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Abstract. We present an improvement of a method that aims at detect-
ing important dynamical structures in complex systems, by identifying
subsets of elements that show tight and coordinated interactions among
themselves, while interplaying much more loosely with the rest of the
system. Such subsets are estimated by means of a Relevance Index (RI),
which is normalized with respect to a homogeneous system, usually de-
scribed by independent Gaussian variables, as a reference. The strategy
presented herein improves the way the homogeneous system is conceived
from a theoretical viewpoint. Firstly, we consider the system compo-
nents as dependent and with equal pairwise correlations, which implies
a non-diagonal correlation matrix of the homogeneous system. Then, we
generate the components of the homogeneous system according to a mul-
tivariate Bernoulli distribution, by exploiting the NORTA method, which
is able to create samples of a desired random vector, given its marginal
distributions and its correlation matrix. The proposed improvement on
the RI method has been applied to three different case studies, obtain-
ing better results compared with the traditional method based on the
homogeneous system with independent Gaussian variables.

Keywords: Complex Systems Analysis, Information Theory, Relevance
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1 Introduction

The identification of functional structures in dynamical systems composed of
many interacting parts is a major challenge in science. In particular, the forma-
tion of intermediate-level structures is of particular interest for what concerns
biological as well as artificial systems. These structures come from the dynam-
ics of small-scale processes, but possess peculiar characteristics and are able to
deeply influence the system they belong to.



Several measures have been proposed to describe the organization of these
dynamical complex systems, many of which are based on information theory [10,
19]. Some of the most relevant results of the application of such metrics can be
found in the domain of neuroscience [25, 27].

Starting from these results, Villani et al. [31] introduced a method to identify
relevant structures in dynamical complex systems, based on a dataset including
samples of the system status at different times. In particular, the Relevance Index
(RI) quantifies how much the behavior of these relevant structures deviates from
the behavior of a reference (homogeneous) system, in which the variables have,
individually, the same marginal distributions as in the dataset, and all have the
same pairwise correlation. In particular, a system characterized by independent
Gaussian variables, i.e., with zero pairwise correlation, was originally taken as a
reference [31].

In previous works, we improved the aforementioned RI method by applying
some metaheuristics, in order to deal with the curse of dimensionality in com-
puting the index [22, 26], and a GPU-based parallelization scheme, in order to
speed up the overall computation [30].

In this paper we propose a further improvement to the RI method, by im-
posing that the variables in the homogeneous system all have the same nonzero
pairwise correlation, matching the average pairwise correlation estimated from
the system under analysis. This is achieved by using the NORTA method [6].
The introduction of this pairwise correlation value has allowed us to identify
particularly interesting groups of variables, undetected in previous experiments.

The rest of the paper is structured as follows: in Section 2 we summarize
some previous applications of the relevance index and of the NORTA method;
in Section 3 we describe the most significant theoretical steps underlying the RI
computation and the NORTA method; in Section 4 we assess the improvements
obtained by applying the proposed modification to some relevant use cases; fi-
nally, in Section 5, we draw some conclusions.

2 Background

In this section we summarize previous works that take advantage either of the
RI method or of the NORTA method, which we are going to combine in the
proposed technique.

2.1 The Relevance Index Method

Much research has been already focused on the search for particularly infor-
mative groups in dynamical complex systems. Because of the emphasis on the
(nonlinear) relationships among their constituents, many efforts have been based
on the analysis of their representation through either networks [14] (for example
community detection [4, 16]), multigraphs [1, 13] or hypergraphs [11]. Neverthe-
less, often the interactions across these informative groups are not known; in
addition, the interaction topology could turn out not to be sufficient by itself



to determine the behavior of the whole system, since it is often necessary to
consider also the dynamical movements of the constituents. Besides this, it has
been shown that relevant information about emergent structures in dynamical
systems can be extracted by observing the system behavior “from the outside”,
by means of information-theoretical and statistical techniques [2, 3, 18], some-
times combined with dynamical systems analyses [8]. Some previous works have
documented the use of these information-theoretical measures for studying com-
plexity [10, 19] and criticality [5, 20, 34, 37]. However, none of the existing meth-
ods has all the following desirable properties:

– ability to identify groups of variables that change in a coordinated fashion;
– ability to identify critical states;
– direct applicability to data, without any need to resort to models;
– robustness with respect to sampling effort and system size.

