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Abstract—The Gaussian noise (GN) model, thanks to its
simplicity, is the most widely used model to describe the nonlinear
interference (NLI) in fiber-optic systems. This paper gives an
extension of the GN model to space-division multiplexed (SDM)
systems operating in the regime of strong coupling between
modes, where the understanding of the effect of spatial mode
dispersion (SMD) on the accumulation of the NLI noise stands
as an open problem of utmost importance. We show that SMD
may significantly reduce the NLI power and that a reliable
estimation can be done with the extended GN model in very fast
times, of the order of seconds per channel. We derive a closed-
form expression for the NLI power averaged with respect to
the frequency-dependence random-mode coupling introduced by
mode dispersion, and show that its random fluctuations around
the average value are negligible for all practical purposes. The
derived expression is proved to be very accurate in the relevant
range of SMD values. Scaling properties of the NLI variance
with respect to the main system parameters are also discussed
to gain some physical insight.

Index Terms—Space-division multiplexing, mode dispersion,
GN model, nonlinear interference, perturbative models.

I. INTRODUCTION

THE exponential growth of the fiber-optic network traf-
fic necessitates parallelizing the information among all

degrees of freedom [1]. Besides the well-known time and
frequency dimensions, there is an enormous interest in ex-
ploiting the spatial dimension to meet the capacity demand,
leading to space-division multiplexed (SDM) links. However,
when SDM is implemented in multi-core and multi-mode
fibers, the novel spatial dimension does not come for free,
since the propagating modes are usually coupled to some
extent, both by linear and nonlinear effects. In particular,
the regime of strong mode-mixing on which we focus here
implies the need for multiple-input multiple-output (MIMO)
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techniques to disentangle the information transmitted in the
various modes, thereby increasing the receiver complexity. On
the other hand, strong mixing has been shown to be beneficial
in other ways, as it yields a slower accumulation of the spatial
mode dispersion (SMD), proportional to the square-root of
propagation distance, rather than to the propagation distance
itself, as would be the case in the absence of strong-mode
mixing [2], [3]. Moreover, strong mixing mitigates the nonlin-
ear distortions of the transmitted signals [4], [5]. Unavoidably,
the complexity of such high-capacity networks is becoming
increasingly high, such that a design and an analysis based
on the benchmark numerical algorithm, the split-step Fourier
method (SSFM), may not be feasible [6]. As a reference, the
complexity of accurate SSFM-based simulations scales at least
with the fourth power of the wavelength division multiplexing
(WDM) bandwidth [7]. Adding the spatial dimension further
increases the complexity at least linearly with the number of
modes, making the numerical effort likely unmanageable.

In this context, the search for analytical, yet approximated
descriptions of the nonlinear distortions becomes necessary,
and most research efforts focused on regular perturbation
models of the nonlinear Kerr effect. This approach is particu-
larly convenient, as it treats the nonlinear distortion in terms
of additive noise, which is the most popular channel model
analyzed in textbooks of digital communications. Therefore,
within this framework, the noise impairing the propagated
signal results from the sum of a nonlinear interference (NLI)
induced by the Kerr effect and amplified spontaneous emission
(ASE) coming from the optical amplifiers. The NLI can be
modeled either in the time domain [8] or in the frequency
domain [9], where each approach has its own strengths and
weaknesses.

In this framework, several authors contributed to developing
a Gaussian noise (GN) model, which by postulating Gaussian
statistics of the transmitted digital signal can predict the
NLI variance by either quick algorithms, e.g., [10], or by
approximated closed-form formulas, e.g., [9]. The basic GN
model has been extended to account for extra effects, such as
the modulation format dependence of the NLI variance [8],
[11], the effect of polarization mode dispersion (PMD) on
digital back-propagation [12], the polarization-dependent loss
(PDL) [13], and the stimulated Raman scattering (SRS) [14].
The GN model has been also extended to SDM links in [15]–
[17]. However, the main limitation of such models is that they
either neglect the effect of SMD on the nonlinear interaction
between strongly coupled modes [15], or they account for
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it only under certain simplifying assumptions [17]. Although
neglecting mode dispersion in single-mode fibers (SMF) is
justified by its small values in modern fibers, SMD can be
orders of magnitude larger in SDM fibers [18], [19], thus
playing a key role in setting the strength of the NLI.

In this work, which is an extended version of [20], we
fill an important gap in the study of the interplay between
SMD and NLI in SDM systems by introducing a discrete-time
GN model for SDM links operating in the regime of strong
mode mixing with arbitrary levels of SMD. We start from the
GN model framework developed in [13] and add SMD to the
fundamental theory. SMD makes the strong mixing between
modes frequency-dependent, which renders the NLI power
random in nature. Here we evaluate its expected value and dub
the resulting GN model as the ergodic GN model, following a
similar definition adopted for the Shannon’s (ergodic) capacity
[21]. As a major result, we show that SMD changes the four-
wave mixing (FWM) efficiency, that can be easily exploited
to numerically compute the NLI variance formulas that we
show to be accurate in the relevant range of SMD values.
We validate the proposed theory against SSFM results and
show that the random fluctuations of the NLI power around
its average value are practically negligible.

The proposed ergodic GN model can be an effective tool
to design and analyze future SDM networks [22] operating in
the regime of strong mixing between all spatial modes, as is
the case in SDM systems based on coupled-core multi-core
fibers.

The paper is organized as follows. In Section II we introduce
the notation and the key ingredients of the extended GN model.
In Section III we show the key results of our theory and
the main numerical validations by an extensive comparison
with SSFM-based simulations. In Section IV we compute the
ergodic FWM kernel and the corresponding NLI variance.
Section V focuses on an approximated closed-form expression
of the NLI variance with SMD. In Section VI we discuss the
main scaling properties of the interaction between SMD and
the Kerr effect. In Section VII we finally draw our conclusions.

II. PHYSICAL MODEL

We consider optical fibers with 2N strongly-coupled modes,
where by N we denote the number of spatial modes and
the factor of two accounts for polarization degeneracy. We
adopt the bra-ket notation, hence with |A(z, t)〉 indicating a
column vector of 2N components containing the complex
envelopes of the modes at coordinate z and time t. The
corresponding Fourier transform, expressed in engineering
notation, is |Ã(z, ω)〉, with ω the angular frequency. Note that
N = 1 is the case of SMF.

We assume the modes propagate in optical fibers in the
strong coupling regime, thus satisfying the multi-component
Manakov equation [5]:

∂ |A〉
∂z

= −α
2
|A〉 − µB

2N

∂ |A〉
∂t

+ j
β2

2

∂2 |A〉
∂t2

− jγκ 〈A|A〉 |A〉
(1)

where the second term on the right-hand side of the equality
accounts for mode dispersion, with the scalar coefficient µ

setting the SMD strength and the matrix B = B(z) producing
random mode coupling. By α we denote the fiber attenuation,
β2 the mode-averaged chromatic dispersion (CD) coefficient, γ
the nonlinear coefficient, and κ the Manakov correction factor.
We neglect mode-dependent loss (MDL) and ultra-wideband
effects such as the Raman effect and the frequency dependence
of the fiber parameters. We assume the correlation length of the
random coupling process to be sufficiently small such that the
matrix Bdz is a Wiener process, see Appendix A. Notice that
the phenomenon of mode dispersion considered throughout
this work originates from the fact that the local principle states
are quasi-degenerates, namely they have similar yet different
group velocities but at the same time they are strongly coupled
with each other owing to the perturbations. This phenomenon
differs substantially from that of modal dispersion between
non-degenerate modes or mode groups that are either uncou-
pled between them or weakly coupled and propagate with
distinctively different group velocities.

