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Abstract—This paper discusses the key issues in reliable model-
ing and numerical simulation of ultra-wideband (UWB) long-haul
fiber-optic systems, such as those spanning the C+L band. We
analyze the complexity of the split-step Fourier method (SSFM),
including modern scenarios based on graphical processing units
(GPU), and its numerical setup for accurate simulations. We ex-
plain why using the Manakov equation in the nonlinear step of
the SSFM remains a good solution also in the UWB scenario,
even though the underlying assumptions may be violated. We next
propose a technique, called virtual channel grouping, to speed
up SSFM simulations in the UWB regime. Importance sampling-
based techniques are proposed to speed up the computation of
the enhanced Gaussian noise (EGN) model, with computational
times of the order of seconds. With such novel solutions, accurate
simulations are feasible even for UWB systems.

Index Terms—EGN model, NLIN, split-step Fourier method,
Raman effect, ultra-wideband systems.

I. INTRODUCTION

EXPLOITING the bandwidth of optical systems beyond
the conventional C-band spanned by erbium doped fiber

amplifiers (EDFAs) is probably the most prominent short-term
solution to increase the capacity of fiber-optic communication
systems. Although increasing capacity through bandwidth ex-
pansion is much less power-efficient than increasing it through
space division multiplexing [1], still the technology for band-
width expansion is mature and several vendors are developing
ultra-wideband (UWB) systems. The numerical simulation of
such UWB systems may be prohibitive, hence a proper channel
model should be used, depending on the required accuracy in
emulating the propagation over the optical fibers. Aim of this
work is to discuss the challenges of such UWB numerical simu-
lations, providing physical insight and solutions to get accurate
results in reasonable times.

On a local scale, the reference channel model is the nonlinear
Schrödinger equation (NLSE) [2]–[4], whose Kerr nonlinear
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effect can be described by the coupled-nonlinear Schrödinger
equation (CNLSE) or its averaged version, the Manakov-PMD
equation [3].

The Manakov-PMD equation, and especially its version with-
out PMD usually called the Manakov equation, is the reference
propagation model for most of the literature on nonlinear optical
communications. However, it is worth noting that the assump-
tions that lead to the Manakov equation may be violated in
the regime of UWB systems. In this work we explain why the
Manakov equation is indeed reliable in estimating the nonlinear
interference (NLI) variance even in the UWB-regime.

The novelty introduced by very large bandwidths is in the non-
negligible stimulated Raman scattering among channels [5]–[8],
and the frequency dependence of the fiber parameters, whose
most significant effect is summarized by the presence of the
third-order dispersion.

Moving from a local scale to a global scale, i.e., relating the
received signal to the transmitted one, is extremely challenging
and approximations are mandatory. The most reliable channel
model on a global scale is the iterative solution implemented by
the split-step Fourier method (SSFM) [2], [9]–[11]. The SSFM
is a convergent algorithm, hence it gets the exact solution for step
sizes approaching zero. This reassuring property is suggesting
us the most reliable way to keep control of the accuracy of a
simulation: running SSFM simulations for smaller step-sizes
until observing convergence. Such a wise choice becomes un-
practical because of the huge required computational time in
UWB systems, such that the typical approach is to check it for
one reference link and to apply the numerical setup in other
scenarios, hoping for a comparable accuracy.

However, in UWB scenarios, this approach may lead to sig-
nificant errors unless the step size is scaled inversely with the
square of the bandwidth of the signal [12], [13]. The simulation
time of a reliable simulation should thus scale roughly with the
fourth power of the bandwidth, as we will show in Section III.
This means that, for instance, doubling the bandwidth calls for
16 times more operations at the same accuracy. The complexity
is even more severe if the Raman effect is included since it calls
for further filtering operations in the numerical solution.

Running an SSFM simulation over ultra-large bandwidths
might thus be unfeasible, hence novel solutions are necessary.

A first solution is proposed in Section IV, where we first show
that the curse of SSFM is due to the use of small step sizes to
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correctly reproduce four-wave mixing (FWM). Curiously, while
in many optical links FWM is small, especially in modern links
where the trend is to increase symbol rates, we are forced to run
simulations with extremely small step sizes to avoid artificially
increasing FWM. As a solution, in Section IV we show that
it is better to neglect FWM, or part of it, rather than running
simulations with too-large steps that incorrectly inflate FWM.
To discriminate FWM we need to evaluate signal propagation at
the channel level, hence to handle a large set of coupled NLSE [2]
in UWB systems. This approach increases the complexity of the
nonlinear step but allows an increase of the step size. We propose
to split the simulation bandwidth into sub-bands, so as to reduce
the number of coupled NLSEs and to capture the most relevant
Kerr effects. The technique is called virtual channel grouping
(VCG) and is described in Section IV, where the computational
savings of VCG due to neglecting FWM at a given accuracy
are quantified. Besides the advantage of capturing the dominant
nonlinear effects, another advantage of VCG is that the Raman
effect may be easily implemented as a flat gain per group, thus
saving extra fast Fourier transforms (FFT).

An alternative to SSFM-based simulations is provided by
perturbative solutions of the NLSE [14]. Such channel models
are able to close integrations along distance, thus avoiding
the problem of the SSFM step selection, but are valid only
in the limit of weak nonlinearity. Luckily, this is the case of
most communication systems of interest, hence the predictions
of perturbative models are quite relevant. Another advantage
of perturbative solutions is that it is possible to calculate the
variance of the perturbation in closed form. Among existing
models, of particular interest is the enhanced Gaussian noise
(EGN) model [15], which is able to provide an expression of
each nonlinear contribution to the NLI variance. Such a model,
once expressed in the time domain and generally referred to as
nonlinear interference noise (NLIN) model [14], [16], is able to
highlight further properties of the NLI, such as the correlation
functions and the statistics of the phase noise [17]. A particularly
efficient numerical implementation of the EGN is obtained by
using Monte Carlo integrations [18].

