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A general theory of the parametric gain of amplified spontaneous emission (ASE) noise in periodic dispersion-
managed (DM) optical links is presented, based on a linearization of the nonlinear Schrédinger equation
around a constant-wave input signal. Closed-form expressions are presented of the in-phase and quadrature
ASE power spectral densities (PSDs), valid in the limit of infinitely many spans, for a limited total cumulated
nonlinear phase and in-line dispersion, a typical case for nonsoliton systems. PSDs are shown to solely depend
on the in-line cumulated dispersion and on the so-called DM kernel. Kernel expressions for both typical ter-
restrial and submarine DM links are provided. By Taylor expanding the kernel in frequency, we introduce a
definition of DM map strength that is more appropriate for limited nonlinear phase DM systems with lossy
transmission fibers than the standard definition for soliton systems. Various important special cases of PSDs
are discussed in detail. Novel insights, to our knowledge, into the effect of a postdispersion-compensating fiber
on such PSDs are included. Finally, examples of application of the PSD formulas to the performance evaluation
of both on—off keying and differential phase keying modulated systems are provided. © 2007 Optical Society

of America
OCIS codes: 060.2330, 190.4410.

1. INTRODUCTION

The performance of ultra-long-haul transmission systems
is significantly limited by the amplified spontaneous
emission (ASE) noise introduced by the in-line optical am-
plifiers. Even if the ASE is generated at each amplifier as
an additive white Gaussian process on each transmitted
signal, its interaction with the signal through a Kerr-
induced four-wave mixing mechanism can significantly
change both its power spectral density (PSD) and its first-
order statistics at the receiver. The ASE PSD normalized
with respect to the white case is known as parametric
gain! (PG).

Numerous attempts have been made to study the non-
linear Schrodinger equation (NLSE) describing the inter-
action between the transmitted signal and the noise, but
the difficulty of treating a nonlinear operation on a non-
stationary stochastic process requires the introduction of
strong approximations.

Several recent studies®™ introduced numerically inten-
sive perturbation methods, which are accurate but lead to
limited physical insight. Most PG studies instead deal
with the simplest case of a continuous-wave (cw)
launched signal and linearize the NLSE around a cw so-
lution at large optical signal-to-noise ratios (OSNRs) at
the end of the line.”™'? Since a Gaussian process after a
linear filtering remains Gaussian, the problem reduces to
finding an expression for the received ASE PSD. The ad-
vantage of the cw linear PG model is its simplicity, which
leads to great physical insight.

Note in passing that also parametric amplification,
which is a way to exploit PG to advantage, is commonly
studied by means of a linearization around one or two cw
pumps. 1314
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Several papers based on the cw model deal with the ef-
fect of dispersion management on PG,%1%1%15 pbut these
are all based on specific system configurations, and it is
difficult to derive from them universal rules that apply to
any dispersion-managed (DM) system.

This paper extends the cw small-signal PG model origi-
nally developed in Serena et al.'® for bit-error-rate (BER)
evaluation of phase-modulated systems. The main pur-
pose of the paper is to obtain fundamental laws that allow
a comprehension of PG in any DM periodic link. For
mathematical convenience, the analysis is carried out in
the limit of infinitely many spans, for a limited total cu-
mulated nonlinear phase and in-line dispersion, a typical
case for nonsoliton systems. Simulations for a finite num-
ber of spans are then used to verify its range of applica-
bility. The analysis yields closed-form expressions of the
ASE PSD, which are discussed in detail in various impor-
tant special cases. PSDs are shown to solely depend on
the in-line cumulated dispersion and on the so-called DM
kernel. Kernel expressions for both typical terrestrial and
submarine DM links are provided. The appearance of
modulation instability® in any DM system is shown to be
simply related to the absolute value of its DM kernel. By
Taylor expanding the kernel in frequency, we propose a
definition of DM map strength that is more appropriate
for limited nonlinear phase DM systems with lossy trans-
mission fibers than the standard definition for soliton
systems.17 Using the concept of equivalent map strength,
system parameters in widely different DM physical sys-
tems are found that yield identical ASE PSDs. It is found
that nonlinearity in the dispersion-compensating fiber
(DCF) at the end of each span has the effect of increasing
the equivalent strength. Also, the role of the fiber disper-
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sion slope is discussed. It is found that the average dis-
persion slope acts like a scalar multiplier of the input—
output system matrix and does not have any effect on PG.
Differential dispersion slope, instead, is found to have an
appreciable effect only at close-to-zero group-velocity dis-
persion of the transmission fiber. The impact of a post-
compensation fiber at the end of the DM link is also dis-
cussed, with emphasis on the key role of the PSD matrix
eigenvalues, which represent the envelope of the in-phase
and quadrature PSDs for all possible values of the post-
compensation fiber dispersion. Finally, examples of appli-
cation of the PSD formulas to the performance evaluation
of both on—off keying (OOK) and differential phase-shift
keying (DPSK) modulated systems are provided, which
show that the PG linear model is much more successfully
applied to DPSK than to OOK.

The paper is organized as follows. In Section 2 a uni-
versal closed-form expression of the in-phase and quadra-
ture ASE PSDs holding for any DM link is derived. Gen-
eral PG-related properties of any kernel are derived in
Section 3. Section 4 provides kernel expressions for typi-
cal terrestrial and submarine DM links. The concept of
equivalent map strength is introduced, and examples are
provided of coinciding ASE PSDs in DM systems with the
same equivalent map strength. Section 5 shows the im-
pact of fiber dispersion slope on the ASE noise. In Section
6 novel insights, to our knowledge, into the effect of a
postdispersion-compensating fiber on received ASE PSDs
are presented. Section 7 provides examples of application
of the proposed PSD formulas to the performance evalua-
tion of both OOK and DPSK modulated systems. Section
8 summarizes the main findings of the paper.

2. THEORY

The NLSE describes the propagation of an electric field
A(z,t) at distance z and retarded time ¢ (in engineering
notation) as™!®
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where B5(2) is the local (group-velocity) dispersion param-
eter; B3(z) is the third-order dispersion coefficient, related
to local dispersion slope; y(z) is the local nonlinear index;
g(z)=-a(2)+2,G,8(z-2;) is the net logarithmic power
gain—attenuation per unit length, where a(z) is the local
fiber attenuation, &(.) is the Dirac’s delta function, and eG*
is the power gain of the kth lumped amplifier of the link
placed at z=z;; and Wy(z,,t) is a zero-mean complex cir-
cular Gaussian noise introduced by the kth amplifier,
with a white PSD. Equation (1) deals with the ASE com-
ponent copolarized with the signal.

We can now normalize time to the supporting pulse
duration 7 of a reference digitally modulated signal
by letting 7=t/T. We can also normalize the signal
A(z,t) to the power at coordinate 2z, i.e. A(z,t)
=\PU(z,t)expl 1 [3g(x)dx]=Pf(z)U(z,t), where f(z)2exp
X[ [5g(x)dx] is the net power gain from input to coordinate
z and P is a reference power. Equation (1) thus becomes
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where we introduced! the dispersion length
Ly(z) £ T?/ By(z), the slope length L, (2) £T3/B3(z), and the
nonlinear length Ly (z)21/[¢(z)P]. Ly and L), have the
sign of By and B, respectively.

