF

ht: PS
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owed by L2=2�l−�� km of a fiber with the same param-
ters but opposite dispersion −D and by a third fiber
qual to the first one.17 All fibers have the same attenua-
ion length LA, and amplification is provided only at the
nd of each period. The parameter � sets the desired
p
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mount of residual dispersion per span, and �	 l for
any-span links. Applying Eq. (21) and again neglecting

he fiber’s slope give Rz= �1+e−3l/LA−j
2l/L�1� H1�l ,
�
ej
2l/L�1H2�2l ,
� which after some algebra can be explic-

tly written as17
Rz = �NL

1 + S
2 csch�G�sin�SG
2� − jS
2�1 − sech�G�cos�SG
2��

1 + S2
4 , �38�
hich is seen to depend on the two dimensionless param-
ters S�−LA /L�1 and G� l /LA. As the fiber attenuation
oes to zero, the kernel reduces to Rz
�NL sin�SG
2� / �SG
2�, and all odd-index strengths
1,S3 , . . ., vanish.11,17 The zero-loss case is extensively
tudied in the soliton literature, and thus the only param-
ter of the submarine lossless kernel s�SG is called in
hat context the map strength.17 In the lossy case, from
he Taylor expansion of Eq. (38), the first two strengths
expression (26)] are found to be

S1 = S�1 − sech�G��,

S2 = 2S2�1 − G csch�G��. �39�

he expression of S1 could be obtained directly from Eq.
27). Although at low loss the term with S2 dominates
hat with S1, the first two terms of the kernel Taylor ex-
ansion have equal magnitude at 
=
� (as in a long-span
errestrial system) when �S1�=�S2 /2, i.e., when l /LA
1.2. Therefore, when each fiber in the period is longer

han its attenuation length, there exists an equivalent
ong-span terrestrial kernel with strength S1 that well ap-

ig. 10. (Color online) Ŝpp (concave) and Ŝqq (convex) versus fre-
uency fn for a three-section span with 15 km at dispersion +D,
0 km at −D, and 15 km at +D, and D is 8 ps/ �nm km�. �NL
0.72� rad. PSDs of equivalent long-span fit with Deq
1.6 ps/ �nm km� also shown.
roximates the submarine kernel over the region 0�


�.
In Fig. 10 we show the PSDs for an alternating +D ,

D , +D three-section span with l=15 km, D
8 ps/ �nm km�, �NL=0.72� rad, along with their equiva-

ent long-span fit whose equivalent transmission fiber dis-
ersion Deq=D�1−sech�G���1.6 ps/ �nm km� was ob-
ained from Eqs. (39).

. EFFECT OF SLOPE
he effect of dispersion slope on ASE PSDs is generally
egligible, unless the local dispersion is close to zero, as,
or instance, in dispersion-shifted fibers. Figure 11 shows
he ASE PSDs [Eqs. (19)] for a fully compensated DM sys-
em with two-section spans, with 50 km at dispersion +D
nd slope +S, followed by 50 km at −D and slope −S, with
=0.1 ps/ �nm km� and S=0.058 ps/ �nm2 km�, and with

ommon fiber attenuation �=0.2 dB/km and amplifica-
ion provided only at the end of the span, and for a non-
inear phase �NL=0.72� rad. The figure also shows in
ashed curves the PSDs when dispersion slope is ne-
lected. We note that in this case dispersion slope causes
he growth of a second sidelobe at higher frequencies.

. IMPACT OF POSTCOMPENSATION
ommonly installed optical systems make use of precom-
ensating and postcompensating fibers, placed before and
fter the link, respectively, to improve the tolerance to lin-
ar and nonlinear distortions. While the precompensating
ber has no effect on PG, since ASE is generated down-
tream of it, in this section we investigate the effect of the
ostcompensating fiber (postfiber in brief) on PG.
Propagation inside the postfiber is still governed by the

ynamical equation (5), yielding an input–output relation
escribed by a transfer matrix U. If nonlinearity and dis-
ersion slope within the postfiber are neglected, matrix U
s a real orthogonal (rotation) matrix, which can be ob-
ained from Eq. (15) in the limit �NL→0 as U= �cos �p ,
sin �p ;sin �p , cos �p�, with a post rotation angle �p
�post


2 /2, where �post is the normalized cumulated dis-
ersion in the postfiber. From expression (16) the received
SE PSD matrix after postcompensation is