We follow the notation introduced in [13], thus we write
the transmitted WDM signal |A(0, t)〉 as a comb of linearly
modulated digital signals:

|A(0, t)〉 =
∑
n

an |Gn(0, t)〉 (2)

where the index vector n should be read as:

n = [n1, n2, n3] . (3)

an is a scalar data symbol per (time, frequency, mode) channel
use. The summation

∑
n must be read as over all possible

values of n. The shaping functions are:

|Gn(0, t)〉 , p(t− n1T )ejΩn2 t |n3〉 (4)

with p the supporting pulse, Ωn2
the carrier frequency of the

n2-th channel, |n3〉 a unit-vector identifying the n3-th scalar
(space and polarization) polarization state, and T the symbol
time, possibly a function of n2,3.

time frequency

mode

The shaping functions are assumed to be orthonormal, such
that a given symbol of |A〉 can be extracted by a simple cross-
correlation detector, as per the matched filter detection:∑

n

an

ˆ ∞
−∞
〈G̃i(ω)|G̃n(ω)〉 dω

2π
= ai . (5)

Such signals propagate in the optical fibers experiencing
Kerr effect, linear crosstalk, and SMD, as sketched in Fig. 1.

Fig. 1. Example of effects experienced by two frequency channels along all
the modulated dimensions. Each blue square describes a channel use in the
(time, frequency, mode) space.

Authorized licensed use limited to: Universita degli Studi di Parma. Downloaded on March 21,2022 at 09:23:59 UTC from IEEE Xplore.  Restrictions apply. 



0733-8724 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JLT.2022.3160207, Journal of
Lightwave Technology

JOURNAL OF LIGHTWAVE TECHNOLOGY 3

Under perturbative assumptions, the discrete-time channel
model of the system, including matched filter detection and
average carrier phase recovery, is yi = ai + wi + ni, with wi

accounting for ASE noise and ni for the NLI [8], [13]:

ni = −j
∑

k,m,n

a∗kamanXkmni . (6)

The scalar coefficient Xkmni weighs the nonlinear interaction
between symbols (k,m,n, i), with i the target symbol. Its
expression with strongly coupled modes is a generalization of
the scalar case shown in [8]:

Xkmni = γκ

ˆ Lt

0

f(z)

ˆ ∞
−∞
〈Gk(z, t)|Gm(z, t)〉

× 〈Gi(z, t)|Gn(z, t)〉 dtdz (7)

with Lt the link length, f(z) the power-loss profile of the link,
and |Gn(z, t)〉 the pulse shapes impaired by linear dispersive
effects up to coordinate z. To derive (7) we exploited the
observation that from scalar to vector space one needs to
substitute Gk(z, t)→ |Gk(z, t)〉 and G∗k(z, t)→ 〈Gk(z, t)|.

In our framework, the NLI is doubly stochastic, depending
on both the random symbols and the random birefringence. In
the following, we will use the term variance/covariance with
reference to the random symbols only. The variance/covariance
are thus random variables as well, depending on the remaining
random birefringence.

If the receiver is not able to exploit any correlation in
the detected signal, the NLI can be safely treated as signal-
independent additive noise and its covariance can be evaluated
with the GN model theory when the transmitted symbols
ai are zero-mean complex Gaussian random variables. In
this framework, with Pp the power per channel in a given
polarization of a spatial mode, hence P = 2Pp in a given
mode, we have the following main result [13]:

Ea
[
nin
∗
j

]
= P 3

p

∑
k,m,n

Xkmni

(
X ∗kmnj + X ∗knmj

)
(8)

where the expectation Ea is with respect to the transmitted
symbols.

If we neglect nonlinear signal-ASE interaction, the signal-
to-noise ratio (SNR) is therefore [23], [24]

SNR =
P

σ2
ASE + σ2

NLI
(9)

with σ2
NLI ≡ 2Ea

[
|ni|2

]
, the factor 2 accounting for the two

polarizations, and σ2
ASE the variance of ASE in the mode and

bandwidth of interest.
The tensor (7) accounts for all possible interactions among

symbols that we now investigate. Let us simplify the notation
with kmnij , kjmjnjij , with j = 1, 2, 3 according to (3).
The set kmni1 identifies different classes of temporal pulse
collisions, manifesting in phase-, hyper-polarization rotations
or circular noise, with similar observations made in [25]. The
main difference with [25] is that SMD modifies the interaction
during the collision, adding another length scale to the process.

The set kmni2 classifies FWM among carrier frequencies,
which can reduce to self-phase modulation (SPM), cross-
phase modulation (XPM), cross-channel interference (XCI),

or multi-channel interference (MCI) [7], [11]. To better inves-
tigate them, it is convenient to express the tensor in terms of
|G̃n(z, ω)〉. By exploiting the Rayleigh theorem, the temporal
integral in (7) can be transformed into frequency integrals,
yielding:

Xkmni =γκ

ˆ Lt

0

∞̊

−∞

f(z)〈G̃k(z, ω+ω1+ω2)|G̃m(z, ω+ω2)〉

× 〈G̃i(z, ω)|G̃n(z, ω + ω1)〉 dω
2π

dω1

2π

dω2

2π
dz . (10)

The shaping functions at coordinate z are |G̃n(z, ω)〉 =
T(z, ω) |G̃n(0, ω)〉, with T(z, ω) a 2N ×2N matrix account-
ing for all linear dispersive impairments accumulated from
coordinate 0 to z. Such a matrix can be separated into a scalar
and a mode-dependent contribution:

T(z, ω) = e−j
´ z
0
β(x,ω)dxU(z, ω) (11)

with β the mode-averaged propagation constant. The matrix
U is a unitary matrix accounting for frequency-dependent
random-mode coupling, that is, mode dispersion. The tensor
(10) thus becomes:

Xkmni = γκ

ˆ Lt

0

f(z)

˚ ∞

−∞
e−j

´ z
0

∆β(x,ω,ω1,ω2)dx

〈G̃k(0, ω+ω1+ω2)|P(z, ω + ω2, ω1)|G̃m(0, ω + ω2)〉

× 〈G̃i(0, ω)|P†(z, ω, ω1)|G̃n(0, ω + ω1)〉 dω
2π

dω1

2π

dω2

2π
dz

(12)

with † indicating transpose-conjugate, ∆β = β(ω + ω1) +
β(ω + ω2) − β(ω + ω1 + ω2) − β(ω) the phase matching
coefficient, and

P(z, ω, ω1) , U†(z, ω + ω1)U(z, ω) . (13)

Although (12) yields the impression to involve more integra-
tions than (7), note that, contrary to (12), the shaping functions
in (7) depend on coordinate z, hence their evaluation calls for
extra integrations through convolutions.

We find it convenient to introduce the FWM tiling factor
Mkmni:

Mkmni , G̃∗k1k2(ω+ω1+ω2−Ωk2)G̃m1m2
(ω+ω2−Ωm2

)

× G̃∗i1i2(ω − Ωi2)G̃n1n2(ω + ω1 − Ωn2) (14)

with G̃i1i2 defined implicitly by |G̃i(0, ω)〉 ,
1√
T
G̃i1i2(ω) |i3〉. The FWM tiling factor takes its name

from the hexagonal regions that it identifies in the plane
(ω1, ω2) at a given ω, e.g., see Fig. 2 for ω = 0 and
rectangular G̃i1i2(ω) [9], [11]. It also satisfies the symmetry
relation Mkmni(ω, ω1, ω2) =Mknmi(ω, ω2, ω1).