If the transmitted field is a cw of power P, in the ab-
sence of noise the solution of Eq. (2) is U(z)=exp|
—j®Pn1(2)], where Oy, (z) = [5[f(x)/ Ly, (x)]dx is the nonlin-
ear phase cumulated by the cw. By adding the noise con-
tribution, we search for a perturbed solution of Eq. (2) of
the kind'

Ulz,7) =[1+u(z,7)]exp[-jPnr(2)], (3

where u(z,7) is a complex perturbation field. By inserting
Eq. (3) into Eq. (2), and with the fundamental assumption
|u|><1 that allows neglecting quadratic and higher-order
ASE terms, we obtain the linearized NLSE for the pertur-
bation:

ou 1 Pu 1 Fu flz)
% a2 Yer, P JL_NL(M”)J'WU’ “

where the asterisk denotes complex conjugation and the
constant phase rotation ®yp, in Eq. (3) does not change
the statistics of the circularly symmetric noise Wy We
now indicate the Fourier transforms of u(z, 7) and Wy(z, 7)

as i(z,w) and WU(Z ,w), respectively, where w is the angu-
lar frequency normalized to 1/7. Even if such transforms
may not exist for stationary stochastic processes, one can
always interpret them as the transforms of time-
truncated versions of the signals over a suitable time win-
dow T, which allows one to compute the PSD according
to the Wiener—Khinchin theory. 18 Hence, in the frequency

domain,
o ) w? ®
E=—Jm i(z,w) - J6Ld( )u(z,w)
D T o) W) 6
_JLNL(Z) i(z,0)+1 (z,—- w)]+ Wylz,w).

Now assume the link is composed of identical spans of
length L, so that f(2), Ly4(z), L;(2), and Lyy(2) are periodic
functions, and let (A)2(1/L) fﬁh(x)dx indicate the span
average of the generic function A(z). Decompose the local
dispersion and slope lengths as 1/Ly(z)=(1/Lp)
+[1/Ly(z)] and 1/L}(z)=(1/Lp)+[1/Lj(2)], where
1/Lp=(1/Ly) and 1/L};,2(1/Ly) are the span-averaged
inverse dispersion and slope lengths, respectively. The
terms 1/L, and 1/L) account for the local deviation from
such average values. Inside each span, we recognize two
different dynamics along z due to the fiber dispersionlo’17:
average or slow dynamics due to Lp, Lj, and fast dynam-
ics due to L, L. We next move into a reference system
that follows the fast dynamics by making the change of
variable!®!:
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Substituting Eq. (6) in Eq. (5) yields

where

a o o iy
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where again the phase rotation in Eq. (6) does not change

the Gaussian statistics of the noise Wy;. For a given finite
received nonlinear phase, when the number of spans N,
— oo, the infinitesimal nonlinear phase rotation per span
drives the evolution of @(z,w) as a slowly varying z func-
tion span by span: @(z, w) cannot follow the fast variations
within each span due to Lyy(2), f(z), and O4(z,w) but
rather only their average effect. Hence, by the method of
averagin{,r,19 one substitutes the rapidly z-varying coeffi-
cients in Eq. (7) with their span-averaged values. Define
the kernel of the transmission link'” as

f(Z)ejQA(Z’w) lfL f(x)ej(-)A(x,w)

R 2 ——— ) ==
) Ly1(2) L), Ly

dx, (8)
and note that for a link of length z it is R(0)z=Pyq, so
that R(0) is the nonlinear phase rotation per unit length.
With the additional definition of the operator
L‘(w)éR(O)+(w2/2LD)+(a)3/6Ll’)), Eq. (7) becomes, after
span averaging of its coefficients,

Jaa ; -

P —JjlL(w)a(z,w) + R(w)a (z,- w)]+ W(z,0), (9)

where, since we treated each span as a differential dz, we
substituted the white ASE WU with a Langevin noise pro-

cess W, completely distributed along z with PSD at coor-
dinates (z1,25) equal to?°

E{W(z1,0)W (29, 0)} = 20%8(z1 - 25), (10)

with E{.} indicating statistical averaging and 202 indicat-
ing the one-sided ASE PSD per unit length in absence of

PG. Note that even if W does not have continuous paths,
Eq. (9) makes sense from a mathematical point of view
using the Ito interpretation of a stochastic differential
equation.”’ Note also that in Eq. (9) the operator £ ac-
counts for the slow dynamics, while R accounts for the
fast dynamics. It can be immediately observed that the
slow dynamics are responsible for a phase shift on a,
while the fast dynamics allow the energy transfer to the
noise. A lengthy but straightforward computation shows
that Eq. (9) coincides with a linearization of the so-called
DM-NLSE!" (extended to include dispersion slope and in
which space z is the only dimensional quantity left)
around the ansatz [Eq. (3)].
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Decompose now the noise as @(z,w)=0,(z, 0) +ja,(z,),
where Eip(z,w):%[z‘i(z,w)+6*(z,—w)] and  @y(z,0)
=1/2j[@(z,w)-a"(z,-w)] are the (complex) transforms of
the (real) noise components a,(z,7) and a,(z,7) in phase
and quadrature with the cw signal. Note that @, is the
dominant source of noise in the envelope detection of an
OOK signal, while @, mainly affects phase-modulated sig-
nals. Since @, and @, are two Hermitian signals, it is use-
ful to similarly decompose the operators £ and R as L
=L,+jL, and R=R,+jR,, having defined ICp(w)zé[lC(w)
+K(~w)] and ICq(w)=1/2j[lC(w)—lC*(—w)], where K stands
for either £ or R. Note that IC, and K, are, in general,
complex numbers. Explicitly, the slow operator compo-
nents are

w2
‘cpz = (DNL - Egin’

w3

Loz = —J'Efi'n, (11

where &,2-z/Lp represents the normalized in-line cu-
mulated dispersion (having the sign of dispersion in pico-
seconds per nanometer) and where we also introduced the
normalized dispersion slope & =z/Lj,.

By exploiting the properties of Hermitian signals, we
can write Eq. (9) in matrix notation as

da(z,w)

dz

=M(w)a(z,w) + W(z,w), (12)

where a=[a,,d,]” and W=[W,,W,]” are column vectors,
with 7 indicating transposition, and M=LJI+A is a 2
X 2 matrix, with I as the identity matrix and

R L, -R
A= q P P .
_L:p_Rp _Rq

The closed-form solution of Eq. (12) ist

Z

a(z,0) = eM“?a(0, w) +J MW (z — x, w)dx.  (13)
0

The autonomous solution, eM@=?a(0,w), in the absence
of ASE, can be used to study the DM system response to
an input OOK modulation in the case of a small extinc-
tion ratio. However, in this paper we will not pursue this
issue, and we will concentrate on the ASE forced solution
in the case of a noiseless cw input, a(0, w)=0. The forced
solution, the second term in Eq. (13), tells us that the to-
tal noise at the link output z is the sum of all white ASE
noise contributions generated at the generic distance x
from the output, filtered by the system matrix e™* seen
from the generation point to the output. The system ma-
trix eM? can be evaluated as follows. The traceless matrix
A has eigenvalues +k, with

k=\Ry+Re-Lp. (14)
Using a corollary of the Cayley—Hamilton theorem,*?

we can express e™? in the form
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sinh(kz)
eM? = o£¢?| cosh(kz)I + k—Az , (15)
z

which clarifies that the system transfer matrix is com-
pletely specified by the operators £,,£, and R,,R,. Note
that the small-signal transfer function (15) reveals that
the average dispersion slope, expressed by L, acts like a
scalar multiplier and could thus, in principle, be compen-
sated for by a lumped slope compensator at the end of the
link.

