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Abstract: We review the basics of perturbation models and discuss the main implications
in modeling the variance of the nonlinear interference. A modulation format dependent
theoretical model for the perturbative interference is proposed.
OCIS codes: (060.2330) Fiber optics communications; (060.1660) Coherent communications.

1. Introduction

Perturbation theory, i.e., the study of the impact of small parameters on mathematical models, found wide application
in the analysis of the nonlinear Schrödinger equation (NLSE). If the perturbative solution is a Taylor series in the small
parameter, we refer to a regular perturbation (RP) solution of the problem [1–6]. It can be shown that the same solution
can be obtained by using alternative techniques, like the Volterra series expansion [4], the first order Picard iteration,
and the exponential Euler integrator method.

Perturbative models of the NLSE recently captured the attention of the community for two main aspects: i) their
closed form expressions stimulate applications in digital equalization of nonlinear impairments, e.g., [7]; ii) the statis-
tical moments of the nonlinear interference (NLI) can be successfully evaluated [2, 3, 5, 8].

Aim of this paper is to review the basics of RP and to shed light on the application in statistical modeling, by
providing an equivalent but alternative expression for the modulation-format-dependent power spectral density (PSD)
given by the enhanced Gaussian noise (EGN) model [8]. A comparison with the GN model [2] is given.

2. RP, eRP, LP

The NLSE for propagation of a field A is expressed in terms of operators as:

∂A
∂ z

= (L − jγN )A (1)

with L =−α

2 + j β2
2

∂ 2

∂ t2 and N (A) = |A|2 A. Assuming z-independent parameters for the sake of simplicity, using the
integrating factor A = eL zU we can rewrite (1) in integral form as [1, 5]:

U(z) =U(0)− jγ
ˆ z

0
e−L ξ N

(
eL ξU

)
dξ ,U0 +U1 (2)

Such an equation can be solved iteratively by using Uk+1 and Uk in place of U(z) in the left/right hand side, respectively.
Since N is normally small, RP is stopped at the first iteration at the first order (RP1). A block diagram sketching this
idea is shown in Fig. 1(left), and compared with the standard discretization of the split step Fourier method (SSFM).
While each block L accounts for eL z, in each path only one nonlinear block N is crossed, according to the RP1
idea. The RP method can be applied as well in wavelength division multiplexing (WDM) and polarization division
multiplexing (PDM); in particular, the cross channel interference of channel ~B = e jωt [Bx, By]

T on ~A = [Ax, Ay]
T can

be accounted for by substituting N with NAB = 8
9

(
||~A||2 +~B~B† +~B†~B

)
~A, where † indicates transpose conjugate.

Assuming a linearly modulated digital signal with initial supporting pulse p(0, t), by defining p(z, t) = eL z p(0, t), and
matched filter impulse response p∗(z,−t), the block diagram of the RP method takes the form of Fig. 1 (right) [3, 5].

RP forces the nonlinear perturbation to be additive. This is generally not true, and some advanced methods were
introduced to cope with it. A first basic attempt is eRP, which exploits RP in a reference system that tracks the nonlin-
ear average phase rotation φ(z), thus removing the average of the secular terms in the perturbation. This corresponds
to using A = eL ze jφ(z)U , where φ(z) can be estimated by φ(z) = Im [〈U1/U0〉], 〈.〉 indicating averaging. The second
advanced method forces the perturbation to be logarithmic, i.e., U(z) =U0 exp(U1/U0) [9, 10]. Both eRP and LP are
a posteriori manipulations of the RP solution, of which they share the same complexity. We verified by simulation
that they both over-estimate the Q-factor [11], and that LP is never more accurate than eRP in practical WDM sys-
tems, both dispersion-unmanaged (DU) and dispersion-managed (DM). Recently, Fan et al. proposed a mixed RP-LP
approximation [12].
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Fig. 1. Block diagram of the RP method. Left: comparison with SSFM. Right: Example of application in WDM with
matched filtering. p(z, t): digital signal supporting pulse at time t linearly impaired after z km.

3. Application to Statistical Modeling

The RP1 algorithm of Fig. 1 does not provide significant computational savings compared to SSFM. Indeed, it can be
exploited to evaluate the correlation function of the NLI. The block diagram of Fig. 1 (right) suggests the way. For
the sake of simplicity, we set the idea in single-polarization and single channel (extensions to WDM and PDM are
straightforward). The NLI is an infinite sum of contributions, thus, to get the NLI auto-correlation we need the cross-
correlation between any NLI outgoing paths z and s. Along such paths, relating the input/output correlation across any
linear block is just a matter of linear system theory [13]. The challenge regards nonlinear blocks. i.e., relating Ri

zs(t,τ)

to RO
zs(t,τ), with Ri,O

zs (t,τ) , E
[
Ai,O(z, t + τ)A∗i,O(s, t)