The RI method, which is based on Shannon’s entropy, appears to be a step to-
wards obtaining all the aforementioned requirements. Indeed, the RI is a method
based on the Cluster Index (CI), introduced by Edelman and Tononi in 1994 and
1998 [28, 29], which detects functional groups of brain regions, assuming system
fluctuations around a steady state. The RI method extends the applicability of
the CI to a broad range of non-stationary dynamical systems, such as abstract
models of gene regulatory networks and simulated chemical [31], biological [32],
as well as social [9, 23] systems. Moreover, the experimental analysis concern-
ing two prominent models that exhibit two different kinds of criticality, namely
the Ising model for phase transition and the Random Boolean Network (RBN)
for dynamical criticality, demonstrated that the RI can be effectively used to
identify critical states [21].

2.2 The NORTA Method

NORTA (“NORmal To Anything”) is a method devised to generate specifically
correlated random vectors [6]. This is a mathematical procedure that solves the
issue of creating random vectors of correlated samples, given the set of their
marginal distributions (marginals) and a measure of the dependence among
them.

This is a good choice in our scenario, since, usually, the majority of com-
plex systems components experience a certain degree of mutual dependence [35].
Some recent examples, where NORTA has been successfully employed in differ-
ent fields, include wind power generation in renewable power supply systems
[17], and the modeling of probabilistic load flows, based on Latin Hypercube
Sampling [36]. Indeed, NORTA presents some degrees of uncertainty in the es-
timation of the marginal distributions and of the correlation matrix [35], since
it is not always guaranteed that its samples have exactly the desired correlation
matrix. However, we found it useful to overcome some issues encountered in ap-
plying the original RI method to some simple systems described by a moderate
number of variables.



3 Theoretical Approach

The RI can be used to study data from a wide range of dynamical system
classes, with the purpose of identifying sets of variables that behave in a somehow
coordinated way, i.e., the variables belonging to the set are integrated with each
other much more than with the other variables not pertaining to the set itself.
These subsets can be used to describe the whole system organization, thus they
are named Relevant Subsets (RSs).
The computation of the RI, which is an information-theoretical measure based
on Shannon’s Entropy (H in the following) [7], is usually based on observational
data, and probabilities are estimated as the relative frequencies of the values
observed for each variable. The theoretical definition of the RI is summarized in
the following.

Let us consider a system U composed of n random variables X1, X2, ..., Xn

(e.g., agents, chemicals, genes, artificial entities) and suppose that Sk is a subset
composed of k elements, with k < n. The RI of Sk is defined as:

RI(Sk) =
I(Sk)

MI(Sk;U\Sk)
(1)

where I(Sk) is the integration, which measures the mutual dependence among
the k elements in Sk, and MI(Sk;U\Sk) is the mutual information, which quan-
tifies the mutual dependence between subset Sk and the remaining part of the
system U\Sk.

The integration, in turn, is defined as:

I(Sk) =
∑
s∈Sk

H(s)−H(Sk) (2)

while the mutual information is formalized as follows:

MI(Sk;U\Sk) = H(Sk) +H(U\Sk)−H(Sk, U\Sk) (3)

The integration can be shown to be the Kullback-Leibler Distance [7] between
the joint distribution of the system variables and the product distribution of
their marginals. Hence the integration is zero whenever the system variables are
independent.

Trivially, the RI is undefined if MI(Sk;U\Sk) = 0. However, a vanishing MI
is a sign of independence (i.e., physical separation) of the subset under exam from
the rest of the system, and therefore the subset has to be studied separately.

Since the RI increases with the subset size, a normalization method is re-
quired to compare RI values of subsets of different sizes. Moreover, the statistical
significance of RI differences should be assessed by means of an appropriate test.
For these reasons, a statistical significance index was introduced as [28]:

Tc(Sk) =
νRI(Sk)− ν 〈RIh〉

νσ(RIh)
=
RI(Sk)− 〈RIh〉

σ(RIh)
(4)



where 〈RIh〉 and σ(RIh) are, respectively, the average and the standard de-
viation of the RI of a sample of subsets of size k extracted from a reference
homogeneous system Uh, and ν = 〈MIh〉 / 〈Ih〉 is its normalization constant.