Using the Wiener—Khinchin theorem, we can now
evaluate the PSD matrix of the output ASE as

S(z,w) = lim
Toﬂoo TO

E{a(z,w)a’(z,w)} |:Spp Spq]
az,waze), . (16
qu Sqq ( )

where Sy, is the PSD of the in-phase component Sqq 18
the PSD of the quadrature component, and Sp,= S 1s the
cross PSD. The symbol T indicates transpose—conjugate
Using E[W(x, 0)W'(y, w)]=028x-y)I, from Eq. (13), one
then gets the PSD normalized to the case without PG as

Hl>

S ———f MxMtxdx——J AeAxdx,  (17)

where in the last step we used the fact that £, is imagi-
nary and thus cancels out. Hence the average dispersion
slope effects, which come into play through the scalar

multiplier e“e?, do not affect the PSDs. Using Eq. (15), one
gets

S=F1+/,AA" +f3Az + ,A'z,

where
sinh(2k,z) sin(2k;z)
|cosh(kx)|2dx =— + ,
2 2k, z 2k;z
1 (7| sinh(kx) |2
fZ_Z_g fo 0
1 | sinh(2%,z) sin(2k;z)
© 2lkz|? ok,z  2kz |

1 (? cosh(kx)sinh(k"x)
T2 f . K

1 |:cosh(2krz) - 18)

cos(2kz) -1
T 2kz 2k, z ’

+
J Zklz

in which k=£k,+jk;, with real k,,k;, and clearly f1,fs are
real. The normalized PSD matrix entries are

Spp =h +f2(|Rq|2 +|L, - Rp|2)22 + 2%{f3RZ}Z,

Sga=fi+FalR P +|L, + R, P22 - 2R{fR Jz,
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Spq=— 2AR{fsR, 2z + FoR{R L 22 + (T} L 2
+ 23R R 12, (19)

where 2R{.} and J{.} indicate real and imaginary parts of
their complex argument. In the limit o — 0, the ASE PSD
matrix reduces to

1 — Py,

S= 4 , 20
— Oy, 1+§C1312\1L 20

which clarifies that the quadrature component exhibits
an inflation proportional to the square of the nonlinear
phase and is an approximation of the nonlinear phase
noise.?? Note that at large nonlinear phases the negative
phase—quadrature correlation becomes significant. In the
opposite limit we have S(z,0—»)=I; ie., away from the
PG region of influence, the PSD is white, as can be di-
rectly deduced from Eq. (9), since the kernel R(w— o)
—0.

3. GENERAL KERNEL PROPERTIES

We now focus our discussion on the kernel for the general
DM link shown in Fig. 1. Here, an individual map period
(or span) of length L is composed of N different fiber
types, possibly interleaved with lumped amplifiers. The
DM link is the repetition of IV, identical periods. Figure 1
shows a possible power gain profile within a period. The
kth fiber of the span has length L,, attenuation length
Ly, 21/, average dispersion length Lp,, average slope
length Ly, and differential dispersion and slope lengths
Ly, L}, respectively.

The gain profile inside the kth fiber, £=1, ...
neric period is

,N, of a ge-

(&) = f(&w)expl— (& = §)/Lal, &< < lpars
where ( is the local coordinate of the generic period; ¢,
=Eﬁ;iLn is the starting coordinate of the kth fiber, with
£=0; and f(¢)=11"21G, exp(-L,/Ly,), with G, as the
gain of the lumped amplifier placed at {=¢,, and by the
periodicity assumption f({;)=f(L)=1. The cumulated dis-
persion and slope phase rotations from (=0 to (=, are
accounted for in 0,({,, ), which can be expressed as

f(C)‘f O O

»
>

§4=0 - {3 L g

Fig. 1. Power gain profile f({) within a single period of a general
periodic DM link. The overall link is the repetition of N, periods.
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k=1 2 P
®A(§k}w)=2 <_+ , )Lna
n=1 LAn 3LAn
with 0,({;,w)=0. Note that by periodicity also ®, (L, )
=0 at the end of the period. We now have all the ingredi-
ents for evaluating the kernel R in expression (8), with
the result

N
R(w)z = 2 /2O ], (L, o), (21)

k=1
where z=N,L is the DM link length, and we introduce the
filter H,(x, w) that weights the effects of the fast dynamics

in the kth fiber:
x x 0 x
1-exp| - — +jo?— +j——
Ak

Ly, Ly, 3 Ly,
H(x,0) = cbNL}e_eff s
L,

(22)

where Liff:LAk[l—exp—(Lk/LAk)] is the effective nonlin-
ear length of the #kth fiber in the period and
DN 2N, S(szf/LNLk)f(gk) is the nonlinear phase cumu-
lated within the N, fibers of type £ of the DM link.

Note that the above model also includes the case in
which some fiber type has a negative distributed loss fac-
tor ay=1/Ly;; i.e., it has distributed gain, as in the case of
lumped Raman amplification in the last fiber section of
the period.

From now on, we will deal with the zero-dispersion
slope case, except for Section 5 in which we will show that
slope has indeed a negligible impact on PG in practical
DM single-channel systems, unless the local dispersion is
close to zero. In the absence of fiber dispersion slope, the
operator L=L, is real (£,=0), as well as the operators R,
and R,, which thus represent the real and imaginary
components of the kernel R. Let us define the normalized
kernel as r(w) £ R(w)/R(0), so that R(w)z =Py r(w). From
Eq. (14) the eigenvalue thus becomes

w 212
kz =y, \/|’”(w)2 - {1 - Sgn(fm)(g) ] ,  (23)

where the critical frequency 1is defined as
w2 \2®x1 /|| = V2|Lp|/ Ly, and is thus 2 times the soli-
ton order.” Let ,, k; be the real and imaginary compo-
nents of k. There are two possibilities: either (a) k=k,
=0 and k;=0, a condition that leads to modulation insta-
bility (MI) of the noise for increasing z,1 or (b) k=jk;, k;
=0, and k,=0, a condition of the absence of MI, which
leads to a limited ASE PSD for increasing z. Since

r flax)er®stx) L f)
—_—dx| =<

o Lan@ N )

then |r(w)]?<1 for all w, the equality holding at w=0.
Thus by inspection of Eq. (23), one concludes that, for any
DM scheme, MI can appear only with anomalous in-line
dispersion, &,>0, at frequencies satisfying the following
MI condition:

|Rz|= NL>
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()]

The fact that &,<0 ensures absence of MI was already
proven for a symmetric lossless two-section map using
Floquet theory.?*

[r(w)| = (24)

A. Map Strength

To compare different DM systems having different ker-
nels, it is useful to expand the normalized kernel in a Tay-
lor series around w=0. From the Taylor expansion of the
exponential term in expression (8), we get

r(w) =,
n=0

(=))"Sn on e 6
0"=1-jS 0 —ESQw +]gS3a) -,

n!
(25)
where the nth-order DM strength is defined as

./ @ fz dx |" fz)
Lyu@)| Jy —Lalx) Lxy(2)

The frequency range over which the Taylor expansion
[Eq. (25)] is accurate increases as we add higher-order
terms. Suppose now the first-order strength S; term is
dominant. When [Sj|w?<1, ie., when w<wy21/4]S,
then r(w)=1-jS,0? is a good approximation of the true
kernel [Eq. (25)].

