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Power Threshold Due to Parametric Gain in
Dispersion-Mapped Communication Systems

Paolo Serena and Alberto Bononi

Abstract—Parametric gain (PG) is investigated in conventional
terrestrial transmission systems at 10 Gb/s. The authors present
new results that show how at large signal transmitted power the PG
effect strongly differs from the predictions of the standard small-
signal approach, which neglects the noise quadratic and higher
order terms in the nonlinear Schrödinger equation. The authors
give a new explicit expression of the maximum transmittable power
in a dispersion-mapped transmission system impaired by PG and
show that such power threshold is due to the inflation of the low
frequency portion of the in-phase noise spectrum.

Index Terms—Karhunen–Loéve expansion, Kerr effect, modu-
lation instability, parametric gain (PG).

I. INTRODUCTION

PARAMETRIC gain (PG) is a nonlinear effect due to the in-
teraction between a strongpumpsignal and amplified spon-

taneous emission (ASE) noise that produces a colored ASE at
the receiver, with a correlation between its real (in-phase) and
imaginary (quadrature) components [1], [2].

The standard analytical tool for the study of PG is a lineariza-
tion approach to the nonlinear Schrödinger equation (NLSE)
starting from a continuous-wave (CW) pump, set at the power
level of marks in anON–OFFkeying (OOK) transmission, plus
a small ASE perturbation field [1], [2]. The linearization is ob-
tained by dropping all quadratic and higher order terms of the
perturbating ASE, thus obtaining a linear propagation equation
of the real and imaginary ASE components. Such a vector dif-
ferential equation has a solution in the form of an end-to-end
system matrix relating the input and output ASE fields [1], [2].
Being the output ASE is a linear filtering of the input, ASE’s
statistics remain Gaussian at the photoreceiver.

Using the PG linearized model and the Gaussian approxima-
tion for bit-error-rate (BER) evaluation, it has been shown in
[3] that for dispersion-mapped systems operating in the average
normal dispersion regime PG can actually reduce the deleterious
impact of ASE noise when compared with linear propagation,
while in the anomalous dispersion regime PG always degrades
the system performance.

It has also been shown that whenever the in-phase and quadra-
ture ASE components are strongly correlated, the Gaussian
approximation for BER evaluation fails and well-known tech-
niques for the performance evaluation of quadratic detectors in
Gaussian noise, based on a Karhunen–Loéve (K–L) expansion
of the ASE have been adapted to the PG case [4].
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In this letter, we show that the PG linearized approach is
valid only at small pump power levels. At large pump powers,
we prove that the PG linearized solution differs from the exact
one mostly because the received ASE in-phase power spectral
density (PSD) inflates in the frequency region around
well above the value predicted by the linearized model, as
already noted in [5]. Such in-band “inflation” of the in-phase
PSD, which is present both in the normal and in the anomalous
dispersion regime, is the major cause of system degradation
at large transmitted signal power, since it contributes to the
dominant signal-ASE beat noise and is due to the quadratic and
higher order ASE terms which are dropped in the linearized
model. Note that, in the context of modulational instability
pulsed lasers, the ASE contribution around appears as a
background field between pulses[6].

In order to accurately evaluate the BER even in the large-
pump regime, we have: 1) estimated the received ASE PSD by
propagating a CW plus long sequences of ASE samples using
the split step Fourier method (SSFM), and then averaged with
the averaged periodogram method [7] and 2) by using such ac-
curate ASE PSD, and by pretending that the received ASE re-
mains Gaussian distributed, we have applied the K–L method
for the BER evaluation.

As a result, we have observed a BER power threshold beyond
which transmission is disrupted. For several dispersion maps
such a threshold can be significantly lower than the threshold
due to self-phase modulation acting on the OOK signal alone.
Such a thresholdcannot be predictedby the PG linearized
model.

Another important result of this paper is the stochastic anal-
ysis of the nonlinear PG model, where we keep the quadratic
ASE terms in the NLSE, which leads to an analytic formula
of the in-phase ASE PSD at . We observed that the
BER power threshold is always quite close to the pump power
at which the in-phase ASE PSD at doublesits value
with respect to the linear regime. We call such power value the
PG power threshold. The main implications of the explicit PG
power threshold formula are also discussed.

II. PG LINEARIZED MODEL AND EXTENSION

When the fiber input is composed of a CW signal plus
a small perturbation field , with

, the NLSE is usually linearized in the frequency do-
main as [2]

(1)
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Fig. 1. Schematic diagram of the dispersion-mapped optical system withN =

5 spans.

where and are the Fourier transforms of and , respec-
tively, is the fiber attenuation, the fiber dispersion param-
eter, and the nonlinear coefficient. From (1) we conclude that,
at , is invariant along , and thus so is the received
in-phase PSD. However, we will show next that at large CW
powers the received ASE PSD at actually inflates well
above its input value. The reason is that the quadratic and higher
order terms which were dropped in the derivation of (1) cannot
be neglected anymore. If also quadratic terms are included, (1)
in the time domain becomes

(2)

This equation is our starting point for the derivation of the ana-
lytical formula of the PG power threshold.