S̃ = UŜU†. �40�
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As an example, in Fig. 12 the received ASE PSDs are
lotted for different values of postcompensation �post
�−0.025,0,0.025� for a long-span terrestrial DM system
aving map strength S=0.01, nonlinear phase �NL
0.6�, and full in-line compensation �in=0. As can be ob-
erved, the behavior of the PSDs strongly depends on the
mount of postcompensation, with a periodic exchange of
ower between the in-phase and quadrature components
s the frequency increases.
To understand such a power transfer, it is useful to

pectrally decompose the positive semidefinite PSD ma-
rix as Ŝ=V�V†, where �=diag���m ,�M�� is the diagonal
atrix of its real nonnegative minimum and maximum

igenvalues, respectively, while the columns of the uni-
ary matrix V are the corresponding orthonormal eigen-
ectors. If dispersion slope in the DM line is neglected,
hen the f3 term in Eqs. (18) is real, and thus the diagonal
erm Ŝ is also real. Hence V is a real rotation matrix,

ig. 11. Ŝpp (concave) and Ŝqq (convex) versus frequency fn for a
ully compensated two-section span with 50 km at dispersion +D
nd slope +S and 50 km at −D and slope −S, with D
0.1 ps/ �nm km� and S=0.058 ps/ �nm2 km�. PSDs ignoring dis-
ersion slope are shown, as dashed curves. �NL=0.72� rad.

ig. 12. (Color online) ASE PSD for different postcompensa-
ions. (a) �post=−0.025; (b) �post=0; (c) �post=0.025. Index 1: in-
hase component; index 2: quadrature component. Dashed
urves: eigenvalues �m ,�M. S=0.01, �in=0, �NL=0.6�.
pq
hich can be written as V= �cos �̂ ,−sin �̂ ;sin �̂ , cos �̂�. The
ine rotation angle �̂ can be found from the spectral de-
omposition form to be

�̂�
� =
1

2
arctan� 2Ŝpq

Ŝpp − Ŝqq
� . �41�

he eigenvalues are found to be �m,M= 1
2 �Ŝpp

Ŝqq±��Ŝpp− Ŝqq�2+4Ŝpq�, and, after using Eqs. (29), they
implify to �m,M=c0± �r��c1

2+c2
2, a relation that shows, for

nstance, that they do not depend on the sign of the
trength S of the terrestrial kernel, since the strength al-
ays appears inside the term �r�. The similarity transfor-
ation [Eq. (40)] preserves the eigenvalues. Thus from

he Rayleigh–Ritz theorem27 we have �m=min�x�=1xTS̃x
nd �M=max�x�=1xTS̃x over all unit-norm column vectors
. Now the output PSDs can be expressed as S̃pp=xTS̃x
hen x= �1,0�T and S̃qq=xTS̃x when x= �0,1�T. Hence we

onclude that the PSDs after any postfiber (as well as the
SDs before it) are sandwiched between the two eigenval-
es: �m� S̃pp, S̃qq��M, which therefore represent the en-
elopes shown as dashed curves in Fig. 12. Equality holds
hen the eigenvectors are x= �1,0�T and x= �0,1�T, corre-

ponding to a zero rotation angle �= �̂+�p of the total ro-
ation matrix UV. We observe from Fig. 12 that by vary-
ng �post one thus varies the frequencies of the minima–

axima of the PSDs, which satisfy the condition ��
�
�̂�
�+�post


2 /2=0.
Having characterized the effect of the postcompensat-

ng fiber on the received ASE PSDs, we now address the
roblem of finding the value of postcompensation that
inimizes PG. The answer clearly depends on the modu-

ation format, as already discussed in Section 2. In our cw
odel the modulation does not appear; hence we need a

easonable interpretation of the cw level. It has been
hown16 that the impact of signal modulation can be prop-
rly substituted by an equivalent reference cw level that
ccounts for an effective power within the memory time of
he DM optical link. Once the proper power level has been

ig. 13. (Color online) Normalized in-phase ASE variance ver-
us �post and �in. Terrestrial long-span DM system with S=0.022
nd � =0.6�. Circles: �opt in Eq. (42).
NL post
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dentified, we observe that for on–off keying (OOK) modu-
ation the best postcompensation choice minimizes the
emporal variance of the in-phase ASE component, which
s the main source of errors for an envelope-detector-
ased receiver.6 Thanks to the closed-form expression of
he ASE PSDs [Eqs. (29)], we quickly evaluated such a
ariance for a wide range of postcompensation and in-line
ompensation values. Figure 13 depicts the variance nor-
alized to its value in the absence of PG. We used a sys-