For our general kernel [Eq. (21)], a Taylor expansion to
second order in w of its main term gives

Ly L,
Hk(Lkaw) = q)NLk 1 +jw2— 1- ffe_Lk/LAk s
L L;

so that from the Taylor expansion of 7(w)=R(w)z/ Py, one
finds

UL, Ly, ( L

N
k
Si=- 2 7/k|:2 Leffe_Lk/LAk):| , (27
k=1 k

b
n=1 LAn LAk

which shows that the contribution of each fiber type in

the span to the (first-order) strength scales with the frac-

tion of nonlinear phase in that type

Lt
1(Z1)
s Paee Ly,
B i
n=1 LNLn "

with Efevzl m,=1. The periodicity constraint O,(L,w)=0
translates here into the constraint

NLn

> —=0. (28)

n=1 LAn

We will see the importance of the strength S; as we pro-
ceed to the numerical evaluation of specific kernels.

B. General Power Spectral Densities
In the absence of slope, the normalized ASE PSDs [Eqgs.

(19)] become explicitly
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Sp(@) = co(@) + [ea(@)r (o) = cy(@)ri(w)],
S (@) = o) + [ex(@)r (o) - cy(@)r(w)],

Spg(w) = = [c1(w)r (o) + colw)ri(w)], (29)
with real coefficients:

co=Ff1+ L[ PRelr? + (£,2)%]

5 1o sinh(2kz) )
=1+ q)NL‘r| T -1 (kZ) 5

c1 = 20115 = 201 [cosh(2kz) — 11/(2k2)?,

(O]

2
Co = 2q)NIf2[’pz = q)2NL|: 1- Sgn(éin)<;> :|

(4

sinh(2kz) ) o)?
X ot (kz)?, (30)

with kz given in Eq. (23). Note that c¢( is half the physi-

cally observable normalized PSD Spp+Sqq of the overall
ASE process, commonly referred to as MI spectral
gain.'%1? From the above formulas, it is clear that PG for
any kernel scales with the following three dimensionless
key parameters: (1) nonlinear phase ®yy, (rad); (2) nor-
malized total in-line dispersion &, (through %z and w,);
and (3) map strength S; that determines the kernel r
when w<w,. Higher-order strengths are required to
uniquely determine PG over a larger frequency range.

4. SOME KERNELS OF INTEREST

We now specialize the theory in Section 2 to several peri-
odic DM links of interest, which can all be described as
special cases of the general case shown in Fig. 1.

A. Long-Span Terrestrial Link

Each map period in a standard terrestrial DM link is com-
posed of N=2 fiber types: a transmission fiber of length
much longer than its attenuation length, which is fol-
lowed by a dispersion-compensating fiber (DCF). If the
DCF is ideal, i.e., no nonlinearity is present in the DCF
(e.g., a grating11 or a DCF with low input power), then

Dy,

Rz = HyLp o) = ——
2=Hyllpo)=1 g5

(31)

where subscript T refers to the transmission fiber, and we
define S=-L, /L7 as the map strength of the long-span
terrestrial system. S has the sign of the dispersion coeffi-
cient Dy [ps/(nm km)] and is, in fact, the first-order
strength as defined in expression (26). A graphical repre-
sentation of the functions of w on both sides of expression
(24) is plotted in Fig. 2 versus normalized frequency
fu2 /27, where the monotonically decreasing kernel
modulus is shown for various strength values. In the ab-
sence of DM (S=0) and at positive in-line &,>0, we see
that MI is confined to the range 0 <w< \szc. As compared
with the non-DM case, at the same @y, and in-line &,,, we
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©  frequency f,

Fig. 2. Plot of |r| (solid curves) and |1-(w/w,)? (dashed curve)
versus normalized frequency f,=w/2m, at dyn;,=0.57 and &,
=0.1. Critical frequency f, 2 w,/2m.

note that DM shrinks the frequency range over which MI
appears by an increasing amount as the strength S in-
creases and independently of the sign of S. At small |S],
only one root w,<w;< V’Ewc of expression (24) is present,
while at a critical strength (here |S|=0.1) tangency be-
tween the right and the left functions in expression (24) is
reached, so that at larger strengths two more roots wy and
w3 appear (we assume w; < wg < ws) so that MI is confined
to the range w € [0, w1]U[wy, w3]. At large |S| the interval
[wg, w3] shrinks around w,.

In the following we verify the accuracy of our theoreti-
cal asymptotic PG formulas (29) against direct solution of
the linearized propagation equation with ASE using the
split-step Fourier method® (SSFM).

1. Case S=0

We start with the simplest case of an uncompensated sys-
tem, in which the local dispersion matches the average
dispersion and thus S=0.

Figure 3 shows the normalized ASE PSDs versus nor-
malized frequency f, in a system with S=0 and Py,
=0.57rad. SSFM simulations (solid curves) have been
performed for Ny=5,10,15,50 spans. The top row shows

the PSDs S'qq and Spp on a decibel scale, while the bottom

row shows Spq on a linear scale. The left column refers to
a normal transmission fiber with &,=-0.1275, while the
right column reports the same quantities in the anoma-
lous case §&,=0.1275. To appreciate the meaning of the
normalized quantities in the figure, for instance, for a ref-
erence nonreturn-to-zero (NRZ) signal at 10 Gb/s, the
normalized frequency f,,=1 corresponds to 10 GHz, while
&n=0.1275 corresponds to an in-line cumulated disper-
sion of +1000 ps/nm at A=1550 nm. In all figures, dashed
curves correspond to our asymptotic formulas (29). We

note the well-known features of the inflation of Spp above
its linear value of 1 in the anomalous regime and its de-
flation below 1 in the normal regime (noise squeezing).7
In the figures, we also see that the SSFM-simulated ASE
PSDs converge to the theoretical asymptotic formulas (29)
for increasing N, which becomes practically indistin-
guishable from simulations beyond N =50. However,
we see that already at N,=10 spans the prediction
is less than 0.7 dB on the whole frequency range. The
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formulas represent a lower bound (at most frequencies) of
the simulated PSDs for finite spans, which in the present
case includes a booster with the same noise figure as the
line amplifiers. We verified that without such a booster
the formula yields an upper bound on the simulated
PSDs.

We also note that at a small number of spans (N,=5)
there are significant sideband instability (SI) lobes, which
disappear at larger N,. This is fortunate, since the aver-
aged NLSE is able to reproduce only the main lobe of MI,
while SI lobes are captured only when the higher harmon-
ics in the Fourier expansion of the periodic NLSE param-
eters are also taken into consideration.’

Note that when S=0 we have r(w)=1, and we already
noted that MI is present in the range 0 <w< \’Ewc- Using

10
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r.=1 and r;=0 in Egs. (29), it is easy to see that S'pp and
S'qq cross only when &,>0, and S’llch a crossing occurs at
w=w,. Also, since kz—0 as w— \2w,, then from Egs. (29)
we find that for all &;,>0: (i) Sq(12w,) =1, which provides
a simple way of spotting out from the plot of the quadra-
ture PSD the value of \Ewc, which is also an estimate of
the width of the main lobe of S'qq; (i1) Spp(&wc) =1
+ %QD%\IL, which equals the value of S’qq at w=0 and is close

to the actual peak value; and (iii) ﬁpq(\r’awc)z—beL.

2. Case &,=0
We now tackle the special case of a terrestrial DM system
with full in-line compensation, &,=0. Figure 4 shows the
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Fig. 3. (Color online) Normalized ASE PSDs (top: S'pp and Sqq; bottom: Spq) versus normalized frequency f, in an uncompensated system
(S=0) with ®yp,=0.57, and &,=-0.1275 (left), &,=0.1275 (right). Solid curves: SSFM simulations for N,=5,10,15,50. Dashed curves:

theory [Egs. (29)].
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PSD [dB]

0 0.5 1 1.8 2 2.5
frequency fn

Fig. 4.

