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Abstract We show how to include modal dispersion in the Gaussian noise model extended to space-
division multiplexed systems with strongly coupled modes. The proposed model enables fast and accu-
rate design of SDM links. Here we use it to reveal a considerable dependence of cross-nonlinearities on
modal dispersion.

Introduction
Strong random mode coupling in space division
multiplexed (SDM) systems is a promising ap-
proach to increasing the capacity of long-haul
communication links1–3. Besides reducing the ac-
cumulation of the modal dispersion (MD) along
the distance and thus the multiple-input multiple-
output (MIMO) requirements for the receiver,
strong coupling (SC) mitigates also the accumula-
tion of nonlinear effects1. However, the numerical
simulation of such systems is particularly heavy
both in computational time and in memory re-
quirements of typical RAM and GPUs4.

Approximate models are thus mandatory for a
system analysis with minimal effort. Most of the
interest in the literature has been captured by
perturbative models, for which four-wave mixing
(FWM) takes a closed-form expression. In this
framework, the variance of the received nonlin-
ear interference (NLI) can be computed, with ex-
pressions particularly simple with Gaussian dis-
tributed input signals, as per the Gaussian noise
(GN) model5. The basic GN model, first in-
troduced for single-mode fibers (SMF), was ex-
tended to SDM in6,7, however without including
MD in the theory. While the interaction of MD
with Kerr effects is typically small in SMF (where
MD is referred to as polarization-mode dispersion
(PMD)), justifying its neglection, it may be relevant
in SDM due to the higher values of MD in both
multi-core and multi-mode fibers3,8. The effect of
MD has been characterized in some limit cases
in9, where a generalization of the enhanced GN
model of10 to SDM transmission was introduced.

In this work, we extend for the first time the
SDM-GN model to account for arbitrary values of
MD in systems operating in SC regime, thus de-
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scribing the models in6,9 as special cases of our
theory. The proposed model can be used for a
fast performance evaluation of SDM-based net-
works.

Theory
Let ak be a data symbol at discrete-time k1, fre-
quency channel k2, and spatial mode k3, that
we collected in k = (k1, k2, k3) following11. In
bra-ket notation, the transmitted signal is thus
|A〉 =

∑
k ak |Gk(0, t)〉, i.e., a symbol-weighted

combination of the shaping functions |Gk(0, t)〉 ,
p(t− k1T )ejΩk2

t |k3〉, with p supporting pulse, Ωk2
carrier frequency of the k2-th channel, T symbol
time. In this framework, the discrete-time channel
model under perturbative assumptions is:

yi = ai + ni = ai − j
∑

k,m,n

a∗kamanXkmni

where the second term on the rhs is the zero-
mean NLI, weighted by the tensor:

Xkmni = γκ

∫ z

0

f(ξ) 〈Gk(ξ, t)|Gm(ξ, t)〉

× 〈Gi(ξ, t)|Gn(ξ, t)〉dξ (1)

where γ is the nonlinear coefficient, κ a mode-
dependent weighting function1, f(z) the loss pro-
file, and |Gk(z, t)〉 is the shaping function at coor-
dinate z after linear impairments only. In SMF, eq.
(1) reduces to the expression analyzed in12,13.
The main result of the GN model theory11 yields
the following variance of the NLI ni:

var (ni) =
∑

k,m,n

XkmniX ∗kmni︸ ︷︷ ︸
I1

+XkmniX ∗knmi︸ ︷︷ ︸
I2

. (2)

The main differences between the presence/ab-
sence of MD are the following. First, without MD
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the tensor is symmetric in the inner indexes11,
i.e., Xkmni = Xknmi, which, in particular, yields
a degenerate factor 2 for cross-phase modulation
(XPM). This is not the case with MD, thus break-
ing the degeneracy. Second, from (1-2) it is worth
noting that the product of two tensors yields the
product of two integrals in z. Likely, such integrals
can be closed in scalar propagation after moving
in the frequency domain, yielding the well-known
FWM kernel, with great simplifications for the GN
model theory5,6,10. This property is no longer
valid in SDM with MD, since the unitary matrix
T(z, ω) describing linear crosstalk and MD is a
random matrix with a complex evolution along z.
Although T can be constructed by the wave-plate
model, the resulting numerical evaluation of (2)
remains extremely complex because of the dou-
ble z-integrals. To simplify the analysis, we fo-
cused on the expectation of (2) with respect to the
random-mode coupling realizations to see if some
simplification is possible. Since each |Gk(z, t)〉
implies a convolution with the transfer matrix T,
the expectation calls for the averaging of the prod-
uct of 8 matrices at different coordinates and fre-
quencies. By using Ito’s calculus14,15 we evalu-
ated such an expectation for SPM-like and XPM-
like contributions5, corresponding to the indexing
iiii for the first and knmi ≡ kiki or kkii for the
second. As a main result, we found that to eval-
uate a generic XPM term, the FWM kernel of a
fiber supporting SDM of 2N polarizations, much
longer than the attenuation length, changes from
the classical SMF result |η0(α)|2 = 1

α2+∆β2 , with
∆β = β(ω+ω1)+β(ω+ω2)−β(ω+ω1+ω2)−β(ω)

the phase-matching coefficient, into:

|η|2 =
m

α

(
α1(1 + c) |η0 (α1)|2+α2(1− c) |η0 (α2)|2

)
(3)

where α1,2 , α + (p ∓ q)N
2SMD2

4N2−1 , SMD being the
spatial mode dispersion parameter defined in16,
are two MD-dependent attenuation factors with:

p =
ω2

1 + ω2
2

2
, q =

√
p2 − ω2

1ω
2
2

(
1− 1

4N2

)
and, with reference to the notation in (2):

c ,

{
p
q −

ω2
1

q

(
1− 1

4N2

)
, I1-term

p
q . I2-term

The factor m is equal to N for the I1 XPM mix-
ing, and 1/2 for I2. With the novel FWM kernel it
is possible to evaluate the GN model integrals as

per11 in the frequency domain, for instance by us-
ing the Monte Carlo method of10. The increase in
complexity with respect to the SMF case is negli-
gible for any number of modes N . Note also that
the SMF case with PMD is a special case of the
proposed theory with N = 1.

