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Abstract—We provide an analytical expression of the nonlinear
phase induced by the Kerr effect that highlights its dependence
on the modulation format and on the link parameters. We show
that such a nonlinear phase must be used in regular-perturbation
models in order to minimize their modeling error. We detail the
case of dispersion-managed systems as an application example.

I. INTRODUCTION

Any electric field propagating into an optical fiber expe-
riences a phase shift induced by the nonlinear Kerr effect.
Tracking such a phase is mandatory to make correct decisions
on a linearly modulated digital signal at the receiver side. This
is of concern both in a real setup as well as in modeling. While
in the first case the job is efficiently performed by a phase
estimator, in modeling one needs a theoretical expression for
such a phase to minimize modeling errors. For instance, in
the nonlinearity compensation algorithm of [2] the authors
discovered the importance of such a phase, whose value was
identified by a systematic search; in several Gaussian noise
(GN) and enhanced GN models (EGN) [3]–[5], [7] a fake
average, modulation format independent, phase is used for
simplicity, while it was shown in [12] that modulation format
does play a role in setting the average phase; the naive regular
perturbation (RP) model was shown to badly fail when not
referring the perturbation to a reference system rotated by the
average nonlinear phase, i.e., the one where perturbation is as
small as possible: such a corrected RP was called enhanced
RP (eRP) [1].

The problem of the average phase reference in RP modeling
can be removed by using a logarithmic perturbation (LP) [8].
However, in DU links the LP model yields log-normal statis-
tics for the received perturbation [9], which do not match with
the normal distribution observed in experiments/simulations.
Alternatively, a mixed additive-multiplicative model is pos-
sible [10], however with performance that is expected to be
similar to eRP [11]. A similar idea was used in [6].

In this paper we provide a rigorous evaluation of the average
nonlinear phase, which accounts for the modulation format
dependence, and show its use in an accurate RP model.

II. NUMERICAL RESULTS

By following the footsteps of [12], in the Appendix we
prove the main result of this paper, namely that a linearly
modulated digital signal in single polarization transmission
experiences the following average nonlinear phase due to the

Kerr effect:
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where: ΦGN , − 8
9γ2PLeffN is the (modulation-independent)

phase predicted by the GN model [5], with γ nonlinear
coefficient, Leff fiber effective length, N number of spans, P
power; κ2;2 is the second order cumulant of the modulation
format [12] (e.g., κ2;2 = −1 for quadrature phase shift
keying (QPSK)); p(z, t) is the supporting pulse, of energy PT
with T symbol time, distorted by dispersion up to coordinate
z; G(0, z) is the net power gain up to z. Eq. (1) is an
approximation because of the RP assumption, see Appendix.

Despite ΦNL was derived in the single polarization case,
in polarization division multiplexing (PDM) one just has to
substitute the factor 2 in ΦGN with a factor 3/2, while the
phase correcting term ∆Φ in (1) must be weighted by 1/2. On
the other hand, in wavelength division multiplexing (WDM)
ΦGN must be multiplied by the number of channels, while ∆Φ
remains unchanged.

Since κ2;2 is negative for all modulation formats of interest,
a first implication of (1) is that ∆Φ is always a positive
correcting term. Please note that

∫
|p|4 dt is not invariant along

propagation despite the fact that a unitary transformation like
dispersion makes

∫
|p|2 dt invariant.

The main goal of this section is to provide numerical checks
of the usefulness of eq. (1). Term ∆Φ was neglected in
GN/EGN models like [3]–[5], [7]. To have a first feeling of
its importance we simulated a basic optical system based on
a concatenation of a linear step L, nonlinear step N , and
inverse of linear step, thus forming LNL−1. Note that the RP
nonlinear interference (NLI) of a true system is nothing but a
linear combination of such LNL−1 systems, each representing
RP propagation up to a specific coordinate [12].

The average nonlinear phase is shown in Fig. 1 vs. cumu-
lated dispersion in block L. Symbols refer to split step Fourier
method (SSFM) simulations, while solid line to eq. (1). We
observe that while the phase used by the GN model is indepen-
dent of the dispersion, the true phase does show a dependence,
with a maximum mismatch around zero cumulated dispersion.
The corresponding normalized NLI variance aNL(NLI variance
σ2

NLI , aNLP
3, where P is power) obtained by the EGN

with the correct phase ΦNL [12] (line) or by SSFM simu-
lations is reported in the same figure (bottom). The numerical



procedure to get NLI is summarized in Fig. 2 (top) and will be
detailed later. We note a strong correlation between aNL and
ΦNL, as well as the excellent match of EGN that uses the right
phase ΦNL with SSFM simulations. The EGN model with ΦGN
(same as [12, Fig. 7]) is indeed less accurate, while the pure
GN model totally misses the dependence on the dispersion.
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Fig. 1. (Top): Average Nonlinear phase cumulated along a concatenation
of a linear step L (cumulating the pre dispersion reported on the X-axis), a
nonlinear step and finally L−1. Such a link corresponds to a generic branch
of the RP perturbation [12]. Symbols: SSFM simulations. Solid line: eq.
(1). Dashed line: GN model prediction with Gaussian distributed transmitted
signal. Bottom: Corresponding normalized NLI variance (σ2

NLI , aNLP 3, P:
power) [12]. Power: -1 dBm.