0 0.5 1 1.5 2 2.5 3
frequency fn

(Color online) Normalized ASE PSDs versus normalized frequency f, in a DM system with full in-line compensation, with

Dyp,=0.57, S=-0.1275 (left), and $=0.1275 (right). Solid curves: SSFM simulations for N,=5,10,15,50. Dashed curves: theory [Egs.

(29)].
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normalized ASE PSDs versus frequency f,, for S=
—-0.1275 (left column), S=0.1275 (right column), and
®yp1,=0.57 rad. The strength can be expressed in terms of
physical parameters as

‘b D
=2 D,- 32
a\"T NL) (32)

where y2(1/2mc)(\/T)?, ¢ is the light speed, D;,=&,/x~
(usually expressed in ps/nm) is the overall in-line cumu-
lated dispersion, while Dy is the transmission fiber dis-
persion coefficient [usually in ps/(nm km)]. Hence S
=0.1275 could be, for instance, the map strength of an
NRZ system at R=40 Gb/s at A\=1550 nm, with a nonzero
dispersion-shifted (NZDSF*) transmission fiber [Dp
=2.92 ps/(nm km)]. Comparing Fig. 4 with Fig. 3, we note

that both S’pp and S’qq are much less inflated by PG in both
the anomalous and the normal regimes. In the figures we
see both theory [Eqs. (29)] (dashed curves) and SSFM
simulations (solid curves) for increasing number of spans
N,=5,10,15,50, and we note a quick convergence to the
theory for increasing N,. Already at five spans the predic-
tion is within 1 dB of the actual value over the whole fre-
quency range. Using expression (31), Eqgs. (29) become ex-
plicitly

1-cosv

=1-—
PP Z(DNLSQ)2

g 1-cosv 2 sin v
=1+ + 1- ,
a Z(DNLSU)2 Sz(,()A 14

. 1-cosv 1 sin v
Syy=————+—|1- ,
pd 20\ S%wt  Sw? v

where v2-2dy\;Sw?/\1+S%w?. Thus we easily see that

Spp is always inflated (above 1) for normal transmission
fiber (S<0) and deflated for anomalous fiber. However,
even in the normal case we have that an upper bound on

(33)

Spp is 1-1/(®x1,Sw?). Hence the in-phase component does
not diverge for increasing nonlinear phase, since systems
with full in-line compensation do not display MI, as al-
ready noted in Section 3. Note that |v| varies from 0 to
2dy, as w increases. The frequency o at which the mid-
value |v|=®yy, is reached is obtained by solving the equa-
tion 1=482w%/(1+S2%w%) and turns out to be @=w,/4\3
=0.76w,, with w, defined in Subsection 3.A. We note that
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o 1s also close to the maximum (Gf S <0) or minimum (if
S>0) of Spp. The width of the main lobe of the function

ZCoéS’pp+Sqq, i.e., the PSD of the ASE process a(z,t), can
be taken as an estimate of the range over which PG in-
flates the PSDs. We define the PG bandwidth wpg as that
frequency at which co(wpg)=[co(0)+co()]/2, i.e., is half-
way between c¢((0)=1+ §<1>12\1L [from Eq. (20)] and cg()=1.
We search wpg in the neighborhood of w=0, so that, by ap-
proximating f; 5 with their fourth-order Taylor expansion
around kz=0, we find

(34)

NPy + 25 - D,
wpG = f wp,

according to which wpg decreases for increasing Pyi.
Such a formula has been verified to be accurate to within
5% of the true value in the range 0 <®y, <.

3. Case &,#0, S#0

We consider three sample DM long-span terrestrial sys-
tems. Type 1 has single-mode (SMF) transmission fiber
[D7=17 ps/(nm km) at 1550 nm], type 2 is NZDSF* [Dp
=292 ps/(nmkm)], and type 3 is NZDSF- [Dyp
=-2.60 ps/(nm km)], all with attenuation «=0.2 dB/km.
Referred to an NRZ 10 Gb/s transmission, in the limit of
N,— o and for a finite in-line dispersion, from Eq. (32) the
three systems have strenghts S=0.0485,0.0095, —0.0058,
respectively. We now compare links of different number of
spans, at fixed nonlinear phase, strength, and in-line dis-
persion.

Figure 5 shows the in-phase and quadrature ASE PSDs
for all three types of fiber according to our asymptotic for-
mula [Egs. (29)] (dashed curves) and the SSFM-simulated
curves (solid curves) for N;=5,10,15,50 spans, all at the
same nonlinear phase ®y;,=0.727 and §;,=0.1275. Again,
we note that at five spans there are some contributions
due to SI, which disappear for increasing N,. Complete
convergence to our formula is achieved roughly around
N,=50. Hence the main system parameter to ensure con-
vergence is the nonlinear phase rotation per span, which
should be smaller than 0.1 rad, although the convergence
speed slightly depends also on the details of the map. A
theoretical investigation of convergence of the DM-NLSE
can be found in Ablowitz et al.?® Note also that a closed-
form expression for the PSDs for any N, is known,!!
which matches the simulated PSD curves in the main PG
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Fig. 5. (Color online) Normalized ASE PSD S'pp and S’qq versus frequency f,,, in a DM system with &,=0.1275 (1000 ps/nm at 10 Gb/s)
and with ®y;,=0.727 rad for the (left) SMF system (S=0.0485); (center) NZDSF* system (S=0.0095); (right) NZDSF- system (S=
—-0.0058). Solid curves: SSFM simulations for N,=5,10,15,50. Dashed curves: theory [Egs. (29)].
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Fig. 6. (solid curves) ASE PSDs versus frequency for a long-
span terrestrial link with ®y;,=0.57, &,=0.1, and both S=0.1
and S=0.001. (dashed curves) S=0 unmapped case.

lobe but does not capture the SI, since such a formula is
also based on an averaged NLSE.

From comparison of the two NZDSF plots in Fig. 5, one
concludes that the sign of the transmission fiber disper-
sion does not significantly affect the shape of the PSDs.
This is confirmed by the MI condition (24), whose solu-
tions depend on strength S only through |r| and thus are
independent of the sign of S. A related interesting obser-
vation was made in Ciaramella and Tamburrini'2 regard-
ing the discrepancy of the PSDs between an unmapped
link (S=0) and a DM link operated at the same ®y;, and
&n- It was noted that at large in-line dispersion &, the
strength does not contribute to setting the PSDs. How-
ever, how large an in-line dispersion is required was
quantified only in the special case of an SMF-based link.'?
We are now able to generalize that result. From Fig. 2,
one may guess that if the graph of the curve |1-(w/w,)?|
intercepts the graph of |r(w,S)| at a frequency o close to
V2w,, then the behavior of the eigenvalue %z, and thus of
the PSDs, should be similar to the unmapped case. This
requires that the kernel near the intercept frequency
V2w, be described by =1-jSw?, with |S|w?< 1. Hence no
significant difference in PSDs between the mapped and
the unmapped cases is expected when

|&in| = 4Dy JS]. (35)

Using the same system values as in Fig. 2, we show in
solid curves in Fig. 6 the in-phase (concave curves) and
quadrature (convex curves) ASE PSDs at S=0.1 and S
=0.001, while the unmapped case is shown in dashed
curves. The largest strength does not satisfy expression
(35), although the smaller one does. Condition (35) holds
in fact for any kernel, by using the first-order strength in-
troduced in Subsection 3.A.