Equation (12) can be rearranged in:

Xkmni = γκ

˚ ∞

−∞

ηkmni(ω, ω1, ω2)Mkmni(ω, ω1, ω2)
dω
2π

dω1

2π

dω2

2π
(15)
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Fig. 2. Example of regions of non-zero tiling factor Mkmni at ω = 0.

with ηkmni a tensor weighting the FWM process:

ηkmni ,
ˆ Lt

0

f(z)e−j
´ z
0

∆β(x,ω,ω1,ω2)dx

× 〈k3|P(z, ω + ω2, ω1)|m3〉 〈i3|P†(z, ω, ω1)|n3〉 dz .
(16)

In absence of SMD (15) is usually more convenient for
numerical purposes than (7) because the highly oscillatory
integral along z in (16) can be closed [24], [26], [27]. This
is not the case with SMD, since U, and thus P, follow a
complex and random behavior along z. It turns out that the
computation of (8), as well as its interpretation, becomes
extremely challenging with SMD, such that its advantage
against the classical SSFM may be questionable at the present
stage.

The set kmni3 identifies nonlinear modal crosstalk. Notice
that in the absence of SMD the matrix P in (16) reduces to
the identity matrix, thereby implying that in this case the inner
products under integration differ from zero only if k3 = m3

and n3 = i3, as observed in [28]. Hence, the variance contri-
bution XkmniX ∗knmj in (8) yields only one valid combination
when the modal indexes are all identical, while XkmniX ∗kmnj

is 2N degenerate in (k3,m3). Therefore, without SMD and at
fixed Pp, the NLI variance of a given polarization is 2N+1

2 κ2

higher than a scalar propagation without any polarization
effect. Again, with SMD such a degeneracy is broken thus
changing the mode interaction. In particular, the modes that
participate to FWM interactions are not constrained to be
identical in pairs.

The expression of the tensor X entails a dependence of the
NLI variance on the specific path along z of the random-
coupling matrix B(z), which makes it random in nature.
One may be tempted to average the tensor (12) with respect
to the birefringence realizations, following similar arguments
adopted in the derivation of the Manakov equation, and then
use it in the NLI variance (8). This is generally wrong
unless the correlation length of SMD is much shorter than
all the other characteristic lengths of the Manakov equation,

a condition that is rarely satisfied. For instance, with N = 2,
SMD coefficient ηSMD = 3 ps/

√
km, channel spacing ∆f = 50

GHz, the SMD length of the next-neighbor interfering channel
in frequency is LSMD = 6.6 km (see (51)), a value that is
greater than the typical correlation length of a fiber, which
is expected to be of the order of 10–100 meters in strongly-
coupled fibers. However, averaging directly the NLI variance
(8) without intermediate averages is legitimate, since the NLI
variance is the final target of our theory. In what follows we
adopt this approach, which proves to be quite accurate as a
result of the fact that the NLI power randomly fluctuates only
modestly around its average value.

III. RESULTS

For the reader’s convenience we anticipate here the major
results of our work. Our main goal is evaluating the mean NLI
variance. From (8), after normalizing to P 3

p and the number
of polarizations, the problem can be split in two contributions:

E

[
σ2

NLI

2P 3
p

]
= E

[ ∑
k,m,n

XkmniX ∗kmni︸ ︷︷ ︸
I1

+
∑

k,m,n

XkmniX ∗knmi︸ ︷︷ ︸
I2

]

(17)
where E indicates expectation with respect to the random
mode coupling. The two contributions are degenerate only in
the absence of SMD. In the general case, see Section IV, they
can be expressed in terms of two FWM efficiency kernels
|η(`)|2:

I` = (γκ)
2

Nch∑
k2,m2,n2=1

˚ ∞

−∞

× |η(`)(ω, ω1, ω2)|2 |Mkmni(ω, ω1, ω2)|2 dω1

2π

dω2

2π

dω
2π

(18)

where ` = 1, 2, the number of frequency channels is Nch, and

|η(`)|2 ,


∑

k3,m3,n3

|ηkmni|2, ` = 1∑
k3,m3,n3

ηkmniη
∗
knmi, ` = 2 .

(19)

We remind that |η(1)|2 = |η(2)|2 only without SMD. Equation
(18) is similar to the GN-model reference formula (GNRF,
e.g., [9, eq. (1)]) weighted by the matched filter frequency
response. A major result of our work is an expression for
E[|η(`)|2]. In Section IV we will compute it analytically,
obtaining:

E
[
|η(`)|2

]
= m` [(1 + c`)Eρ1 + (1− c`)Eρ2 ] , ` = 1, 2

(20)
where m`, c`, ρ` are elementary functions, while Eρ is:

Eρ =
1

α
Re
[

1− e−(α−ρ−i∆β)L

α− ρ− i∆β
+
e−2αL − e−(α−ρ−i∆β)L

α+ ρ+ i∆β

]
(21)

with ρ a function of µ. The relation between µ and other SMD
parameters, such as the SMD coefficient ηSMD, is discussed in
Appendix C. For more details about the remaining parameters
of (21) we refer the reader to Appendix B.
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Equation (17) is the proposed ergodic GN model. Despite
the presence of three integrals, its computation does not require
advanced tools since it can be simply and quickly estimated
by Monte Carlo integrations [10] with the desired accuracy,
with computational times comparable to the SMF case.

Another key result of this work is an approximated ex-
pression of the NLI variance of XPM valid for moderate
values of SMD, luckily the ones of practical interest. XPM
corresponds to two non-degenerate sets kmni2 = kkii2
and kmni2 = kiki2. We get it by using an inter-channel
approximation of the SMD, i.e., SMD is visible only by the
channel carriers. While we will present its analytical derivation
in Section V, we anticipate here the main result for two
channels spaced away ∆ω:

σ2
XPM =

2N + 1

2N

(
(2N + 1)σ2

XPM,1(α)

+
(2N − 1)

(
α+ ∆ω2µ2

N

)
α

σ2
XPM,1

(
α+

∆ω2µ2

N

))
. (22)

Here σ2
XPM,1 is the reference XPM variance usually analyzed

in the literature in an equivalent scalar propagation. While
we invite the reader to read Section V for more details,
we observe that the presence of SMD, weighted through the
parameter µ, curiously acts like an extra-attenuation term to
the fiber loss coefficient α, consistent with the Stratonovich
to Ito conversion, see Appendix A. This is visible even in the
complete model in (21) through the term ρ.

Throughout this work we assume for σ2
XPM,1 the closed-

form expression derived in [9], adapted so as to account for
the mode multiplicity. The explicit expression of σ2

XPM,1 is
given in Section V. A MATLAB script for the numerical
evaluation of (22) is provided in the supplementary material
of this manuscript.

A. Numerical validation

We tested the accuracy of the key results by simulating dif-
ferent strongly coupled SDM transmissions through the SSFM.
To test XPM we focused on a two-channel1 system since the
superposition principle works for the XPM variance. General
parameters common to all simulations were the following. The
interfering channel had power Pi = 0 dBm, while the channel
under test (CUT) had a power PCUT = −30 dBm to remove
its SPM, 0 dBm otherwise. The data were complex Gaussian
random variables, consistently with the assumptions of the
GN model, for a total of 65536 random symbols. The digital
signal was made of sinc pulses, transmitted at a symbol rate
of R = 49 Gbd, with channel spacing ∆f . The optical fibers
worked in a strongly coupled regime with N = 2 or 4 modes.
The fiber parameters, if not explicitly stated, were: span length
100 km; attenuation coefficient 0.2 dB/km; dispersion 17
ps/(nm·km); nonlinear coefficient γ = 1.2668/N in 1/(W·km)
[5, eq. (66)]; Manakov correction factor κ = 4

3
2N

2N+1 [5, eq.

1Hereafter, with two-channel we mean two frequency channels, each with
2N strongly coupled space and polarization modes. The number of signals is
thus 4N .