A post-processing sieving algorithm [33] is used to select the most relevant
sets, reducing the list of Candidate Relevant Sets (CRSs) to the most represen-
tative ones, i.e., those having the highest Tc values. The sieving algorithm is
based on the criterion by which, if a CRS is a proper subset of another CRS and
ranks higher than this, then it should be considered more relevant than this.
Therefore, the algorithm keeps only those CRSs that are not included in or do
not include any other CRS with higher Tc: this “sieving” action stops when no
more eliminations are possible and the remaining groups of variables are the
elementary RSs.

The generation of the homogeneous system is critical, as stated also in [31],
and often, in the past, a simple but general and easy to compute solution was
preferred. This solution encompassed the computation of the frequency of oc-
currence of each variable, given the available observations, and the generation
of a new random series of samples, where each variable had a prior probability
equal to the frequency of the original observations. The homogeneity required
by Tononi was achieved by considering the components of the random vector Uh

to be Gaussian and independent. This caused:

1. the correlation matrix of the homogeneous system to be a diagonal matrix,
i.e., with pairwise correlations set to zero;

2. the integration I(Sk) to be zero for all subsets of the homogeneous system.

The improved version of the method we propose in this paper consists in
taking the pairwise correlation between variables describing the homogeneous
system into account, requiring that it be not null, which seems a more realis-
tic assumption. In this way, we remove a hypothesis (the independence of the
variables) that is not true in general. Moreover, we maintain the homogeneity
required by Tononi, by forcing all off-diagonal elements of the correlation matrix
to have the same constant value ρ:

CORR(Uh) =


1 ρ . . . ρ

ρ
. . .

. . .
...

...
. . .

. . . ρ
ρ . . . ρ 1


while we normalize all variances to 1. The value of ρ is computed, in a first
approximation, as the average value of all pairwise correlations of the observed
variables.

In order to generate a homogeneous system with the aforementioned features,
we take advantage of the NORTA method [6]. The measure of dependence we
used in NORTA is the usual product-moment correlation matrix, based on the
linear Pearson correlation coefficient with entries defined according the following



formula:

ρ(Xi, Xj) =
COV (Xi, Xj)

σXi
σXj

. (5)

The NORTA method creates independent and identically distributed repli-
cas of a random vector X = (X1, X2, ..., Xn), based on its (known) marginal
distributions Fi(x) = P (Xi ≤ x), i = 1, . . . , n and the correlation matrix
CORR(X).
In summary, the NORTA procedure performs the following steps:

1. generates a normal random vector Z = (Z1, Z2, ...Zn) with zero mean and
covariance matrix COV (Z), with 1s on the main diagonal;

2. obtains the prescribed marginal distributions by computing the replica X′ =
(X ′1, X

′
2, ..., X

′
n) according to the following equation:

X ′i = F−1i (Φ(Zi)) i = 1...n, (6)

where Φ is the distribution function of a standard Gaussian random variable
and F−1i is the inverse of Fi,defined as:

F−1i (u) = inf{x : Fi(x) ≥ u}. (7)

3. chooses COV (Z) in order to induce the requested correlation matrix CORR(X).
In this case there is no closed-form solution and the method often relies on
an efficient numerical search, by solving a number of one-dimensional root-
finding problems. In some cases the procedure does not lead to the exact
desired correlation matrix, failing to produce a positive semidefinite matrix,
which is a requirement for a valid correlation matrix. However, NORTA can
often get very close to the desired correlation matrix, even in very high
dimensions.

In this work, NORTA is used to generate the homogeneous system based
on the R implementation known as NORTARA1. This package generates n-
dimensional random vectors with given marginal distributions and correlation
matrix. The NORTA algorithm, which generates a standard normal random
vector and then transforms it into a random vector with specified marginal dis-
tributions, is combined with the RA (Retrospective Approximation) algorithm,
which is a generic stochastic root-finding algorithm.

4 Experimental Evaluation

In order to test the presented methodology, we analyzed three different systems
whose dynamics are precisely known. In particular, we studied the consequences
of using different homogeneous systems: the one produced with the method pro-
posed in this work (where we “inject” the average correlation which characterizes
the system under study - HwiC , where wiC means “with correlation”) and the

1 http://cran.r-project.org/web/packages/NORTARA/



one produced with the original method (HnoC). In the following, we focus on the
application of the RI analysis, possibly applying the sieving algorithm in order
to simplify the results. The binary nature of the variables of the test systems we
used allows one to apply the HwiC approach with simple Bernoulli distributions
to all situations.