B. General Terrestrial Link

Consider again a terrestrial DM link, with N=2 fiber
types per span, but now we account for nonlinearity in the
DCF and for the possibility that the transmission—DCF fi-
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bers may be of length comparable with their attenuation
length. From Eq. (21), the kernel explicitly is

Rz = Hy(L,0) + e L70stH (L, 0), (36)

where we used subscript T for the transmission fiber and
C for the compensating one.

Figure 7 (left) shows normalized ASE PSDs versus fre-
quency f, with a cumulated in-line dispersion §&,=
-0.025 (-200 ps/nm at R=10 Gb/s). Symbols denote
SSFM simulations for N,=20 spans, each span being com-
posed of Ly km of transmission fiber [Dy=8 ps/(nm km),
ap=0.2 dB/km, yp=2 W-lkm™], Ly being 10, 50, or
100 km, followed by a DCF [D=-100 ps/(nm km), a¢
=0.6 dB/km, yo=6 W-'km™!], and with a single amplifier
at the end of the DCF to recover the span losses. The non-
linear phase was ®y;,=0.727rad in all three length
cases.?® Solid curves denote theory [Egs. (29)], making
use of Eq. (36), and well agree with simulations. We note
that shortening the transmission fiber length from
100 to 10 km implies increasing the fraction of nonlinear
phase inside the DCF. This has the effect of significantly
shifting the dip of the in-phase PSD to higher frequencies,
as in an equivalent long-span terrestrial system (a terres-
trial system with transmission fiber much longer than its
attenuation length and no nonlinearity in DCF, as in Sub-
section 4.A) with smaller transmission fiber dispersion, as
shown in Fig. 7 (right), where the best fit of the PSDs in
the L7=10 km case was found at an equivalent transmis-
sion fiber dispersion of D=1.9 ps/(nm km).

For the same system with Dp=8 ps/(nm km) and Ly
=100 km of Fig. 7, Fig. 8 (left) shows the effect of using
the DCF within a dual-stage amplifier, with relative
power into the DCF Ppcp/P=0,-3,-20 dB, the third
value corresponding to the previous case of the absence of
the first amplifier. The PSDs were derived by using Eqs.
(29) and (36). We note that the effect of increasing the
power (and thus the nonlinear effect) into the DCF is that
of shifting the dip of the in-phase PSD to lower frequen-
cies, as in an equivalent long-span system with smaller
transmission fiber dispersion, as shown in Fig. 8 (right),
where the best fit of the PSDs in the Ppcp/P=0 dB case
was found at an equivalent fiber dispersion Dgq
=12.8 ps/(nm km).

The explanation of the above-observed equivalence of
PSDs is rooted in the concept of map strength. In both
previous cases the fraction of nonlinear phase into the
DCF is

PDCF PDCF
7= YL@ 2 yrLST + yoL & > )

where the ratio Ppcp/P reaches its lowest value e
in the absence of the amplifier preceding the DCF. Define
the strength of the transmission fiber as Sy —Lyp/Lar,
and define S similarly for the DCF. Then constraint (28)
here gives Sg=-Sp(Ly/Lsr)(Lac/Le). Thus Eq. (27) fi-
nally gives the equivalent (first-order) strength of the ter-
restrial DM link as

—Lp/Lap
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Fig. 7. (Color online) Normalized ASE PSD S'pp and S'qq versus frequency f, at Oy, =0.727 rad and cumulated in-line dispersion &,=
—-0.025 (-200 ps/nm at R=10 Gb/s). Left: theory [Egs. (29)] (dashed curves) and SSFM simulations (symbols) for 20-span terrestrial map
with Dp=8 ps/(nm km), D-=-100 ps/(nm km), and various lengths L;=10,50, 100 km. Right: PSDs for L;=10 km case as in left plot
(dashed curves) and equivalent long-span system with D, =1.9 ps/(nm km) (solid curves).
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Fig. 8. (Color online) Normalized ASE PSD S'pp and S'qq versus frequency f,, in a system with ®y;,=0.727 rad, §,=-0.025, and terres-
trial map with Lp=100 km. Left: two-section span with DCF within dual-stage amplifier, with D;=8 ps/(nmkm), Dq=
—100 ps/(nm km), and various ratios Ppcp/P=-20, -3, 0 dB. Right: PSDs for the Ppcp/P=0 dB case as in left figure (solid curves) and
equivalent long-span system (dashed curves) with D.,=12.8 ps/(nm km).
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We show in Fig. 9 S;/St versus Lp obtained from Eq.
(37) for different values of 7., having used the same at-
tenuation and dispersion values as in Fig. 7. We note that

L, [km]
Fig. 9. (Color online) S;/Sy versus transmission fiber length L,
for varying 7. Same attenuation and dispersion values as in

for a fixed Ly the first-order map strength increases with
the nonlinear phase cumulated in the DCF. If both types
of fiber are significantly longer than their attenuation
lengths, Eq. (37) simplifies to S;{=S7(1-7,)
+1.(Lp/Lyr)]. For example, for typical 100 km terrestrial
spans with standard transmission fiber, one has Lp/Lyyp
=5. Hence if 75% of the nonlinearity takes place in the
transmission fiber and 25% in the DCF, the first-order

Fig. 7.

map strength S, is increased from S; by a factor 0.75
+0.25(5)=2, as can be checked in Fig. 9.

C. Submarine Link
We consider a typical submarine map, whose period is
composed of L;=[ km of a fiber with dispersion +D, fol-
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lowed by Ly=2(l-¢€) km of a fiber with the same param-
eters but opposite dispersion —D and by a third fiber
equal to the first one.!” All fibers have the same attenua-
tion length L,, and amplification is provided only at the
end of each period. The parameter e sets the desired
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amount of residual dispersion per span, and €</ for
many-span links. Applying Eq. (21) and again neglecting
the fiber’s slope give Rz=(1 +e‘3l/LA‘j‘”2”LA1) H{(,w)
+e/"LAIH (21, ) which after some algebra can be explic-
itly written as'’

1+ Sw? csch(G)sin(SGw?) — jSw?[1 - sech(G)cos(SGw?)]

Rz = ¢NL

which is seen to depend on the two dimensionless param-
eters S£-L,/La; and G£1/Ly. As the fiber attenuation
goes to zero, the kernel reduces to Rz
=Py, sin(SGw?)/(SGw?), and all odd-index strengths
S1,Ss,..., vanish.''” The zero-loss case is extensively
studied in the soliton literature, and thus the only param-
eter of the submarine lossless kernel s£SG is called in
that context the map strength.17 In the lossy case, from
the Taylor expansion of Eq. (38), the first two strengths
[expression (26)] are found to be

S;=S[1-sech(G)],

S, =287[1-G csch(@)]. (39)

The expression of S; could be obtained directly from Eq.
(27). Although at low loss the term with S, dominates
that with S, the first two terms of the kernel Taylor ex-
pansion have equal magnitude at w=w, (as in a long-span
terrestrial system) when |S;|=1Sy/2, ie., when I/L,
=1.2. Therefore, when each fiber in the period is longer
than its attenuation length, there exists an equivalent
long-span terrestrial kernel with strength S; that well ap-
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Fig. 10. (Color online) Spp (concave) and Sqq (convex) versus fre-
quency f, for a three-section span with 15 km at dispersion +D,
30 km at -D, and 15 km at +D, and D is 8 ps/(nmkm). ®yy,
=0.72wrad. PSDs of equivalent long-span fit with D,
=1.6 ps/(nm km) also shown.

1+ 8%t ’

(38)

[
proximates the submarine kernel over the region 0<w
< wa.