(65)]; effective area Aeff = 80 µm2. They were modeled
by the symmetrized SSFM applied to (1), with a first step
h1 set up to have a worst-case channel walk-off of 1/10
of the symbol time. The step was then updated by using
the constant local error criterion (CLE) [29]. The SMD was
implemented by means of the waveplate model as in [2], where
each waveplate had length 2h1 with deterministic delays, as
discussed in Appendix C. The number of waveplates was set
to 10000. Each span was followed by an ideal noiseless optical
amplifier. At the receiver we first removed all the linear effects
accumulated during the link, then after matched filter detection
and sampling, we removed the average phase to the detected
symbols. We finally estimated the NLI variance by subtracting
the transmitted symbols to the received ones. All the variances
reported in the following are per polarization.

Figure 3 shows the XPM variance, normalized to PCUTP
2
i ,

versus the SMD coefficient ηSMD in a single span at a channel
spacing of ∆f = 100 GHz. See Appendix C for more
details about the definition of the SMD coefficient. In this
set of simulations, we used 500 different random realizations
of the waveplates. The blurred regions are two-dimensional
histograms of the SSFM results of the average SNR among
modes. Light regions indicate many estimations falling there,
while dark regions account for rare cases.

The solid line is the ergodic GN model (17) evaluated by
Monte Carlo integrations of (18) with the proposed ergodic
kernel (20). We sampled the frequency integrals with 106

random samples as in [10]. The dashed line is the same but
with only inter-channel SMD. We observe a very good match
between the complete model and the SSFM, while the inter-
channel approximation fails at large SMD values, showing
saturation. However, (22) has an excellent match with SSFM
up to SMD of ∼ 5 ps/

√
km, which is a practical value for

several deployed fibers [19], [30]. We observe a resonance
around an SMD of ∼ 35 ps/

√
km, followed by a monotonic

decrease for very large values of the SMD due to the beneficial
effect of SMD in mitigating the accumulation of the Kerr
nonlinearity. We will shed light on this point in Section VI.

Fig. 3. XPM variance vs SMD coefficient ηSMD. Two-channel simulation at
spacing ∆f = 100 GHz in a fiber of dispersion 17 ps/(nm·km) supporting N
strongly coupled modes. Blurred regions: SSFM. Lines: ergodic GN model
(17). Dashed-lines: inter-channel SMD approximation (22).

We then varied the channel spacing at two different, yet
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relevant, values of SMD. The results are depicted in Fig. 4,
including the ergodic GN model (17) and the SSFM results.
We observe again an excellent match between theory and
simulations. Even if difficult to see, the figure also shows max-
min error bars for the SSFM results over the 1500 seeds tested
in the simulation. The very small error bars are an indication
that using the ergodic variance is more than enough to capture
the effect of the SMD, without the need to focus on the SNR
randomness. Such randomness is more evident at high SMD
> 20 ps/

√
km, as visible in Fig. 3.
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Fig. 4. XPM variance vs channel spacing of a two-channel simulation.
Symbols: SSFM. Lines: ergodic GN model (17). N = 2 modes.

Having tested the ergodic GN model in a single-span, we
moved to test its effectiveness in a multi-span scenario of 5
spans. The results are depicted in Fig. 5. Here the channel
spacing was ∆f = 100 GHz, and we included also the SMF
case for the sake of completeness. The SSFM results are
reported by error bars accounting for the 1000 random seeds
of the birefringence. The match is again excellent. We also
tested the same link at 10 spans, not reported here, observing
a rigid worsening of the XPM variance of, almost exactly, 3
dB, an indication that the spatial disaggregation of XPM is
even more true in the presence of SMD, as commented in
Section V-A.
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Fig. 5. XPM variance for a two-channel system propagating in a 5-span link
at ∆f = 100 GHz. Solid lines: ergodic GN model (17). Error bars: SSFM.

It is worth noting that while the evaluation of the closed-
form approximation is almost instantaneous, the Monte Carlo

integration of the GN model took a few seconds. In contrast,
the SSFM simulations took, e.g., 2 days to estimate 100 seeds
of the N = 4 curve on a server-grade computer with a
graphical processing unit (GPU).

The accuracy of the ergodic GN model with respect to
fiber dispersion is shown in Fig. 6 for a single span link.
Here we also plotted the SPM contribution of the ergodic
GN. Error bars still indicate the best/worst NLI variance from
SSFM simulations. XPM is for ∆f = 100 GHz. We note that
dispersion is more effective in reducing XPM than SPM, as
expected because of the walk-off. The slope of the variance
with dispersion is SMD-dependent, approaching an almost
inverse law at large dispersions.
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Fig. 6. SPM and XPM (∆f = 100 GHz) variance in a single span at variable
fiber dispersion. Solid lines: ergodic GN model (17). Error bars: SSFM.

In Fig. 7 we investigate the dependence of the NLI variance
on the main system parameters using the ergodic GN model.
The figure shows the XPM variance at different dispersion
values and fixed channel spacing ∆f = 100 GHz (top), or at
fixed dispersion 17 ps/nm/km and variable spacing (bottom).
We observe that SMD is more effective in mitigating the
XPM variance at low dispersive values and that an intriguing
minimum of XPM variance is visible at SMD∼ 8 ps/

√
km,

whatever the channel spacing. The markers will be commented
in Section VI.

In Fig. 8 we verified the proposed closed-form expressions
with SMD, i.e., the XPM formula (39) used in (22), and the
SPM extension (41). The link is the same of Fig. 7. The figure
shows the Monte Carlo prediction of the ergodic GN model
(17), which is assumed as the benchmark, and the fully closed-
form expressions. We show just two instances of XPM as a
reference, evaluated in a two-channel setup at spacing 500
GHz and 2 THz, respectively. The figure also shows the fully-
loaded WDM case over a WDM bandwidth of 5 THz. The
solid lines are the GN benchmark, the dashed lines the closed-
forms. We observe a very good match. We note that SPM has
a bias, which is present even in the absence of SMD, hence
not related to our model. Nevertheless, the decrease with SMD
is well captured. Overall, the WDM curve shows a maximum
error of 0.4 dB.
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ps/nm/km (bottom). 1 span, 2 modes. Markers: locus where Lwo = LSMD,
see section VI.
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of bandwidth. Other parameters are identical to Fig. 7.

IV. ERGODIC NLI VARIANCE

In this section we provide a detailed derivation of the
ergodic GN model (17). In principle, the evaluation of I1,2

involves the computation of six frequency integrals. However,
since the infinite summations over temporal indexes (kmn1)
can be transformed into summations involving Dirac’s delta
thanks to the Poisson formula, three integrals can be dropped,
as discussed in [13, App. B].