III. SYSTEM IMPACT OF PG

We have evaluated the impact of PG on a 10-Gb/s 5100-km
terrestrial transmission system, shown in Fig. 1, in terms of
sensitivity penalty with respect to back-to-back transmission at
BER 10 . The system is similar to the one experimen-
tally investigated in [5], althoughit works at an optical signal
to noise ratio dB over0.1 nm in the absence of
PG, and the transmission fiber is a nonzero dispersion shifted
(NZDSF ) fiber, with dispersion ps/nm/km, at-
tenuation dB/km, and nonlinear coefficient
W km . The in-line amplifiers are dual stage. Sandwiched
between the stages, astandard single-mode fiber(SMF) of suit-
able length andwith small enough input power provides the de-
sired residual dispersion, with negligible nonlinearity.

In order to highlight the inaccuracy of the standard
small-signal PG model at large transmitted powers, the correct
ASE PSD, which includes the effect of quadratic and higher
order terms in the NLSE, was estimated by the SSFM using the
averaged periodogram method. Fig. 2 shows the in-phase and
quadrature ASE PSD, normalized to their value without PG,
both at a “small” CW power dBm (a), and at a “large”
power dBm (b), evaluated at a residual dispersion

(a)

(b)

Fig. 2. Normalized in-phase and quadrature ASE PSD: (a)P = 11 dBm,
(b)P = 15 dBm. Five-span NZDSF/SMF map atD = 0 ps/nm. Averaged
periodogram (solid line); PG small-signal solution (dashed line).

ps/nm. In the dashed line we also report the ASE
PSD obtained by solving the PG linearized model (1) [2]. We
note that, while at small powers the PSD evaluated with the PG
linearized model coincides with the estimated one, at large CW
powers the PG linearized model underestimates the in-phase
PSD on a bandwidth of several gigahertz. We also note that the
quadrature ASE PSD remains instead essentially unchanged on
a log scale. Since the beat between signal and in-phase ASE
mostly contributes to the noise at the decision gate [3], we
expect that such low-frequency inflation strongly influences
the system performance at large powers.

Since the standard Gaussian approximation gives inaccurate
results in the presence of colored noise [4], we evaluated the
system BER using a K–L expansion of the received noise. In
the numerical computation we used an extension of the method
described in [8], which is simpler to implement than that in
[4], since it avoids the explicit computation of the K–L eigen-
functions. In applying the K–L method, we used the fact that
ASE noise statistics after transmission are still approximately
Gaussian and used its estimated PSD obtained by the SSFM.
The in-phase PSD inflation changes the sensitivity penalty at
large powers, as can be seen from Fig. 3. The top row shows
the sensitivity penalty versuspeaktransmitted power, evaluated
using the estimated ASE PSD (solid line) and the ASE PSD
from the PG linearized model (dotted line), with overall residual
dispersion ps/nm (left plot) and ps/nm
(right plot). The BER and thus the sensitivity penalty were eval-
uated by including the self-phase modulation (SPM) effect on
the OOK signal. In the dashed lines we also report for compar-
ison the penalty when considering SPM for the signal and ne-
glecting PG, so that ASE remains spectrally flat, orwhite. From
the figure, we observe that for both considered values of residual
dispersion there are some decibels of shift in power threshold
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Fig. 3. (Top row) Sensitivity penalty versus peak transmitted power: exact
PG+SPM (solid line), linearized PG+SPM (dotted line), white ASE+SPM
(dashed line). (Bottom row) Normalized in-phase ASE PSD at! = 0 versus
peak transmitted power: analytical solution of (2) (solid line), (3) (dashed line),
averaged periodogram method (crosses). Five-span NZDSF/SMF map, with
D = 0 ps/nm (left plots) andD = +500 ps/nm (right plots).

when PG is considered, while the curves evaluated using either
no PG or the PG linearized approach fail to predict the correct
threshold value.

The bottom plots show the normalized in-phase ASE PSD at
, , versus peak transmitted power, evaluated by both

stochastic analysis of the nonlinear system (2) (solid lines) and
by direct simulation with the SSFM (crosses).We verified that
stochastic analysis and simulation match well down toOSNR
values of at least 10 dB. We also clearly note the strong correla-
tion between the power threshold in the sensitivity penalty in the
top graphs and the one in shown in the bottom graphs.The
stochastic analysis is based on the first-order regular perturba-
tion solution of(2) [9]. After involved computations of higher
order joint moments of Gaussian processes, it yields the ASE
PSD in integral form, and onlyat .

For the solid line curve in the case we have found an
explicit approximation of the integral form for systems having
a number of spans , which is plotted in dashed line in
Fig. 3

(3)

where is the fiber effective length, the frequency band
over which the is evaluated, and is a function that
accounts for the cumulative effect of the propagation in the
span system

(4)

The term causes a very fast increase of the PSD as power
approaches the PG threshold, which we nominally set to the
value at which :

(5)

We note that such a PG power threshold depends on the mag-
nitude of the dispersion of thetransmission fiberand not on its
sign. It also depends on the level and the number of spans

. The presence of a nonzero residual dispersion can shift the
power threshold by a few decibels, according to the map. When

, we could not find a simple approximate explicit form
of the integral form of .

IV. CONCLUSION

We evaluated the sensitivity penalty for a 10-Gb/s dispersion
mapped terrestrial system, with zero and positive residual dis-
persion. We proved that a transmitted power threshold exists,
beyond which PG prevents error free transmission. We showed
that such a PG threshold is connected with the inflation of the
low-frequency part of the in-phase ASE PSD and cannot be pre-
dicted by the existing linearized models for PG. Although large
threshold levels result from our numerical example, obtained at
a large , from formula (5) we know such thresholds sub-
stantially decrease to “practical” levels at a lower and/or
larger , such as in longer systems or systems with larger in-
teramplifier losses.
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