em with S=0.022 [corresponding to a fully compensated
RZ system at R=10 Gb/s with DT=8 ps/ �nm km�] and
NL=0.6�. We evaluated the variance over a normalized
andwidth B=0.75. The figure shows large tolerance to
ostcompensation errors for negative in-line dispersions,
hile for positive dispersions the tolerance is much re-
uced and the best region varies almost linearly with �in.
n the same figure we also plot a solid curve with circles
orresponding to the �post

opt that satisfies the condition ��

��=0, which, using Eqs. (41) and (29), yields

�post
opt = −

1

�2 arctan
 c1���rr��� + c2���ri���

c2���rr��� − c1���ri���� . �42�

uch a value of �post forces the in-phase PSD S̃pp to
chieve its smallest possible value at frequency fn=1/2,
.e., near the center of the bulk of the OOK one-sided sig-
al spectrum, thereby almost minimizing the variance of
he in-phase ASE.

. SYSTEM PERFORMANCE EVALUATION
n important issue with the small-signal PG model as ap-
lied to bit-error-rate (BER) computation is about its
ange of validity. For OOK systems at 10 Gb/s, although
t is clear that at large end-line optical signal-to-noise ra-
io (OSNR) the small-signal assumption holds, but essen-
ially no PG-induced sensitivity penalty can be observed
t the receiver, it has been shown that, in 10 Gb/s ultral-
ng terrestrial systems operating at low OSNR and thus
mploying forward error correction, a significant penalty
ue to PG can be observed, depending on the cumulated
onlinear phase and on the dispersion of the transmission
ber.4,28 However, in such large PG cases the PSDs pre-
icted by the small-signal PG model are inaccurate, and
irect PSD estimation from simulations is necessary.4,28

For differential phase-shift keying (DPSK) systems at
0 Gb/s, matters are quite different. Already at relatively
arge OSNR values, significant PG-induced penalties can
e observed even at moderate nonlinear phases,16,23,29

nd the small-signal PG model can thus be successfully
sed in performance evaluation.30 While the standard
ER computation goes through the evaluation of the
hase noise statistics,31 a method based on the assump-
ion of a received colored Gaussian noise has been re-
ently proposed.16,30 Regarding the appropriateness of the
w assumption in deriving the ASE PSD, when the sup-
orting pulses are return-to-zero (RZ) pulses such a PSD
s not stationary, and it is unclear which cw level should
e used to linearize the NLSE. Fortunately, it has been
hown that it is possible to choose an equivalent cw level,
hich depends on the details of the DM map, so that the
w small-signal model yields correct results even for RZ
ulses.16

In this section we will provide numerical examples of
erformance evaluation in both DPSK and OOK systems
hat further support the above observations. All results
resented next will refer to a single-channel transmis-
ion.

Figure 14 shows the Q factor versus average nonlinear
hase for an NRZ-DPSK 20�100 km fully compensated
ZDSF+ system at R=10 Gb/s �S=0.008� working at an

nd-line OSNR of either 15 or 9 dB/0.1 nm. Before trans-
ission, a precompensation of −44 ps/nm was used,
hereas after the link the postcompensation was
20 ps/nm. Before detection a Gaussian optical filter of
andwidth 1.8R removed the out-of-band noise. In all
ases the Q factor was obtained by inverting the BER
valuated through a Karhunen–Loéve method for qua-
ratic receivers.16 The solid curves represent the Q factor
btained from the true PSDs estimated from SSFM
imulations.4 The dashed curves represent the Q factor
btained by using our theoretical PSDs [Eqs. (29)], and
he dashed–dotted line with crosses represents the Q fac-

ig. 14. (Color online) Q factor versus �NL for a NRZ-DPSK sig-
al after propagation into a 20�100 km fully compensated
ZDSF+ system at R=10 Gb/s. Dashed curves: evaluation using

ormulas (29). Solid curves: evaluation using Monte Carlo PSDs.
ashed–dotted line with crosses: Q factor in the absence of PG.