We start by computing the FWM efficiency kernels η(`)

of (19). They are special instances η(`) ≡ η
(`)
i3i3

of the more
general kernel η(`)

i3j3
accounting for the cross-FWM between

polarization i3 and j3. From (18) we have 2:

|η(1)
i3j3

(ω, ω1, ω2)|2 ,
∑

k3,m3,n3

ηkmniη
∗
kmnj =

ˆ Lt

0

ˆ Lt

0

f(z)ej∆βzf(s)e−j∆βsΛi3j3(z, s, ω, ω1, ω2)dzds (23)

|η(2)
i3j3

(ω, ω1, ω2)|2 ,
∑

k3,m3,n3

ηkmniη
∗
knmj =

ˆ Lt

0

ˆ Lt

0

f(z)ej∆βzf(s)e−j∆βsΓi3j3(z, s, ω, ω1, ω2)dzds . (24)

In simplifying (23-24) we exploited the properties
〈k3|P|m3〉 = Pk3m3

and
∑
i,j AijB

∗
ij = Tr[AB†]. The

kernels thus depend on the matrices Λ=(Λij), Γ=(Γij):

Λ , Tr
[
P(z, ω + ω2, ω1)P†(s, ω + ω2, ω1)

]
×P†(z, ω, ω1)P(s, ω, ω1) (25)

Γ , P†(z, ω, ω2)P†(s, ω + ω2, ω1)

×P(z, ω + ω1, ω2)P(s, ω, ω1) . (26)

Several observations can be drawn. First, in the absence of
SMD it is Λ = 2NI and Γ = I, with I the 2N × 2N identity
matrix. In such a case, the integrals in (23)–(24) can be closed.
In particular, in the relevant case of a Ns-span homogeneous
link with span length L and lumped amplification, the kernel
takes the well-known forms [24]:

|η(1)
i3i3
|2

2N
= |η(2)

i3i3
|2 = |η0|2ψ, (no MD) (27)

where η0 is the classic one-span FWM kernel and ψ a phased
array term:

|η0|2 ,

∣∣∣∣1− e−αLej∆βLα− j∆β

∣∣∣∣2 , ψ ,

∣∣∣∣1− ejNs∆βL

1− ej∆βL

∣∣∣∣2 .
(28)

In such a case, (18) reduces, except for a constant factor, to
the area of the GNRF ( [9, eq. (1)]) weighted by the matched
filter frequency response.

Second, the summation of frequency indexes can be reduced
to a single summation if one is interested in the, usually dom-
inant, XPM contribution. However, such XPM contributions,
visible in Fig. 2, with SMD are no more degenerate along the
main axes.

Third, the novelty brought by SMD is fully included into the
matrices Λ and Γ, which account for the spatial correlations
between the coordinates z and s.

As anticipated in the previous sections, to simplify the
problem we are interested in substituting the FWM kernels
with their expectations with respect to the birefringence dis-
tribution, i.e., substituting Λ and Γ with E[Λ] and E[Γ], re-
spectively. Luckily, such expectations are a linear combination
of exponential functions that allow closing the integrals in z
and s in (23)–(24), as we will show now.

2For the sake of simplicity, we assume ∆β independent of z.
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A. Expected value of Λ and Γ

The matrix U evolves according to the Ito’s stochastic dif-
ferential equation (SDE) (55), which can be further simplified
by using the change of variable:

U(z, ω) , e−
ω2µ2z

2N R(z, ω) (29)

such that the Ito’s SDE for matrix R is:

dR = − iωµ
2N

(dW)R . (30)

We find convenient introducing:

Qij(z) , R†(z, νi)R(z, νj) (31)

with:

ν1 = ω + ω1 + ω2, ν2 = ω + ω2

ν3 = ω + ω1, ν4 = ω .

We thus have:

Λ , e−
µ2(z+s)

2N (ν2
1+ν2

2+ν2
3+ν2

4)Λ
′

Γ , e−
µ2(z+s)

2N (ν2
1+ν2

2+ν2
3+ν2

4)Γ
′

(32)

with Λ
′

and Γ
′

having a similar structure as that of Λ and Γ:

Λ
′

= Tr
[
Q12(z)Q†12(s)

]
Q†34(z)Q34(s)

Γ
′

= Q42(z)Q†12(s)Q†31(z)Q34(s) . (33)

Our target is the expectation of such matrices. Starting from
Λ

′
, after differentiation we solve the following SDE in the

variable z (s is treated as a fixed coordinate):

dΛ
′

= Tr
[
(dQ12(z))Q†12(s)

]
Q†34(z)Q34(s)

+ Tr
[
Q12(z)Q†12(s)

]
(dQ†34(z))Q34(s)

+ Tr
[
(dQ12(z))Q†12(s)

]
(dQ†34(z))Q34(s) . (34)

Contrary to ordinary calculus, the last term on the right-hand
side is non-negligible since we are dealing with an SDE [31].
Similarly, it is:

dQij(z) = (dR†(z, νi))R(z, νj) + R†(z, νi)(dR(z, νj))

+ (dR†(z, νi))(dR(z, νj)) . (35)

We can now average. By exploiting (56) of Appendix A and
the properties of dW in (54), the only non-zero average comes
from:

E [dQij ] = E
[
(dR†(z, νi))(dR(z, νj))

]
= 2N

νiνjµ
2

2N2
E [Qij ] dz,

which lets us simplify the first two addends in (34). The third
addend in (34) can be found by using i) the identity (57), ii)
the property Tr [AB] = Tr [BA], iii) the second-order product
rule (35), and iv) the Hermitian property dW = dW†. We get:

E
[
Tr
[
(dQ12(z))Q†12(s)

]
(dQ†34(z))Q34(s)

]
=

(ν1 − ν2)(ν3 − ν4)µ2

2N2
E
[
Γ

′
]

dz .

Along similar lines we can find a propagation equation for Γ
′
.

In particular, by exploiting (58) of Appendix A we get:

E
[
(dQ42(z))Q†12(s)(dQ†31(z))Q34(s)

]
=

(ν4 − ν2)(ν3 − ν1)µ2

2N2
E
[
Λ

′
]

dz .

After returning back to the original matrices Λ and Γ through
(33), the evolution model with respect to the spatial lag ζ =
|z − s| is the following:

dE [Λ]

dζ
=
µ2

N

(
−ω2

1E [Λ] +
ω2

1

2N
E [Γ]

)
dE [Γ]

dζ
=
µ2

N

(
ω2

2

2N
E [Λ]− ω2

2E [Γ]

)
(36)

with boundary condition:

E [Λ(ζ = 0)] = 2NI

E [Γ(ζ = 0)] = I .

The linear system of differential equations (36) can be solved
in closed-form, see Appendix B. The main consequence is that
the ergodic NLI variance with SMD takes a similar expression
to the SMF case, only with different FWM kernels.

V. THE SIMPLIFIED FORMULA

Some simplifications are possible in the characterization of
SPM and XPM, often the dominant sources of NLIs. The idea
is to express the NLI variance as a function of the benchmark
NLI variance induced by a given modal combination kmni3
in absence of SMD. In this way, it becomes easier to generalize
well-known results for SMF, as well as understanding the main
scaling properties with SDM and the impact of SMD on them.
For a single SMF span of attenuation α, the benchmark is thus
the following:

σ2
1(α) , (γκ)

2
˚ ∞

−∞
|η0(ω, ω1, ω2)|2

× |Mkmni(ω, ω1, ω2)|2 dω1

2π

dω2

2π

dω
2π

(37)

which we will call σ2
XPM,1 or σ2

SPM,1 when focusing only on
XPM or SPM index combinations, respectively. For instance,
with N = 1 and without SMD we have σ2

XPM = 6σ2
XPM,1,

where the relation between the factor 6 and the individual
nonlinear contributions is discussed in [32, Tab. 1].

SMD locally acts as a modal differential delay, hence by
a phase in the frequency domain linearly related to ω. As
a result, different modes and polarizations, besides being
delayed, accumulate different carrier phase shifts. We refer
to the MD-induced carrier phase shift by inter-channel SMD
[33]. This is illustrated in Fig. 9, which shows the differential
propagation constant of a local eigenstate of the SMD matrix.
Accounting only for inter-channel effects means switching
off intra-channel SMD within a channel bandwidth, leaving
a phase shift among channels as depicted by the inter-MD
curve in the figure. The staircase inter-MD profile seems thus
a reasonable approximation of the true profile. Indeed it helps
to simplify the ergodic efficiency.
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Fig. 9. Sketch of the frequency-dependent differential propagation constant
induced by SMD only over the generic ith mode, and its inter-channel
approximation, flat in each channel bandwidth.