The three case studies we considered are representative of valuable research
fields, that is, (i) the dynamics of Boolean networks, (ii) dynamical simulations
of autocatalytic reaction systems happening within a Continuous-flow Stirred-
Tank Reactor (CSTR for short) and (iii) simplified models of the dynamics of
opinion diffusion.

The Boolean network framework, despite its apparent simplicity, has ob-
tained remarkable results in simulating several aspects of real gene regulatory
networks [12, 24]. In particular, here we present a collection of 5 different Boolean
systems (denoted as RBN1, ..., RBN5) composed of 12 nodes, synchronously
updated on the basis of either a Boolean function or a random Boolean value
generator.
In each analysis considered in this paper, instead of juxtaposing different states
belonging to the different attractors of each system [31], we follow single tra-
jectories, perturbed every 20 steps by temporarily changing a randomly chosen
variable from 0 to 1 (or vice versa).

The CSTR case study simulates a collection of molecules able to collectively
self-replicate [12], a situation frequently studied in researches about the origin
of life [15]; very similar assemblies could play an important role also in future
bio-technological
In this research, we tested a simple system featuring two distinct reaction path-
ways, a Linear reactions CHain (LCH) and an AutoCatalytic set of molecular
Species (ACS). The reactions occur only in the presence of a specific catalyst,
since spontaneous reactions are assumed to occur too slowly to affect the system
behavior. Both LCH and ACS pathways occur in an open CSTR with a con-
stant influx of feed molecules and a continuous outgoing flux of all the molecular
species proportional to their concentration (see [31] for a more detailed descrip-
tion of the model). The problem we address in this paper is the detection of
the groups of chemicals that participate in distinct dynamical organizations, by
simply observing their concentration in time.
The asymptotic behavior of this kind of systems is a single fixed point [31],
due to the system feedback structure. In order to apply our analysis, we need
to observe the feedbacks in action; so, we perturb the concentration of some
molecules in order to trigger a response in the concentration of (some) other
species. We temporarily set to zero the concentration of some species after the
system has reached its stationary state. In order to analyze the system response
to perturbations we discretize its trajectory by observing it within equally-sized,
non-overlapping time windows and by classifying the behavior of the chemical
concentrations within this interval as “chemical concentration changing” (“1”
tag) and “no change in chemical concentration” (“0” tag).



Finally, we compare the results of the application of the RI to different ho-
mogeneous systems on a simple model, in which the integration among variables
in a subsystem under observation and its mutual information with the remain-
ing part of the system can be tuned by acting on few parameters. The model
abstracts from specific functional relationships among elements of the system
and could resemble a basic Leader-Followers model (LF), used in opinion
dynamics studies.
The system is composed of a vector of n binary variables {X1, X2, ..., Xn} rep-
resenting, for example, the opinion in favor of or against a given proposal. The
model generates independent observations of the system state, i.e., each obser-
vation is a binary n-vector generated independently of the others, based on the
following rules:

– Variables are divided into three groups, G1 = {La, F1a, F2a, F3a}, G2 =
{Lb, F1b, F2b}, and G3 = {Lc, F1c, ... , F8c}.

– La, Lb, Lc are the leaders of their groups2, and they have a probability
plcpy to copy the value of another leader, and a probability of 1-plcpy to
independently assume a random value in {0,1} (with probability of obtaining
a “1” equal to 0.4, 0.3, and 0.3, respectively).

– The values of the followers of the three groups are set as a copy (or negation)
of their leaders with probability pcopy and randomly (according to a Bernoulli
distribution with probability 0.5) otherwise.

– The three groups are submerged into a “sea” of random variables following
a Bernoulli distribution with P (x = 0) = P (x = 1) = 0.5.

It is possible to tune the integration among elements within groups and the mu-
tual information between groups by changing plcpy or pcopy. In our examples, we
fixed for simplicity plcpy=0.0 (non-interacting groups) with pcopy=1.00 (perfect
followers) and pcopy=0.98 (imperfect followers).