One more check of the importance of using the correct phase
reference in RP modeling is the following. We simulated a
15 channel PDM-QPSK system with supporting sinc pulses
modulated at symbol rate of 32 Gbaud with a channel spacing
of 37.5 GHz. Optical link was 35×100 km long with residual
dispersion per span (RDPS) of 30 ps/nm (DM30) or DU for
a length of 4500 km. In the DM30 case before transmission
we added a pre-compensation of -480 ps/nm. Transmission
fibers had dispersion D=17 ps/nm/km, attenuation 0.2 dB/km,
nonlinear coefficient γ = 1.3 1/W/km. All amplified sponta-
neous emission (ASE) noise was loaded at the receiver, for
an equivalent noise figure of 6 dB/amplifier. After the optical
link, a post-compensating fiber recovered all the previously
cumulated dispersion.

The NLI of the received central channel was extracted by
using a reference phase Φ equal either to ΦNL or just ΦGN, as

Fig. 2. Top: block diagram of the NLI extraction. Bottom: Numerical
emulation of a Gaussian noise having the same covariance matrix of the NLI.
Carrier phase Φ equal to either ΦNL or ΦGN depending on the case. w(t) is
zero average, unit variance, Gaussian noise.

illustrated in Fig. 2 (top). Of such a NLI we then estimated
the covariance matrix H between real/imaginary components
and then its Cholesky decomposition H =LLT was derived,
with T indicating transpose.

The NLI was then claimed to be a signal-independent
additive Gaussian noise, as postulated by GN models [4], [5],
[7], [12], and then emulated by the additive noise channel in
Fig. 2 (bottom). The resulting Q-factor, estimated over random
patterns of 4096 symbols each by the noise loading method, is
reported in Fig. 3. For comparison, in Fig. 3 we also report the
SSFM simulation of the true link. We note that by recovering
only the GN phase ΦGN the Q-factor is underestimated. On
the other hand, by recovering the more accurate ΦNL, the
performance better fits with the SSFM around the best power,
in agreement with the assumptions of the perturbative model.
The differences are less evident in the DU case.

We next move to analyze the behavior of the nonlinear
phase with system parameters. In Fig. 4 we compare eq. (1),
reported by lines, with SSFM simulations (symbols) for the
same optical link as in Fig. 3. RDPS is variable and reported
in normalized units, i.e., ξ , RDPS/(DzA), with zA span
length. We note that all curves are monotone and saturate for
ξ → 1, such that ΦGN is a lower bound to the unwrapped true
phase. Please note that, since a phase must be read modulo
2π, the importance of ∆Φ has to be compared with 2π and
not with ΦGN. Note that the 15 channel WDM curve is a rigid
shift of the corresponding single channel one. Reason is that
the phase correction term ∆Φ is actually a self correcting term
for each channel, whatever the channel count of the WDM, as
discussed in the Appendix.

In Fig. 5 we report the phase correction term ∆Φ versus ξ
for different span numbers N . We note that the dependence
on N is negligible close to the DU limit (ξ → 1), while in the
opposite limit it does play a role, in agreement with common
wisdom that in fully compensated optical links the nonlinear
phase grows linearly with the distance. In the same figure we
also report (dashed lines) the approximate fit (8) which is seen
to work for any value of ξ and can then be safely used either
for a fast evaluation of ΦNL or for inferring scaling laws.

In Fig. 6 we show ∆Φ after a fixed number of spans N = 40
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Fig. 3. Q-factor vs. power in the DM30 and DU case. DM30 is 3500 km
long, while DU is 4500 km long. 15 channel PDM-QPSK system at 32 Gbaud,
channel spacing 37.5 GHz.
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Fig. 4. Kerr induced average phase. RDPS: residual dispersion per span (DU
link: ξ = 1. full DM link: ξ = 0 ). Symbols: Simulations. Solid line: eq. (1).
Theory and numerical results confirm that conversion from single polarization
to PDM is just a linear operation, see discussion after (1).

but by testing two different dispersions, 2 ps/nm/km and 17
ps/nm/km. We note that while the D=17 ps/nm/km case shows
a convergence to almost zero for ξ → 1, a gap remains in the
D=2 ps/nm/km case, an indication that, when fiber dispersion
is small, the correct reference phase system plays a role even
in DU links.
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Fig. 5. Phase correction term in (1) vs. normalized RDPS at different number
of span N . Solid lines: eq. (1). Dashed lines: Approximation (8). Single
polarization case (in PDM multiply by 1/2). D = 17 ps/nm/km, N × 100
km link.
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Fig. 6. Phase correction term in (1) vs. normalized RDPS at different
dispersion D. Solid lines: eq. (1). Dashed lines: Approximation (8). Single
polarization case (in PDM multiply by 1/2). N = 40 spans.