Since XPM variance is additive in the number of channels,
we can concentrate on a two-channel setup with channel
spacing ∆ω. The inter-MD approximation suggests assuming
ω ≈ 0 and either (ω1, ω2) ≈ (0,∆ω) or (ω1, ω2) ≈ (∆ω, 0)
depending on whether we are analyzing an XPM hexagon
centered on the ω1 or ω2 axis (see Fig. 2), which are non-
degenerate in the presence of SMD. In the first case, the
XPM variance of k on i corresponds to kmni2 = kiki2
in (17), while in the second case it is kmni2 = kkii2.
In both cases, we can use the results of Appendix B with
q = p = ∆ω2/2 and thus c` = 1 except for kiki2 and ` = 1
where c1 = 1

2N2 −1. As a consequence, only the term |Xkiki|2
in (17) is impacted by SMD.

Let us focus on a fiber with span length L � 1/α, an
excellent approximation for terrestrial links, yet good for
submarine links. With the above approximations the FWM
kernels keep the same functional shape of the scalar FWM
kernel η0, but with different parameters. As a result, the
inter-MD XPM ergodic variance takes the particularly elegant
expression (22).

Some observations can be made about (22). First, the
average effect of SMD is to add a contribution as if the fiber
had a larger attenuation, thus justifying a beneficial effect of
SMD in mitigating NLI through a smaller effective length.
Second, we have the asymptotic behaviors:

σ2
XPM =

{
2(2N + 1)σ2

XPM,1(α) µ→ 0
(2N+1)2

2N σ2
XPM,1(α) µ→∞,

(38)

thus matching the findings in [17]. The ratio between the no-
MD and the infinite inter-channel-MD case is 4N

2N+1 , which
is surely greater than 1. Third, σ2

XPM,1 per polarization can be
approximated by closed-form formulas, for instance with [9,
eq. (40)], here adapted to (37):

σ2
XPM,1(α) ≈ κ2

32

γ2P 3L2
eff

πβ2Leff,aB2
ch

[
asinh (δ(k∆f +Bch/2))

− asinh (δ(k∆f −Bch/2))
]

(39)

where3 Leff = (1− e−αL)/α, Leff,a = 1/α, k∆f = ∆ω/(2π),

3Note that in [9] α is the field-loss coefficient, which is half the power-loss
coefficient α used here.

Bch ≤ ∆f channel bandwidth, and δ = π2β2Leff,aBch. The
factor κ2/32 is related to the factor 8/27 in [9] by κ2

32 =
8
27

κ2

(8/9)2
1

2·6 , the last 2 coming from x+y power.
In the inter-MD approximation the variance of SPM is

unaffected by SMD. Its value in a given polarization can thus
be approximated by, e.g., [9, eq. (14)], again adapted to (37):

σ2
SPM,1 ≈

κ2

16

γ2P 3L2
eff

πβ2Leff,aB2
ch

asinh
(
π2

2
β2Leff,aB

2
ch

)
(40)

such that σ2
SPM = (2N + 1)σ2

SPM,1. An improved version of
(40), which accounts heuristically for intra-channel SMD, is
the expression presented in [34], reported here for conve-
nience:

σ2
SPM

improved
=

1− exp

(
− TI

2
√
|β2|L

)
TI

2
√
|β2|L

σ2
SPM (41)

with TI the standard deviation of the fiber impulse response
(see Appendix C).

A. Multi-span

The previous discussion was for a single-span. For multi-
span links it is customary to approximate the scaling of the
NLI variance with the number of spans Ns by N1+ε

s , with 0 ≤
ε ≤ 1 a coherence factor strictly related to the phased array.
The coherence factor is usually close to 0 in highly dispersive
dispersion-uncompensated links with large WDM bandwidth
[24], a situation that is satisfied by the majority of the optical
links. With SMD, the coherence factor is surely smaller than
without SMD, as it is evident from (69) in Appendix B. Hence,
assuming a spatial disaggregation of the XPM contributions,
an assumption very attractive to simplify the design of optical
networks, is even better justified with SMD.

VI. SCALING PROPERTIES

Having tested the accuracy of the ergodic GN model, we
here analyze its scaling properties to gain some physical
insight. We analyze a two-channel field:

|A〉 = |A0〉+ ei∆ωt |A1〉 , (42)

in a lossless fiber in the absence of the Kerr effect, to con-
centrate on the dispersive effects. The propagation equations
become:

∂ |A0〉
∂z

= −µB

2N

∂ |A0〉
∂t

+ j
β2

2

∂2 |A0〉
∂t2

(43)

∂ |A1〉
∂z

= −µB

2N

∂ |A1〉
∂t

− j∆ωµB

2N
|A1〉

+ j
β2

2

∂2 |A1〉
∂t2

− β2∆ω
∂ |A1〉
∂t

− j β2∆ω2

2
|A1〉 . (44)

In the right-hand side of (44), from left to right, we see intra-
channel SMD, inter-channel-SMD, intra-channel CD, inter-
channel CD (aka walk-off), and a term inducing a phase shift.

The search for scaling laws makes it natural to normalize
time and distance by τ = t/T and ξ = z/Lr, with Lr a
reference distance that we will set later. In this framework,
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we can replace the coupling matrix B(Lrξ), whose correlation
function is proportional to δ(Lr(ξ−ξ

′
)) = δ(ξ−ξ′

)/Lr, with
the matrix B(ξ)/

√
Lr, such that its correlation function is still

proportional to δ(ξ − ξ′
)/Lr. We get for |A0,1(ξ, τ)〉:

∂ |A0〉
∂ξ

= −µ
√
LrB(ξ)

T2N

∂ |A0〉
∂τ

+ j
β2Lr
2T 2

∂2 |A0〉
∂τ2

(45)

∂ |A1〉
∂ξ

= −µ
√
LrB(ξ)

T2N

∂ |A1〉
∂τ

− j µ∆ω
√
LrB(ξ)

2N
|A1〉

+ j
β2Lr
2T 2

∂2 |A1〉
∂τ2

− β2∆ωLr
T

∂ |A1〉
∂τ

− j β2∆ω2Lr
2

|A1〉 .
(46)

To make the intra-channel CD invariant to scalings, the natural
choice for Lr is the dispersion length, Lr = T 2/|β2|. This
yields4:

∂ |A0〉
∂ξ

= − µ√
|β2|

B(ξ)

2N

∂ |A0〉
∂τ

+
j

2

∂2 |A0〉
∂τ2

(47)

∂ |A1〉
∂ξ

= − µ√
|β2|

B(ξ)

2N

∂ |A1〉
∂τ

− jµ√
|β2|

∆ωT
B(ξ)

2N
|A1〉

+
j

2

∂2 |A1〉
∂τ2

−∆ωT
∂ |A1〉
∂τ

− j∆ω2T 2

2
|A1〉 . (48)

The µ/
√
|β2| factor underpins the heuristic expression of

the SMD-dependent factor in the SPM NLI variance (41). On
the other hand, XPM is expected to be mainly ruled by inter-
channel effects. Hence, for XPM is more logical to make
walk-off invariant to scaling, i.e., using Lr = T

|β2|∆ω . The
propagation equations become:

∂ |A0〉
∂ξ

= − µB(ξ)

2N
√
|β2|∆ωT

∂ |A0〉
∂τ

+ j
1

2∆ωT

∂2 |A0〉
∂τ2

(49)

∂ |A1〉
∂ξ

= − µB(ξ)

2N
√
|β2|∆ωT

∂ |A1〉
∂τ

− j
µ
√

∆ωT
|β2| B(ξ)

2N
|A1〉

+
j

2∆ωT

∂2 |A1〉
∂τ2

− ∂ |A1〉
∂τ

− j∆ωT

2
|A1〉 . (50)

The SMD-based coefficients appearing in (49,50) can be more
conveniently expressed in terms of two relevant length-scales.
One is the familiar walk-off length Lwo [27], the other is the
mode dispersion length LSMD(B) [3], [35]. Lwo is defined as
the length over which an interfering pulse experiences a walk-
off of one symbol time [27], and coincides with Lr; LSMD is
the length over which the 3dB bandwidth of the autocorrela-
tion function of the SMD vector equals a reference bandwidth,
hence providing a measure of the SMD decorrelation. They
are:

Lwo =
1

|β2|R2π∆f
, LSMD(B) = 0.22 (4N2 − 1)

(N · ηSMD ·B)2
.

