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Abstract We discuss the reasons why the Gaussian nonlinear model provides accurate bit error rate
predictions in dispersion unmanaged PDM-QPSK coherent links.

Introduction
The recently discovered quasi-Gaussian nature of
the statistics of the nonlinear interference (NLI)
in dispersion unmanaged (DU) coherent optical
links with single-carrier modulations stimulated
the development of several analytical models to
evaluate the variance of the NLI1–3, and of ele-
mentary bit error rate (BER) formulas based on
the received signal to noise ratio (SNR)4,5. In this
scenario, the Gaussian nonlinear (GN) model1,6,7

is particularly attractive, since it is able to pro-
vide a simple analytical formula for the NLI power
spectral density (PSD). The common assump-
tion shared by all the above models is that non-
linearity is a small perturbation of the nonlinear
Schrödinger equation (NLSE). The extra pecu-
liar assumption of the GN model is that the input
modulated signal is a Gaussian stochastic pro-
cess1,7,8.

In this work we wish to add to the debate on
the accuracy of the GN model. First, we check
the small-perturbation assumption in polarization-
division multiplexing quadrature phase shift key-
ing (PDM-QPSK) transmissions, showing that it
leads to a BER under-estimation. Then, we show
that assuming Gaussian input signal statistics
over-estimates the true NLI variance, hence the
BER. The two errors partially compensate, yield-
ing a good accuracy of the GN model for BER
prediction.

Accuracy of small-perturbation assumption
In this section we quantify the accuracy of the first
order perturbation solution of the NLSE, without
any assumption on the received NLI statistics. We
numerically simulated a 20×100 km DU link with
single mode fibers (SMF) having dispersion 17
ps/nm/km and nonlinear index γ = 1.3 W−1km−1.
At the transmitter we sent 15 PDM-QPSK chan-
nels at R = 112 Gbit/s with 50 GHz spacing. Each
channel had 4096 random symbols and random
carrier state of polarization (SOP). Fiber propaga-
tion was modeled using either the enhanced first
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Fig. 1: Monte Carlo estimation of Q-factor using two
different perturbation models: eRP and LP. SSFM: split
step Fourier method (exact) solution.

order regular perturbation (eRP)9 or the logarith-
mic perturbation (LP)10, and solved using the al-
gorithm in9. Polarization mode dispersion (PMD)
was neglected. The receiver digital signal proces-
sor (DSP) performed standard operations, includ-
ing: ideal compensation of chromatic dispersion;
analog to digital conversion with bandwidth 0.6R;
fractionally spaced 15 taps trained least squares
butterfly equalization at 2 samples/symbol. Am-
plified spontaneous emission (ASE) noise was
added at the end of the link with a total noise fig-
ure of 25 dB. Performance was estimated in terms
of BER through Monte Carlo simulations counting
at least 100 errors, and converted to Q-factor.

Fig. 1 shows the estimated Q-factor vs. power
using the two perturbation algorithms. For refer-
ence, we also report the split step Fourier method
(SSFM) curve, which we will refer to as the true
performance. We note that in DU links the LP so-
lution is less accurate than the eRP one, while
the opposite is true in dispersion-managed links
where the Kerr effect manifests mainly as a phase
rotation. In the strongly nonlinear regime (the de-
scending part of Q-factor) the eRP solution over-
estimates the Q-factor by roughly 1 dB, an error
that is reduced near the optimal power by the im-
pact of ASE noise, which is exactly captured by
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Fig. 2: Monte Carlo estimated SNR in absence of
ASE noise for different fiber dispersions D [ps/nm/km].
Dashed lines: eRP algorithm. Solid lines: SSFM.
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Fig. 3: Test for the Gaussian assumption. The signal
entering the z = 20× 100 km link is either PDM-QPSK
or AWGN with identical PSD after filtering.

all models.
To quantify the impact of fiber dispersion D,

we measured the SNR of the received constella-
tion clouds in absence of ASE noise, both with
the eRP and the SSFM algorithms. Such an
SNR is reported in Fig. 2 with dashed (eRP) and
solid lines (SSFM). It is worth noting that at a
true nonlinear SNR>4 dB the eRP algorithm over-
estimates the value by less than 1 dB, whatever
the fiber dispersion. Such a value of nonlinear
SNR can be assumed as a minimum threshold for
the applicability of the eRP perturbation model.