In Fig. 10 we show the PSDs for an alternating +D,
-D,+D  three-section span with [=15km, D
=8 ps/(nm km), ®yp,=0.727 rad, along with their equiva-
lent long-span fit whose equivalent transmission fiber dis-
persion D =D[1-sech(G)]=1.6 ps/(nmkm) was ob-
tained from Egs. (39).

5. EFFECT OF SLOPE

The effect of dispersion slope on ASE PSDs is generally
negligible, unless the local dispersion is close to zero, as,
for instance, in dispersion-shifted fibers. Figure 11 shows
the ASE PSDs [Eqgs. (19)] for a fully compensated DM sys-
tem with two-section spans, with 50 km at dispersion +D
and slope +S, followed by 50 km at —D and slope -S, with
D=0.1 ps/(nmkm) and S=0.058 ps/(nm?km), and with
common fiber attenuation «=0.2 dB/km and amplifica-
tion provided only at the end of the span, and for a non-
linear phase ®yp,=0.727 rad. The figure also shows in
dashed curves the PSDs when dispersion slope is ne-
glected. We note that in this case dispersion slope causes
the growth of a second sidelobe at higher frequencies.

6. IMPACT OF POSTCOMPENSATION

Commonly installed optical systems make use of precom-
pensating and postcompensating fibers, placed before and
after the link, respectively, to improve the tolerance to lin-
ear and nonlinear distortions. While the precompensating
fiber has no effect on PG, since ASE is generated down-
stream of'it, in this section we investigate the effect of the
postcompensating fiber (postfiber in brief) on PG.

Propagation inside the postfiber is still governed by the
dynamical equation (5), yielding an input—output relation
described by a transfer matrix U. If nonlinearity and dis-
persion slope within the postfiber are neglected, matrix U
is a real orthogonal (rotation) matrix, which can be ob-
tained from Eq. (15) in the limit ®y;,—0 as U=[cos 6,,
—sin 6,;sin 6,,cos 6,], with a post rotation angle 6,
=§postw2/ 2, where &, is the normalized cumulated dis-
persion in the postfiber. From expression (16) the received
ASE PSD matrix after postcompensation is

S=USU". (40)
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Fig. 11. S'pp (concave) and Sqq (convex) versus frequency f, for a
fully compensated two-section span with 50 km at dispersion +D
and slope +S and 50km at -D and slope -S, with D
=0.1 ps/(nm km) and S=0.058 ps/(nm?km). PSDs ignoring dis-
persion slope are shown, as dashed curves. &y, =0.727 rad.
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Fig. 12. (Color online) ASE PSD for different postcompensa-
tions. (2) &0st=—0.025; (b) £,0t=0; (c) &,0t=0.025. Index 1: in-
phase component; index 2: quadrature component. Dashed
curves: eigenvalues \,,, ;. S=0.01, &,=0, Ox;,=0.67.

As an example, in Fig. 12 the received ASE PSDs are
plotted for different values of postcompensation &,
=[-0.025,0,0.025] for a long-span terrestrial DM system
having map strength S=0.01, nonlinear phase ®yy,
=0.6m, and full in-line compensation &,=0. As can be ob-
served, the behavior of the PSDs strongly depends on the
amount of postcompensation, with a periodic exchange of
power between the in-phase and quadrature components
as the frequency increases.

To understand such a power transfer, it is useful to
spectrally decompose the positive semidefinite PSD ma-
trix as S:VAV*, where A=diag([\,,,\y]) is the diagonal
matrix of its real nonnegative minimum and maximum
eigenvalues, respectively, while the columns of the uni-
tary matrix V are the corresponding orthonormal eigen-
vectors. If dispersion slope in the DM line is neglected,
then the f5 term in Eqgs. (18) is real, and thus the diagonal

term S, is also real. Hence V is a real rotation matrix,
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which can be written as V=[cos @,—sin @;sin ¢A9,cos ?9] The

line rotation angle 0 can be found from the spectral de-
composition form to be

.1 28,
O(w) = 3 arctan| ——— |. (41)
Spp - Sqq

found to De )\m’M=%[Spp
+Sqqi \ (Spp—gqq)2+4gpq], and, after using Eqgs. (29), they
simplify to N, yy=cox|r|\cT+c3, a relation that shows, for
instance, that they do not depend on the sign of the
strength S of the terrestrial kernel, since the strength al-
ways appears inside the term |r|. The similarity transfor-
mation [Eq. (40)] preserves the eigenvalues. Thus from

The eigenvalues are

the Rayleigh-Ritz theorem?’” we have )\m=min”X”=1xT§x
and )\M=maxHXH=1xT§x over all unit-norm column vectors
x. Now the output PSDs can be expressed as S‘pp=xT§x
when x=[1,0]" and S,,=x"Sx when x=[0,1]”. Hence we
conclude that the PSDs after any postfiber (as well as the
PSDs before it) are sandwiched between the two eigenval-

ues: )\m$.§pp,squ N\is, which therefore represent the en-
velopes shown as dashed curves in Fig. 12. Equality holds
when the eigenvectors are x=[1,0]7 and x=[0,1]7, corre-

sponding to a zero rotation angle 0= 0+ 6, of the total ro-
tation matrix UV. We observe from Fig. 12 that by vary-
ing &0t ONe thus varies the frequencies of the minima—
maxima of the PSDs, which satisfy the condition 6(w)
= () + Epost0?/2=0.

Having characterized the effect of the postcompensat-
ing fiber on the received ASE PSDs, we now address the
problem of finding the value of postcompensation that
minimizes PG. The answer clearly depends on the modu-
lation format, as already discussed in Section 2. In our cw
model the modulation does not appear; hence we need a
reasonable interpretation of the cw level. It has been
shown!® that the impact of signal modulation can be prop-
erly substituted by an equivalent reference cw level that
accounts for an effective power within the memory time of
the DM optical link. Once the proper power level has been
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Fig. 13. (Color online) Normalized in-phase ASE variance ver-
Sus &yosr and &, Terrestrial long-span DM system with S=0.022
and ®yp,=0.67. Circles: &% in Eq. (42).
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identified, we observe that for on—off keying (OOK) modu-
lation the best postcompensation choice minimizes the
temporal variance of the in-phase ASE component, which
is the main source of errors for an envelope-detector-
based receiver.® Thanks to the closed-form expression of
the ASE PSDs [Egs. (29)], we quickly evaluated such a
variance for a wide range of postcompensation and in-line
compensation values. Figure 13 depicts the variance nor-
malized to its value in the absence of PG. We used a sys-
tem with S=0.022 [corresponding to a fully compensated
NRZ system at R=10 Gb/s with D=8 ps/(nm km)] and
®y1,=0.67. We evaluated the variance over a normalized
bandwidth B=0.75. The figure shows large tolerance to
postcompensation errors for negative in-line dispersions,
while for positive dispersions the tolerance is much re-
duced and the best region varies almost linearly with &,,.
In the same figure we also plot a solid curve with circles
corresponding to the é‘l’)pt that satisfies the condition 6(w

ost

=1)=0, which, using Eqs. (41) and (29), yields

" cy(mr,(m) + co(m)r;(m)
&ost = — —3 arctan (42)

Us co(mry(m) = cx(mri(m) |

Such a value of &, forces the in-phase PSD S'pp to
achieve its smallest possible value at frequency f,=1/2,
i.e., near the center of the bulk of the OOK one-sided sig-
nal spectrum, thereby almost minimizing the variance of
the in-phase ASE.