4.1 Results

In Figure 1, we report the relevant subsets identified by the RI analysis performed
on RBNs using the HnoC or HwiC homogeneous systems as a reference for the Tc
computation. The RBN systems are relatively simple, and the most interesting
relevant subsets are evident also without applying the sieving algorithm (see
Table 1).

Figure 1 reports the two groups that rank highest according to the Tc value
(the first four ranks for case RBN5).
Both approaches find the same solutions in cases RBN1, RBN2 and RBN3.
In particular, the two methods directly identify the two correct solutions of
RBN1, the two fundamental groups composing the correct solution of RBN2,
and the correct solution of case RBN3. In RBN2, the simple iteration of the
RI method after the application of the sieving algorithm is able to identify the

2 In details, Lb(t) = La(t− 1) and Lc(t) = Lb(t− 1).



Table 1. Table showing the relationships among nodes of the considered RBNs.

Node Node rule

RBN 1 RBN 2 RBN 3 RBN 4 RBN 5

A RND(0.5) RND(0.5) RND(0.5) RND(0.5) RND(0.5)

B RND(0.5) RND(0.5) RND(0.5) RND(0.5) RND(0.5)

C (D⊕E) (D⊕E) Lˆ(D⊕E) (D⊕E) (D⊕E)

D (C⊕E) (C⊕E) (C⊕E) (C⊕E) (C⊕E)

E (C⊕D) (C⊕D) (C⊕D) (C⊕D) (C⊕D)

F RND(0.5) RND(0.5) RND(0.5) (E⊕H) (E⊕H)

G RND(0.5) RND(0.5) RND(0.5) (G+H+I+L)≥2 RND(0.5)

H (I⊕L) Eˆ(I⊕L) Eˆ(I⊕L) (C⊕L) (I⊕L)

I (H⊕L) (H⊕L) (H⊕L) (D+E+G+H)≥2 (H⊕L)

L (H⊕I) (H⊕I) (H⊕I) F⊕(E⊕I) (E⊕I)

M RND(0.5) RND(0.5) RND(0.5) RND(0.5) RND(0.5)

N RND(0.5) RND(0.5) RND(0.5) RND(0.5) RND(0.5)

correct big group (formed of variables C, D, E, H, I and L)3. In RBN3, the
slightly preeminent position of the first triplet in Fig. 1 is due to the particular
set of samples that has been chosen; indeed, by analyzing several sets of samples
both triplets are equally represented.

The structure in case RBN4 is highly heterogeneous and comprises loosely
integrated parts: the HnoC approach (though identifying correct nodes) is not
able to spot out most variables composing the groups acting within the system,
whereas the HwiC approach identifies almost all the correct nodes. The variables
not detected are just nodes G and I, which indeed have a very low coupling with
the other variables (see Table 1 for details): so, the HwiC approach seems to
be more accurate than the HnoC approach. In other words, the Tc rank orders
obtained by the two approaches are different, but often the HwiC approach iden-
tifies larger groups, which are also the correct ones. In case RBN5, for example,
the most relevant group is composed of eight nodes and it is immediately iden-
tified by the HwiC approach, whereas the HnoC approach identifies in the first
positions only the small subsets composing the largest group of variables.

This hypothesis is supported by the analysis of the CSTR case: the HnoC

approach is able to identify merely small subsets of the ACS system, whereas the
HwiC approach directly identifies in its first iteration almost all the members of
the ACS. At the same time, this approach identifies also the largest part of the
LCH structure. In this case, we repeated the RI analysis several times, by using
different HnoC and HwiC homogeneous systems: all these analyses consistently
confirmed these results. Figure 2, which, for simplicity, shows only the relevant
sets selected by the application of the sieving algorithm (two sets using HnoC

and two sets using HwiC) which have a much higher value than the other possible
sets, strongly supports these observations.