III. CONCLUSIONS

We derived an analytical expression of the average phase
induced by the nonlinear Kerr effect, which accounts for the
modulation format. We showed that the correct phase is the
one predicted by the GN model plus a correcting term, always
positive for the modulation formats of interest.

APPENDIX

AVERAGE PHASE DERIVATION

Target is estimating the average nonlinear phase experienced
by the transmitted linear digital modulated signal:

U(t) =
∑
k

akp(0, t− kT )

where ak are zero mean complex symbols with at least a 4-
fold rotational symmetry. The optical link is a generic periodic
DM link. Given the RP1 approximation of the received field:

URP(t) = U0 + U1



with U0,1 unperturbed/perturbed solutions [4], [12], respec-
tively, the maximum likelihood estimator of the nonlinear
induced phase, by assuming U1 Gaussian distributed, is [13]:

ΦNL = arg

[∫
T0

URP(t)U∗0 (t)dt
]

(2)

where T0 is the observation window. For a small nonlinear
effect the phase can be safely linearly related to the imaginary
component:

ΦNL '
=
[∫
T0
U1(t)U∗0 (t)dt

]
∫
T0
|U0(t)|2 dt

in agreement with the RP1 idea that powers of γ higher than
1 have negligible effect. Now let T0 → ∞. By invoking
ergodicity for the electric field we can take the expected value
of the integrands, obtaining:

ΦNL '
=
[
R

(0)
U1U0

(0)
]

<
[
R

(0)
U0U0

(0)
] (3)

where R
(n)
XY (τ) is the cyclic cross-correlation of X(t) and

Y (t) at cycle frequency n/T :

R
(n)
XY (τ) ,

1

T

∫
T

E [X(t+ τ)Y ∗(t)] e−j2πn
t
T dt (4)

with E [.] expectation. With perfect dispersion compensation
at the end of the link, fields U0,1 can be written as [4], [12]:

U0(t) = U(t)

U1(t) = −jγ
∫ L

0

hz0(t)⊗ V (z, t)dz (5)

where L is the link length and:

V (z, t) , |U0(z, t)|2 U0(z, t)

U0(z, t) , h0z(t)⊗ U(t)

h̃sz(ω) ,
∫ ∞
−∞

hsz(t)e
−jωtdt=

√
G(s, z)e−j

∫ z
s β2(x)dx

2 ω2

with ⊗ indicating time-convolution. hsz(t) is a filter account-
ing for linear effects from s to z, like the net gain G as well
as dispersion β2. By substituting (5) into (4) we have [12]:

R
(0)
U1U0

(τ) = −jγ
∫ L

0

hs0(τ)⊗ h∗s0(−τ)⊗R(0)
V U0

(s, τ)ds .

As in [12], by introducing Yk , akgk , akp(z, t− kT ), such
that p(z, t) = h0z(t)⊗ p(0, t), we have:

R
(0)
V U0

(t, τ) =
∑

k,n,l,m

E [YkY
∗
n YlY

∗
m]

= 2κ2
1;1

∑
k

|gk|2
∑
n

|gn|2 + κ2;2

∑
k

|gk|4

R
(0)
U0U0

(t, τ) =
∑
k,n

E [YkY
∗
n ] = κ1;1

∑
k

|gk|2 (6)

where κn;n is the n-th order cumulant of the information sym-
bols ak [12]. By exploiting the properties of cyclostationary
signals, we have:

1

T

∫
T

∑
k

|gk|n dt =
1

T

∫ ∞
−∞
|p(z, t)|n dt . (7)

Collecting together (3), (6) and (7) we finally get (1). Note
that in WDM with independent channels it is impossible to
find a set of four equal symbols in (6), so that cross channel
induced average phase is exactly captured by the GN model.

In the simplified, yet relevant, case of sinc pulses and
by using the stationary phase approximation, we found the
following excellent approximation:

∆Φ ' −8

9
γPκ2;2

N∑
k=1

[
2

3

1− e−αM(k)

α

−
log
(

1 + 2
α(M(k)+(k−1)sin+sp)

)
2π |β2|R2

e−αM(k)

2

]
(8)

where sin , RDPS/D, sp , Dpre/D, Dpre being the cumu-
lated dispersion into a pre-compensating fiber before transmis-
sion, and M(k) , max

(
0, 3

4π|β2|R2 − sp − (k − 1)sin

)
.
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