ig. 15. (Color online) Q factor versus �NL for a NRZ-OOK sig-
al after propagation into a 20�100 km fully compensated
ZDSF+ system at R=10 Gb/s. Dashed curves: evaluation using

ormulas (29). Solid curves: evaluation using simulated PSDs.
ashed–dotted lines with crosses: Q factor in the absence of PG.
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or in the absence of PG, which clearly shows the absence
f signal distortion within the shown range of nonlinear
hases. With the inclusion of PG, we see that performance
uickly degrades with increasing nonlinear phase and
hat the linear PG model gives an accurate prediction of
he performance at OSNR=15 dB. At a low OSNR=9 dB,
he prediction is still accurate up to �NL=0.2�, i.e., up to

factor penalties of about 1 dB. We note that PG signifi-
antly affects the performance already at small �NL. This
s due to the quadrature noise component, which is the

ain source of errors for DPSK and which is always more
nflated by PG than the in-phase component over the sig-
al bandwidth.
Figure 15 shows the Q factor versus average �NL for

he same DM system as above but now for a 10 Gb/s
RZ-OOK signal and at an end-line OSNR of either 15 or
0 dB/0.1 nm. The postcompensation was 220 ps/nm.
wing to the nonstationary nature of noise, in the BER
valuation we adopted a simplified model that adds PG
nly during marks.4 Since the map strength was small, in
qs. (29) we used as the cw power level the transmitted
eak power, which for a fixed average �NL is twice that of
PSK. From Fig. 15 we note that at OSNR=20 dB the Q

actor obtained from the theoretical PSDs overestimates
he one using the simulated PSDs by at most 0.7 dB,
hereas at OSNR=15 dB the overestimation can exceed
dB. Moreover, at OSNR=15 dB the linear model pre-

icts an unrealistic performance improvement around
NL=0.3� over the zero-PG case due to squeezing of the

n-phase component. Note that, as opposed to DPSK, for
OK the main source of errors is the in-phase ASE com-
onent, which, especially in the smallest OSNR case, is
trongly inflated at large �NL by the quadratic and
igher-order ASE terms that are neglected by the linear
G model.4

. CONCLUSIONS
n this paper we derived several fundamental scaling
aws that govern the mechanism of parametric gain in
ispersion-managed periodic links. Having in mind non-
oliton signal transmissions, we focused on systems work-
ng at limited cumulated nonlinear phase and in-line dis-
ersion. Beside such two system parameters, we showed
hat, for realistic dispersion maps dominated by fiber loss,
nly a third parameter—the (first-order) map strength
—is necessary to completely describe the spectral prop-
rties of PG up to frequencies of the order of the inverse of
he square root of S. We also provided the relation of our
trength S with the strength definition used in soliton
ommunications. For mathematical tractability, our PSD
ormulas were derived for systems with infinitely many
pans, but the results approximately hold for nonlinear
hase rotations per span smaller than roughly 0.1 rad.
e emphasized the fundamental role of the DM kernel in

etermining the DM system’s small-signal response, al-
hough the kernel is known to completely determine even
he large-signal response.17 For instance, we proved that
he system eigenvalues solely depend on the kernel abso-
ute value, so that modulation instability can exist only at
ositive in-line dispersion. We also gave a general rule to
etermine when dispersion management can provide sub-
tantially different ASE PSDs with respect to an un-
apped system. The limited role of dispersion slope was

iscussed, and it was found that it hardly affects the ASE
SDs, in line with similar results for unmapped systems.7

he impact of a postcompensation fiber at the end of the
M link was also discussed, with emphasis on the key

ole of the PSD matrix eigenvalues, which represent the
nvelope of the in-phase and quadrature PSDs for all pos-
ible values of the postfiber dispersion. Such an interpre-
ation eases the search for an optimal value of postcom-
ensation to minimize PG. Finally, we provided examples
f application of the PG linear model to system perfor-
ance evaluation, and we showed that, while the model

an be overly optimistic for OOK systems, its predictions
f DPSK are, instead, quite reliable.

This work can be extended in several directions. For in-
tance, an issue of practical interest is the inclusion of the
ffect of random longitudinal variations of the zero-
ispersion wavelength along the DM line, a topic already
nvestigated for the four-wave-mixing effect.32 Such fluc-
uations make the optical link aperiodic, thus violating a
undamental assumption of the DM-NLSE. In this case,
ne could follow the approach of Ablowitz and Moeser,33

here the averaging operation implied in the kernel deri-
ation [expression (8)] is now taken over the entire link.
nother interesting extension is the case of multiple cw
umps with broadband ASE, a topic already tackled in
he non-DM case.14,34
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