3 data not shown



Fig. 1. The first two candidate relevant sets for each RBN case (four candidate rel-
evant sets in the RBN5 case) and their Tc values, computed by using the “classical”
homogeneous system (HnoC , left) and by using the homogeneous system built using
NORTA (HwiC , right). In each row, a black cell indicates that the corresponding vari-
able is selected in the candidate relevant set, whereas white cells denote the variables
not belonging to the candidate relevant set. For each RBN case, we also report the
correct solution, in which the different colors denote particular nodes or subdivisions
of the dynamical structure of the systems. In particular: (i) case RBN1 hosts two
dynamically-independent structures, (ii-iii) which in cases RBN2 and RBN3 are linked
through the orange nodes; (iv) in case RBN4, a structure, observable also in case RBN1,
is providing signals to other 5 nodes (highlighted in orange, and in turn exchanging
messages among each other in various ways); (v) in case RBN5, the two structures,
present also in case RBN1, are both sending signals to the blue nodes F and G. For a
more detailed description see Table 1.

The LF scenario described in the previous part of the section is a particularly
difficult case for the RI analysis. Indeed, the addition to a group of size Nv of
a variable, which is an almost perfect function of a variable already present
within the group itself, leads to a new group of size Nv + 1 with a normalized
integration very similar to the normalized integration of the initial group. Indeed,
the integration of the group of size Nv subtracted from the integration of the
group of size Nv +1 is equal to the entropy of the added variable: the same holds
for the homogeneous system if the difference between the average integrations
of groups of size Nv + 1 and of size Nv is taken into consideration.

In the case of pcopy=1 (perfect followers) the HnoC approach ranks in the top
130 positions almost all subsets of group G3 (of sizes 7, 6 and 8, in frequency
order)4, before identifying the correct G3 group, whereas the HwiC approach
identifies the correct G3 group (with Tc= 522.803) immediately after its 8 subsets
composed of 8 variables (with Tc values slightly lower than 524). Figure 3 shows
the superposition of these subsets, which highlights the presence of the G3 group,
and the corresponding Tc values range: indeed, the HwiC approach is able to
discriminate among all the possibilities in a sophisticated way, thereby effectively
identifying the correct G3 position.

4 Notice that, in case of a perfect copy, the action of excluding a particular variable
and including another one leads to groups having the same Tc value.



Fig. 2. The two candidate relevant sets - obtained by applying the sieving algorithm to
the results of the RI analysis - of the CSTR case and their Tc values, computed using
the “classical” homogeneous system (HnoC , first two rows) and using the homogeneous
system built with NORTA (HwiC , last two rows). The groups of variables remaining
after the application of the sieving algorithm have Tc values by far lower than those
shown here. The blue and yellow colors indicate the chemical species belonging to LCH
and ACS structures, respectively; darker colors indicate the chemical species produced
by the reactions happening within the CSTR reactor (for these species the names are
also reported). The constant species are not included in the table reported in this
figure; the colored nodes without name indicate substrates or intermediate complexes.

Fig. 3. The candidate relevant sets identified by using the “classical” homogeneous sys-
tem (HnoC) and by using the homogeneous system built with NORTA (HwiC), related
with the Leader-Followers case analyzed in this paper (different colors highlight differ-
ent LF groups). The variable sets reported in the top line (in light grey for HnoC and in
dark grey for HwiC) actually represent the top-ranked 130 (HnoC) and 8 (HwiC) sets,
all subsets of the same variables, that were detected; in this case the Tc column shows
the range of the subsets’ Tc values. Notice that the Tc range identified by the H wiC
approach is significantly smaller than the range identified by the HnoC approach.

Eventually, both systems correctly identify the G1 and G2 groups. Similar
results hold for pcopy=0.98 (data not shown).

5 Conclusion

In this paper, we have proposed an improvement to the RI method for iden-
tifying relevant subsets in complex systems. In particular, we have introduced
a constant nonzero degree of statistical dependence in the variables composing
the homogeneous reference system, by imposing that all variable pairs share the
same pairwise correlation. The results coming from three relevant case studies
demonstrate that this improvement allows one to identify sets of interacting
variables of larger size compared with the previous way of generating the homo-
geneous system. Actually, because the analyzed systems and the HwiC approach
feature the same integration values, we suspect that this fast identification of



larger groups might be related to their total amount of integration more than
to their size. As future work we plan to verify this hypothesis by analyzing
systems where dynamical structures of different size exhibit similar integration
levels. Other possible future developments may regard the application of the
new method of computing the homogeneous system to complex systems with
many more variables and to verify its performance also by applying some meta-
heuristics or an iterative version of the sieving procedure, in order to identify
hierarchical relations among RSs.
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