(51)
We stressed the dependence of LSMD on a reference bandwidth
B to highlight that it can be referred to the signal bandwidth,
for which B ≡ R, or the carrier spacing, for which B ≡

4We assume β2 > 0 without loosing generality.

∆f . A closer look to (50) reveals that the first term on the
right hand side is proportional to Lwo/LSMD(R), while the
second term to Lwo/LSMD(∆f). Figure 3, however, suggests
that inter-channel SMD is dominant in a significant range of
SMD values. This implies Lwo/LSMD(R)� 1, such that SMD
is set through Lwo/LSMD(∆f). To test this scaling, we ran
10000 different random setups of a two-channel transmission
in a single span, with attenuation 0.2 dB/km, dispersion in the
range 2 to 30 ps/nm/km, R from 5 to 100 Gbd, ∆f from 50
to 5000 GHz, and SMD from 0 to 30 ps/

√
km. We limited the

random generation to values Lwo/LSMD(∆f) < 50. Figure 10
shows the XPM variance, normalized to the no-MD case, given
by the ergodic GN model vs the ratio Lwo/LSMD(∆f). The
red points are a subset of results for which Lwo ≥ LSMD(R).
Figure 10 thus generalizes Fig. 7 with N = 2 to a wider
scenario.
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Fig. 10. XPM variance, normalized to the no SMD case, for 10000 different
random setups, see text. Blue points: samples for which Lwo < LSMD(R).
The narrow cloud of the blue points suggests a scaling with Lwo/LSMD(∆f),
provided that Lwo < LSMD(R).

From the figure, we infer that the narrow cloud of blue
points confirms a scaling with the ratio Lwo/LSMD(∆f). As
a sanity check, this scaling is also visible in (22), normalized
to the corresponding no-MD variance, after an asymptotic
expansion in ∆ω. The scaling is broken when Lwo is greater
than LSMD(R), an indication that intra-channel SMD effects
are of concern in the red points of Fig. 10. However, for
practical SMD values, it is usually Lwo < LSMD(R), see the
stars in Fig. 7 indicating the SMD at Lwo = LSMD(R).

We also investigated the reasons for the discrepancy be-
tween the full GN model and the inter-channel one, mani-
festing in a MD-induced inflation of the XPM variance, e.g.,
see the peak in Fig. 3 at SMD∼30 ps/

√
km. To this aim, we

split the nonlinear effect into an average XPM, responsible
for common phase rotation among the 2N polarizations, and
a cross-polarization modulation (XPolM) effect accounting
for rotations of the generalized Stokes vectors [3]. Hence,
the Manakov equation of channel |A0〉 is impaired by the
following cross-channel Kerr effect from |A1〉 [5, eq. (70)]:(
〈A1|A1〉 I + E[|A1〉 〈A1|]︸ ︷︷ ︸

average XPM

+ |A1〉 〈A1| − E[|A1〉 〈A1|]︸ ︷︷ ︸
XPolM

)
|A0〉 .

(52)
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We associated E[|A1〉 〈A1|] to the average XPM because
it is E[|A1〉 〈A1|] = 1

2N 〈A1|A1〉 I [5]. To shed light on
the problem, we ran SSFM simulations with two channels
(∆f=500 GHz) by selectively switching on/off the average
XPM or XPolM, and by varying the number of waveplates
in a SMF scenario for the sake of simplicity. We focused
on a single span with dispersion 1.7 ps/nm/km and averaged
the SNRs over 10 random seeds. Extra simulations showed
that dispersion has a minor role in the following discussion,
while 10 seeds were enough. The two contributions to the
XPM variance are plotted in Fig. 11 vs the rms value of the
differential group delay (DGD) per waveplate, normalized to
the scalar walk-off time τwalk-off within the waveplate. Note
that the walk-off in this setup makes channel A0 faster than
channel A1 without SMD.

We observe that the average XPM dominates XPolM in this
setup. It is worth noting that both effects show inflation with
a small number of waveplates. This is expected since in a
waveplate the PMD accelerates one polarization and delays
the other. Hence, within a waveplate, at the PMD yielding
DGD=τwalk-off the fast polarization of channel A1 travels with
the same speed of the slow polarization of channel A0, thus
canceling out the effect of the scalar walk-off induced by CD.
As a result, the cross-channel interaction is maximized by a
coherent accumulation, which is visible in the peak of the
one waveplate curves in Fig. 11. By increasing the number
of waveplates the peak position moves toward smaller DGD
values. For instance, with two waveplates the peak is at a
DGD

√
2 smaller. After a very large number of waveplates,

approximately when the waveplate length approaches Lwo, the
average XPM curve saturates still preserving the SMD-induced
inflation, while XPolM vanishes. For very large values of
DGD/τwalk-off both the average XPM and XPolM are mitigated
by a stronger decorrelation of the frequencies building up the
channels.
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Fig. 11. Variance of average XPM and XPolM, normalized to the value
without PMD, in SMF at variable number of birefringence waveplates vs the
rms DGD per waveplate, normalized to the waveplate walk-off time.

Such observations are summarized in Table I.

VII. CONCLUSIONS

Computationally efficient models to predict the SNR of
fiber-optic links are undoubtedly key tools to design and

analyze fiber-optic networks. In this work, we extended the
GN model to the study of the NLI among strongly coupled
modes in SDM links with arbitrary values of SMD. We showed
that SMD has a strong impact on the NLI by decreasing
the variance of XPM. The first major result of our work
is the ergodic GN model, i.e., the ensemble expectation of
the NLI variance in the presence of SMD, that we evaluated
by applying Ito’s calculus to the perturbative solution of
the Manakov equation with SMD. The derived NLI variance
expression, given in (17) of this work, includes integrals of
the kind derived in the single-mode GN model, which can
be efficiently evaluated by means of Monte-Carlo integration.
The effect of SMD results into a modified FWM kernel, whose
derivation relies on some of the tools of Ito stochastic calculus.
The second major result is the approximated closed-form
formula (22) of the XPM variance, which we showed to be
accurate for SMD values up to ∼ 5 ps/

√
km. We also showed

that in the relevant range of SMD values the randomness of
the XPM variance is negligible, thus justifying the use of
the ergodic GN model in analyzing strongly coupled SDM
fiber-optic links. Finally, we discussed the main properties of
the proposed ergodic GN model, showing its main scaling
properties.

The investigation of general SDM networks, where not
all of the modes are strongly coupled, requires addressing
the nonlinear interplay between multiple groups of strongly
coupled modes, each characterized by a specific amount of
SMD. The starting point of this investigation is the coupled
Manakov equations [5], however its execution goes beyond
the scope of this work and is left for future studies.