The multi-span case follows the same rules of
SMF, hence with an extra phased-array factor5.

Simplified formula
If we neglect intra-channel MD17, i.e., MD acts
only by an inter-channel effect through phase
shifts among channels, the model can be greatly
simplified. Since MD is absent within a chan-
nel, the inter-mode FWM process underpinning
the XPM effect can be reduced to the interac-
tion of the carrier frequencies rather than all the
frequencies making up the channels. This case,
which is a special case of the one in (3), yields the
following relation between the scalar-case XPM
variance σ2

X,s and its SDM counterpart σ2
XPM:

σ2
XPM =

2N + 1

2N

(
(2N + 1)σ2

X,s(α)+

(2N − 1)
(
α+ ∆ω2µ2

N

)
α

σ2
X,s

(
α+

∆ω2µ2

N

))
(4)

where ∆ω is the frequency spacing of the two
channels generating XPM. Apart from its ele-
gance, (4) enables to use closed-form approxi-
mations of σ2

X,s developed for SMF5 for the case
of SDM links with MD. As a sanity check, we ob-
serve that (4) accounts for the limit cases ana-
lyzed in9, namely:

σ2
XPM =

{
2(2N + 1)σ2

X,s , MD→ 0
(2N+1)2

2N σ2
X,s . MD→∞

The ratio of the no-MD to the infinite-MD case is
4N

2N+1 , as first found in9.

Results
We focused on the XPM contribution to the NLI
variance, which dominates FWM in modern opti-
cal links at high symbol rates5. Since the super-
position principle works for the XPM variance, it
is sufficient to focus on a two-channel scenario at
a given channel spacing. We analyzed a 100km
SDM fiber working in the SC regime, while vary-
ing the magnitude of MD. We tested the analytical
results of our model by comparison with split-step
Fourier method (SSFM) simulations. The SSFM
had variable step sizes with the nonlinear phase
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Fig. 1: Power-normalized XPM variance vs SMD for N = 2
and 4 modes in a strongly-coupled SDM fiber. The shaded
lines are a scatter diagram of SSFM results with respect to
the random waveplates. The proposed full GN model based
on (3) is in solid lines, while approximation (4) in dashed lines.

criterion, set up in the worst SMD scenario un-
til observing convergence of the SSFM results.
We used Gaussian distributed symbols at 49 Gbd
with variable frequency spacing between the two
interfering channels. The channel under test had
power -30 dBm to avoid SPM, while the other
had 0 dBm. We used 65536 symbols, and re-
peated the simulations for a total of 500 random
seeds. We considered the transmission of N = 2

and 4 spatial modes in a fiber with dispersion 17
ps/nm/km, attenuation 0.2 dB/km, nonlinear co-
efficient1 γκ = 4

3
2

2N+1γ with γ = 1.26 1/(W·km),
and used 10000 random waveplates. No ampli-
fied spontaneous emission was considered since
NLI was the goal of the investigation. At the re-
ceiver, we ideally removed all the accumulated lin-
ear effects, and after matched filter detection and
carrier phase recovery we estimated the noise
variance of the received symbol.

Figure 1 shows the XPM variance vs. the
SMD coefficient. Solid lines are the complete
theory from (3), dashed-lines are from (4). The
shaded stripes are scatter diagrams of SSFM re-
sults binned in a 2D histogram, with brightest col-
ors indicating frequent events. The two channels
were spaced 100 GHz. The solid line is the pre-
diction of our GN model based on the kernel (3).
We observe an excellent agreement between the
full theory and SSFM. Moreover, the small ran-
dom deviations are an indicator that the average
kernel is a good metric to estimate the system
performance, notwithstanding the 10000 wave-
plates. The plot shows a considerable NLI power
reduction with moderate MD values. The approx-
imated formula (4) works well up to ∼ 5 ps/

√
km,

which covers several SDM fibers analyzed in the
literature3,8,18. We observed a similarly excellent
agreement even for SPM.
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Fig. 2: XPM variance normalized to the no-MD case vs SMD
for ∆f = 100 GHz (top) and at D = 17 ps/nm/km (bottom).

Having tested the validity of the model in a rep-
resentative case, we focused on the impact of the
system parameters. In Fig. 2 we show the impact
of the fiber dispersion at a fixed spacing of 100
GHz (top), and the contrary at fixed dispersion of
17 ps/nm/km (bottom). The results use the com-
plete GN model based on (3). Note that in ab-
sence of dispersion the curve decreases mono-
tonically for increasing MD because the pulse col-
lision length13, i.e., the length over which two spe-
cific symbols interact by XPM, is infinite, so that
MD can effectively prevent the coherent build-up
of the NLI. This is not the case for finite collision
lengths, with the unexpected result that the XPM
variance increases beyond some MD value. One
plausible, yet not final, interpretation is that the
smaller decorrelation experienced by the closer
band edges of the two channels creates a reso-
nance in the variance. For large SMD, the decor-
relation length gets much smaller than the colli-
sion length and the variance restarts to decrease
as in the dispersion-less case.

Finally, note an intriguing minimum at ∆f >100

GHz, which broadens as ∆f increases.

Conclusions
We extended the GN model to strongly-coupled
SDM with arbitrary modal dispersion. We derived
a simple expression of the XPM variance that is
highly accurate for MD values that are relevant in
practical systems.
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