7. SYSTEM PERFORMANCE EVALUATION

An important issue with the small-signal PG model as ap-
plied to bit-error-rate (BER) computation is about its
range of validity. For OOK systems at 10 Gb/s, although
it is clear that at large end-line optical signal-to-noise ra-
tio (OSNR) the small-signal assumption holds, but essen-
tially no PG-induced sensitivity penalty can be observed
at the receiver, it has been shown that, in 10 Gb/s ultral-
ong terrestrial systems operating at low OSNR and thus
employing forward error correction, a significant penalty
due to PG can be observed, depending on the cumulated
nonlinear phase and on the dispersion of the transmission
fiber.»?8 However, in such large PG cases the PSDs pre-
dicted by the small-signal PG model are inaccurate, and
direct PSD estimation from simulations is necessalry.4’28
For differential phase-shift keying (DPSK) systems at
10 Gb/s, matters are quite different. Already at relatively
large OSNR values, significant PG-induced penalties can
be observed even at moderate nonlinear ph:;tses,l("’23’29
and the small-signal PG model can thus be successfully
used in performance evaluation.’” While the standard
BER computation goes through the evaluation of the
phase noise statistics,3’ a method based on the assump-
tion of a received colored Gaussian noise has been re-
cently proposed.'®*° Regarding the appropriateness of the
cw assumption in deriving the ASE PSD, when the sup-
porting pulses are return-to-zero (RZ) pulses such a PSD
is not stationary, and it is unclear which cw level should
be used to linearize the NLSE. Fortunately, it has been
shown that it is possible to choose an equivalent cw level,
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Fig. 14. (Color online) @ factor versus ®y;, for a NRZ-DPSK sig-
nal after propagation into a 20X 100 km fully compensated
NZDSF* system at R=10 Gb/s. Dashed curves: evaluation using

formulas (29). Solid curves: evaluation using Monte Carlo PSDs.
Dashed—dotted line with crosses: @ factor in the absence of PG.
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Fig. 15. (Color online) @ factor versus &y, for a NRZ-OOK sig-
nal after propagation into a 20X100 km fully compensated
NZDSF* system at R=10 Gb/s. Dashed curves: evaluation using
formulas (29). Solid curves: evaluation using simulated PSDs.
Dashed—dotted lines with crosses: @ factor in the absence of PG.

which depends on the details of the DM map, so that the
cw small-signal model yields correct results even for RZ
pulses.®

In this section we will provide numerical examples of
performance evaluation in both DPSK and OOK systems
that further support the above observations. All results
presented next will refer to a single-channel transmis-
sion.

Figure 14 shows the @ factor versus average nonlinear
phase for an NRZ-DPSK 20 % 100 km fully compensated
NZDSF* system at R=10 Gb/s (S=0.008) working at an
end-line OSNR of either 15 or 9 dB/0.1 nm. Before trans-
mission, a precompensation of -44 ps/nm was used,
whereas after the link the postcompensation was
420 ps/nm. Before detection a Gaussian optical filter of
bandwidth 1.8R removed the out-of-band noise. In all
cases the @ factor was obtained by inverting the BER
evaluated through a Karhunen—Loéve method for qua-
dratic receivers.'® The solid curves represent the @ factor
obtained from the true PSDs estimated from SSFM
simulations.* The dashed curves represent the @ factor
obtained by using our theoretical PSDs [Egs. (29)], and
the dashed—dotted line with crosses represents the @ fac-
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tor in the absence of PG, which clearly shows the absence
of signal distortion within the shown range of nonlinear
phases. With the inclusion of PG, we see that performance
quickly degrades with increasing nonlinear phase and
that the linear PG model gives an accurate prediction of
the performance at OSNR=15 dB. At a low OSNR=9 dB,
the prediction is still accurate up to ®y;,=0.27, i.e., up to
@ factor penalties of about 1 dB. We note that PG signifi-
cantly affects the performance already at small ®yy,. This
is due to the quadrature noise component, which is the
main source of errors for DPSK and which is always more
inflated by PG than the in-phase component over the sig-
nal bandwidth.

Figure 15 shows the @ factor versus average &y, for
the same DM system as above but now for a 10 Gb/s
NRZ-OOK signal and at an end-line OSNR of either 15 or
20 dB/0.1 nm. The postcompensation was 220 ps/nm.
Owing to the nonstationary nature of noise, in the BER
evaluation we adopted a simplified model that adds PG
only during marks.* Since the map strength was small, in
Eqgs. (29) we used as the cw power level the transmitted
peak power, which for a fixed average ®yy, is twice that of
DPSK. From Fig. 15 we note that at OSNR=20 dB the @
factor obtained from the theoretical PSDs overestimates
the one using the simulated PSDs by at most 0.7 dB,
whereas at OSNR=15 dB the overestimation can exceed
1 dB. Moreover, at OSNR=15 dB the linear model pre-
dicts an unrealistic performance improvement around
®yN1,=0.37 over the zero-PG case due to squeezing of the
in-phase component. Note that, as opposed to DPSK, for
OOK the main source of errors is the in-phase ASE com-
ponent, which, especially in the smallest OSNR case, is
strongly inflated at large ®yj, by the quadratic and
higher-order ASE terms that are neglected by the linear
PG model.*

8. CONCLUSIONS

In this paper we derived several fundamental scaling
laws that govern the mechanism of parametric gain in
dispersion-managed periodic links. Having in mind non-
soliton signal transmissions, we focused on systems work-
ing at limited cumulated nonlinear phase and in-line dis-
persion. Beside such two system parameters, we showed
that, for realistic dispersion maps dominated by fiber loss,
only a third parameter—the (first-order) map strength
S—is necessary to completely describe the spectral prop-
erties of PG up to frequencies of the order of the inverse of
the square root of S. We also provided the relation of our
strength S with the strength definition used in soliton
communications. For mathematical tractability, our PSD
formulas were derived for systems with infinitely many
spans, but the results approximately hold for nonlinear
phase rotations per span smaller than roughly 0.1 rad.
We emphasized the fundamental role of the DM kernel in
determining the DM system’s small-signal response, al-
though the kernel is known to completely determine even
the large-signal response.!” For instance, we proved that
the system eigenvalues solely depend on the kernel abso-
lute value, so that modulation instability can exist only at
positive in-line dispersion. We also gave a general rule to
determine when dispersion management can provide sub-
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stantially different ASE PSDs with respect to an un-
mapped system. The limited role of dispersion slope was
discussed, and it was found that it hardly affects the ASE
PSDs, in line with similar results for unmapped systems.”
The impact of a postcompensation fiber at the end of the
DM link was also discussed, with emphasis on the key
role of the PSD matrix eigenvalues, which represent the
envelope of the in-phase and quadrature PSDs for all pos-
sible values of the postfiber dispersion. Such an interpre-
tation eases the search for an optimal value of postcom-
pensation to minimize PG. Finally, we provided examples
of application of the PG linear model to system perfor-
mance evaluation, and we showed that, while the model
can be overly optimistic for OOK systems, its predictions
of DPSK are, instead, quite reliable.

This work can be extended in several directions. For in-
stance, an issue of practical interest is the inclusion of the
effect of random longitudinal variations of the zero-
dispersion wavelength along the DM line, a topic already
investigated for the four-wave-mixing effect.>? Such fluc-
tuations make the optical link aperiodic, thus violating a
fundamental assumption of the DM-NLSE. In this case,
one could follow the approach of Ablowitz and Moeser,>
where the averaging operation implied in the kernel deri-
vation [expression (8)] is now taken over the entire link.
Another interesting extension is the case of multiple cw
pumps with broadband ASE, a topic already tackled in
the non-DM case.'*%*
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