Accuracy of input Gaussian assumption
The previous section showed that the eRP solu-
tion of the NLSE over-estimates the Q-factor, and
thus the SNR. In this section we show that forcing
input Gaussian statistics indeed under-estimates
the Q-factor, thereby counteracting the bias of the
eRP solution. This claim is supported by the sim-
ulation described in Fig. 3. In a noiseless DU
link we sent 15 channels, each discretized by 222
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Fig. 4: Nonlinear SNR of link in Fig. 3. Dashed line:
Prediction of the GN model.

points and modulated with either a 112 Gbit/s
PDM-QPSK signal or with dual-polarization ad-
ditive white Gaussian noise (AWGN), suitably fil-
tered to yield the same PSD as in Fig. 3. Power
was -4 dBm, thus low enough to claim that eRP
coincides with SSFM, according to Fig. 2. After
the link we extracted the central channel with a
2nd-order super-Gaussian low pass filter (LPF) of
bandwidth 25 GHz and then measured the nonlin-
ear SNR by calculating the NLI noise as depicted
in Fig. 3, thus asNLI = ARX exp (−j 〈ϕ〉)−ATX ,
being 〈ϕ〉 the average nonlinear phase rotation in-
duced by the link. The same procedure was used
in both the PDM-QPSK and the AWGN cases.

The SNR is reported in Fig. 4 vs. fiber disper-
sion D. Surprisingly, we note that PDM-QPSK is
almost 2 dB above the AWGN. As a sanity check,
we numerically solved the double frequency in-
tegral of the GN model (eq. (1) of6) obtain-
ing the dashed black curve that almost perfectly
matches with the AWGN Monte-Carlo simulated
curve. This fact gives us confidence that also
the PDM-QPSK SNR evaluation is correct. In the
PDM-QPSK case we also tried to move closer
to the assumptions required by the central limit
theorem by adding a pre-compensating fiber be-
fore transmission (exactly compensated then at
the receiver), but the gap with the AWGN case
was reduced by only 0.6 dB at the remarkable
pre-dispersion value of 10000 ps/nm.

In a final set of simulations we changed the
statistics of the modulating symbols ak in Fig. 3
and rescaled the obtained fields to have the same
PSD. We assumed independent in-phase and
quadrature symbols drawn from basic distribu-
tions like hyperbolic secant, Gaussian, Laplace,
logistic and uniform, up to forming a 1024-point
constellation. Since the PSD is fixed in all cases
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Fig. 5: Left: Nonlinear SNR vs. excess kurtosis κ of constellation symbols ak when D = 17 ps/nm/km. The symbols
distribution is indicated in the graph. κ > 0 indicates distributions with heavier tails than Gaussian distribution. Right:
PMF of real component of NLI noise assuming QPSK or Gaussian distributed ak. PSD is equal for all cases.

by the common supporting pulse spectrum, the
difference in behaviors should be searched in
higher statistical moments than the variance. Al-
though 6-th order moments of the input field are
involved in the analytical GN model computa-
tions7,8, we found that the fourth moment, ex-
pressed by the excess kurtosis κ, is a good dis-
criminator of the different cases. The excess kur-
tosis is a measure of the peakedness of a distribu-
tion: positive κ indicates distributions with heavier
tails than the Gaussian one, and vice versa. The
information brought by κ is similar in spirit to the
peak to average power ratio (PAPR), even though
it correctly weights the occurrence of rare events
like the peak values.

Fig. 5(left) indicates that there is a monotonic
relation between the SNR, measured after the
DSP, and κ, despite the large chromatic disper-
sion accumulated in the link, thereby dispelling
the myth that any input signal into a highly-
dispersive DU link evolves into a Gaussian pro-
cess. Note that the Gaussian-distributed mod-
ulating symbols (“Gauss” label) yield almost the
same SNR as the AWGN. In Fig. 5(right) we also
reported the probability mass function (PMF) of
the real component of the received optical NLI for
both the QPSK and Gaussian case. The imagi-
nary component shows an almost identical PMF.
It is worth noting that while the SNR, and hence
the variance σ2 of NLI, is distribution-dependent,
both PMFs are very well approximated by a Gaus-
sian distribution of variance σ2 (dashed lines)
within a wide range of ±3σ from the average
value, thus justifying the SNR-based BER for-
mula4,5.

Conclusions
We showed that the GN model for DU links6

works because its first-order perturbation as-
sumption over-estimates the Q-factor, while its
Gaussian input signal statistics assumption over-
estimates the nonlinear interference variance,
thus partially counterbalancing the first-order per-
turbation error.
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