APPENDIX A
STATISTICAL PROPAGATION MODEL

The transfer matrix U evolves along distance z as [36],
[37]:

dU = − iωµ
2N

BUdz (53)

where µ expresses the strength of SMD, and is related to
the SMD coefficient in Appendix C. The matrix B is a
Hermitian matrix, such that the generic elements of the matrix
dW ≡ dW(z) = B(z)dz describe the differential of a
complex Wiener process, i.e.5:

dWkn = dW ∗nk
E [dWkn] = 0

E [dWijdW ∗kn] = 2δikδjn · dz (54)

The propagation model (53) of the linear modal effects is a
SDE in Stratonovich form since it describes a physical system
[31], [37], [38]. However, for our purposes, the SDE is more
useful once expressed in Ito form, because it is only in such
a form that the increment dW points “toward the future” [31,
p. 92], thus allowing simplifications like E [U(z)dW(z)] =
E [U(z)]E [dW(z)] = 0. By applying the Stratonovich to Ito

5Note that matrix W includes also the common mode contribution.
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TABLE I
SUMMARY OF THE SMD-XPM INTERACTION. XPM INDICATES THE AVERAGE XPM.

case example dominant SMD comments Fig. 10

Lwo � LSMD(R) small SMD inter-SMD σ2
XPM(SMD) < σ2

XPM(0), scaling with Lwo/LSMD(∆f) blue points

LSMD(∆f)� Lwo � LSMD(R) big ∆f or small R inter-SMD channel decorrelation, max XPM mitigation blue points

Lwo > LSMD(R) large SMD intra+inter-SMD vanishing of XPolM, XPM inflation due to SMD-reduced walk-off red points

Lwo � LSMD(R) very large SMD intra-SMD vanishing of XPolM and XPM red points

conversion to each element of the matrix, (53) transforms into
the following propagation model in Ito’s form:

dU = −ω
2µ2

2N
Udz − iωµ

2N
(dW)U (55)

where the first term on the right-hand side is the Ito’s correc-
tion term.

We observe three important relationships involving matrix
dW and two generic 2N × 2N matrices A,B:

E
[
A(dW)†(dW)B

]
= 2NABdz (56)

E
[
Tr [(dW)A] BdW†] = 2BAdz (57)

E
[
A(dW)†BdW

]
= 2 Tr[B]Adz . (58)

The proof is straightforward by exploiting (54).

APPENDIX B
ERGODIC FWM KERNEL WITH SMD

The solution of (36) is:

E [Λ] = (2NM11 +M12) I

E [Γ] = (2NM21 +M22) I (59)

with the matrix M = (Mij):

M , e
µ2

N Aζ (60)

and:

A =

[
−ω2

1
ω2

1

2N
ω2

2

2N −ω2
2

]
. (61)

Remember that µ is the SMD strength while ζ = |z−s|, with
(z, s) integration variables of (23)−(24).

The matrix exponential in (60) can be simplified by the
Cayley-Hamilton theorem. By introducing the two parameters:

p ,
ω2

1 + ω2
2

2

q ,

√
p2 − ω2

1ω
2
2

(
1− 1

4N2

)
we have:

M = e−p
µ2

N ζ

[(
cosh

(
q
µ2

N
ζ

)
+ p

sinh
(
q µ

2

N ζ
)

q

)
I

+
sinh

(
q µ

2

N ζ
)

q
A

]
.

Since matrix M is a linear combination of exponential
functions, the FWM kernel, averaged over the birefringence
realizations, can be evaluated in closed-form. Two notable
examples are the following.

A. Single span

After substituting (59) in (23)–(24), we found the following
expression:

E
[
|η(`)(ω, ω1, ω2)|2

]
= m`

ˆ L

0

ˆ L

0

e−α(z+s)ej∆β(z−s)

×
(
e(q−p)µ

2

N |z−s| (1 + c`) + e−(q+p)µ
2

N |z−s| (1− c`)
)

dzds

(62)

where:

c` ,

{
p
q −

ω2
1

q

(
1− 1

4N2

)
` = 1

p
q ` = 2

and

m` ,

{
N ` = 1
1
2 ` = 2 .

(63)

We observe that the term in the big parentheses of (62) is equal
to 2 in absence of SMD. We find convenient compacting the
notation with the following real parameter:

Eρ ,
ˆ L

0

ˆ L

0

eρ|z−s|e−α(z+s)ei∆β(z−s)dsdz

=
1

2

ˆ L

−L
eρ|x|ei∆βx

(ˆ 2L−|x|

|x|
e−αydy

)
dx . (64)

The ergodic kernel is therefore the main result (20) with ρ1 =

(q − p)µ
2

N and ρ2 = −(q + p)µ
2

N . Note that ρ1,2 ≤ 0. The
result of the double integral in (64) is:

Eρ =
1

α
Re [Hρ] (65)

with:

Hρ ,
1− e−(α−ρ−i∆β)L

α− ρ− i∆β
+
e−2αL − e−(α−ρ−i∆β)L

α+ ρ+ i∆β
. (66)

In the absence of SMD, ρ1 = ρ2 = 0 and E0 ≡ |η0|2, i.e.,
the single-span kernel of (28).
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B. Multi-span

For an homogeneous, dispersion-uncompensated, link of Ns
span with lumped amplification, the ergodic FWM kernel can
still be evaluated through (20) by substituting Eρ with the
generalized Eρ,N :

Eρ,N =
1

2

Ns−1∑
m,n=0

ˆ L

−L
eρ|x+(m−n)L|ei∆β(x+(m−n)L)

×
ˆ 2L−|x|

|x|
e−αydydx . (67)

The case m = n has been analyzed in the single-span case. For
m > n we have x+(m−n)L ≥ 0 in the domain of integration,
while for m < n it is x+(m−n)L ≤ 0. Moreover, the double
summation in (67) can be substituted by a single summation
in the index ` = m−n by exploiting the following identity for
a function h(`) of Hermitian symmetry, i.e., h(`) = h∗(−`):
Ns−1∑
m=0

Ns−1∑
n=0

h(m−n) = Ns

(
h(0) + 2

Ns−1∑
`=1

(
1− `

Ns

)
Re [h(`)]

)
.

(68)
Hence, we have:

Eρ,N = NsEρ+
1

α

Ns−1∑
`=1

(
1− `

Ns

)
Re
[
e(ρ+i∆β)`L

(
Hρ +H∗−ρ

)]
(69)

The sum in (69) can be closed by observing that:
Ns−1∑
`=1

(
1− `

Ns

)
eδ` =

eδ
(
eNsδ − 1 +Ns(1− eδ)

)
Ns(eδ − 1)2

. (70)

APPENDIX C
RELATION BETWEEN MODAL-DISPERSION PARAMETERS

To quantify SMD it is customary in the literature to focus
on the mode-averaged intensity impulse response I(t), i.e.,
the output power when a single-mode carrying white noise
is excited on input. Such an impulse response is Gaussian-
shaped, I(t) = I0 exp(− t2

2T 2
I

) [35]. The variance T 2
I is related

to mean-square value of the SMD vector τ and the SMD
coefficient usually adopted in the literature [39], here called
ηSMD, by :

T 2
I =

E[τ2]

4N2
=

1

2N

2N∑
n=1

E[t2n] ,
ηSMD

2 · z
4

(71)

where tn are the individual delays experienced by the principal
states with respect to the mode-average delay, within the first-
order picture of SMD [2]. We observe a linear growth with z
of T 2

I because of the random mode coupling. Since from [36]
we have6:

E
[
τ2
]

=
4N2 − 1

N
µ2z (72)

we get the key relation:

µ =

√
N3

4N2 − 1
ηSMD . (73)

6The factor N in the denominator of (71) is due to the normalization factor√
N of the extended Pauli matrices Λi in [3].

In particular, since in SMF it is µ =
√

π
8κPMD [35], [37], with

κPMD the PMD coefficient of the SMF, we have ηSMD|N=1 =√
3π
8 κPMD.

In the SSFM simulations, we applied deterministic tn in
each waveplate [2], identical for all modes, with a differential
group delay between the two polarizations of a given mode
equal to TI , evaluated by (71) with z equal to the waveplate
length.
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