]
(see Fig. 1(right)). Under the key GN-model assumption of a

stationary Gaussian input [2], in the alternative GN model derivation [13] it was shown that such a relation takes the
remarkably simple form:

RO
zs(τ) = 2N

(
Ri

zs(τ)
)
. (3)

Mecozzi et al. showed instead that one can consider the actual digital signal A(0, t), and derive the true NLI statistics
[5]. With a digital input we deal with cyclo-stationary signals, which become almost stationary with supporting Nyquist
pulses. This way, since the nonlinearity is cubic, RO

zs(τ) becomes a function of sixth order moments, which were fully
evaluated by Carena et al. by working in the frequency domain [8]. The resulting model was called EGN. By operating
instead in the time domain, as in [13], we get the EGN-alternative but equivalent result:

RO
zs(τ) =

µ3
2

T 3 2 |Q(z,s,τ)|2 Q(z,s,τ)+
κ2;2

T 2

{
4F4(z,s,τ)+Q4(z,s,τ)

}
Q(z,s,τ)+

κ3;3

T
Q6(z,s,τ) (4)

with T the symbol time, κ2;2 = µ4µ2−2µ3
2 and κ3;3 = µ6 +12µ3

2 −9µ4µ2 symbol cumulants, µn , E [|ak|n], and:

Q(z,s,τ), p(z,τ)⊗ p∗(s,−τ), Q4(z,s,τ), p2(z,τ)⊗ (p∗(s,−τ))2

F4(z,s,τ), |p(z,τ)|2⊗|p(s,−τ)|2 , Q6(z,s,τ), |p(z,τ)|2 p(z,τ)⊗
{
|p(s,−τ)|2 p∗(s,−τ)

}
.

⊗ indicates convolution. Note that with Ri
zs(τ) =

µ2
T Q(z,s,τ) in (3) we get the 1st term in (4), thus called GN-term.

The NLI correlation function is finally related to (4) by a double integral after [13, eq. (8)]. Eq. (4) provides a physical
insight about the behavior along z. In particular, we find that while the GN-term is dominant, the modulation format
dependent terms are dominated by F4. At z = s, Q is invariant along distance, contrary to the other terms, which indeed
fade out for increasing z. This proves that for z� 1 only the GN-part survives, thus explaining the findings in [2].

4. Numerical Checks

For a 5x100 km spans, DU link with D = 17 ps/nm/km, and five 32 Gbaud PDM channels (spacing 37.5 GHz), with
either QPSK or Gaussian symbols, Fig. 2 shows the NLI PSD evaluated by using Monte Carlo simulations and theory
based on (4). The excellent match is an indication of the correctness of (4), and also confirms the PSD over-estimation
by the GN model [8]. The theoretical NLI eRP variance can be used to analytically evaluate the system reach. We did
it in [14] for a 15-channel link, and report it here in Fig. 2 (right). As discussed in [14], despite the non-negligible error
of the GN model in predicting the PSD, hence the variance, the error in reach is limited. In any case, the EGN model
provides a much better agreement with SSFM results (symbols).
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Fig. 2. Left: NLI PSD by Monte Carlo simulations or by theory (green lines). Right: Power vs. Number of span for a
15-channel PDM-QPSK system. Symbols: SSFM ; Solid: EGN ; Dashed: GN . Amplifiers noise figure: 10 dB.
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Fig. 3. Blue: eRP1 PDF Contour levels of the NLI along path z of Fig. 1 cumulating a dispersion Dc. Red: contour levels of
the eRP1 term at time n = 0 conditioned to symbol an = 1.

The EGN model looses accuracy in short, weakly dispersive links [8]. To investigate the reason, we simulated the
NLI probability density function (PDF) at the output of one branch (e.g., path z) in Fig. 1(right). Results are reported
in Fig. 3 for single channel. Blue contours refer to the PDF estimated using either random QPSK symbols for ak, or
Gaussian distributed ak. The last case exactly matches the Gaussian assumption of the GN model, and not surprisingly
the PDF is circularly distributed whatever the cumulated dispersion Dc. However, both the GN and the EGN take
averages over all input symbols, neglecting that the NLI should actually be conditioned on the symbol of interest. In
fact the error probability is Pe = ∑k Pr(error|ak)Pr(ak), hence what we really need is the NLI PDF conditioned on the
symbol of interest. Red contours in Fig. 3 report the NLI PDF conditioned on an = 1. It is worth noting that even by
assuming Gaussian statistics for ak, k 6= n, the conditioned PDF is not circular at small Dc. This aspect is missed by
both the GN and EGN models, where the forced stationarity for the NLI corresponds to averaging over all possible
symbol sequences. At large Dc all symbols indeed experience the same conditional NLI PDF, thus the EGN model can
be successfully applied to get the system performance.
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