The EGN model and novel importance-sampling techniques
are discussed in Section V.

In summary, the paper is organized as follows: in
Section II we introduce the main models describing the optical
fiber and comment on their reliability; in Section III we analyze
the challenges of SSFM simulations in the ultra-wideband sce-
nario; in Section IV we introduce the VCG technique to speed-up
simulations at a given accuracy; in Section V we discuss the
EGN model and propose importance-sampling to speed up its
numerical computation.

II. CHANNEL MODELS

The propagation of the electric field �A = [Ax, Ay]
ᵀ along

distance z of an optical fiber is described by the NLSE:

∂ �A

∂z
= − α

2
�A− jB0

�A−B1
∂ �A

∂t
+ j

β2

2

∂2 �A

∂t2
+

β3

6

∂3 �A

∂t3

− jN ( �A) (1)

where α accounts for fiber attenuation, B0,1 are 2 × 2 matri-
ces accounting for fiber birefringence and polarization mode
dispersion (PMD), respectively, β2,3 are the group velocity and
third-order dispersion coefficients, respectively. For bandwidths
exceeding the C+L, even the frequency response of the attenu-
ation should be accounted for [7]. The operator N summarizes
the Kerr nonlinear effect. Depending on the behavior of the fiber
birefringence, the operatorN can be described at different levels
of approximations leading to the CNLSE or the Manakov-PMD
equation [3].

Many investigations in the literature adopt the Manakov-PMD
equation [3]. Such an equation is generally faster to be solved
numerically compared to the CNLSE by at least a factor 3.
Moreover, in the absence of PMD, the Manakov equation is a
deterministic equation and can be simulated with a single Monte
Carlo run.

However, in the novel scenario of UWB simulations, the
assumptions of the Manakov equation may be questionable.
This observation was first made by Marcuse et al. [3] and came
back in the context of large capacity systems in [4], [19], [20].
The reason is that the fundamental averaging of the Manakov
equation requires the length scale of mode-coupling, known as
the fiber correlation length Lcorr, to be much smaller than the
typical length scales of the linear and nonlinear effects, such
as the dispersion length LD and the nonlinear length LNL [2].
In particular, the dispersion length scales inversely with the
square of the bandwidth, thus in a UWB system it may be
comparable, or even smaller, than Lcorr. The fiber correlation
length can be further related to two characteristic lengths of
birefringence: the length Lw over which the birefringence axes
change, and the fiber beat length LB, i.e., the length over which
the birefringence eigenvalues periodically beat. In the limit of
LB � Lw we haveLcorr � Lw since two neighboring waveplates
are described by statistically uncorrelated random matrices. In
the limit LB � Lw, the transfer matrix of a waveplate is close to
the identity matrix, hence the decorrelation is eventually reached
after crossing several waveplates. In such a regime it has been

proved that Lcorr =
L2

B
2π2Lw

. Typical values of Lcorr range from 1
m to 100 m, while LB is typically about 10 m [21].

In Appendix A we investigate bounds on the Manakov equa-
tion accuracy compared to the CNLSE, confirming its reliability
in predicting the NLI variance even for UWB simulations. For
this reason, in this paper we concentrate on using the Manakov
equation.

The Manakov equation lends itself to a perturbative solution.
In the special, most important case of first-order regular pertur-
bation of the NLSE, the input/output field at angular frequency
ω under the Manakov formalism is:

�A(z, ω) = �A(0, ω)− jγ

∫∫ ∞

−∞
η(ω, ω1, ω2)

× �A†(0, ω + ω1 + ω2) �A(0, ω + ω1) �A(0, ω + ω1)
dω1

2π

dω2

2π
(2)

where † indicates transpose-conjugate while η(ω, ω1, ω2) is
the fiber kernel [22]–[24], whose expression is commented in
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Appendix B. For many optical fibers the integral along z inherent
in the kernel η can be evaluated in closed form, thus avoiding the
numerical problems related to the step size choice of the SSFM.
However, eq. (2) does not yield any particular advantage for
numerical computations compared to the SSFM because of the
presence of the double frequency integrals. The main advantage
of (2) is that it is the starting point to derive GN and EGN models,
which can provide the variance of the NLI in computational
times of the order of seconds, as we will show in Section V.

III. SSFM BASED SIMULATIONS

The SSFM algorithm aims at finding an approximate solution
of the NLSE, by accounting in the nonlinear step either for the
complete Kerr effect when using the CNLSE, or for an averaged
version when using the Manakov equation. Since the Manakov
equation is reliable even for UWB simulations, as discussed in
Section II, we concentrate on it because it is simpler and faster
to solve.

The complexity of an SSFM simulation depends on the
number of FFT points and the number of steps. The number
of FFT points NFFT is related to the number of data symbols
Nsymb and the number of samples per symbol Nt by the product
NFFT = NsymbNt. In the frequency domain normalized to the
symbol rate R of the channel under test (CUT), 1/Nsymb is
the minimum frequency resolution while Nt/2 is the maximum
resolved frequency (Nt is the Nyquist frequency). In a reliable
simulation, Nsymb should scale with the maximum walk-off
among channels to avoid aliasing in the time domain, while Nt

should scale with the wavelength division multiplexing (WDM)
bandwidth to avoid aliasing in the frequency domain. For a
WDM of bandwidth BWDM the walk-off per unit-length is pro-
portional to |D|BWDM, |D| being the largest value of the fiber
dispersion over the WDM bandwidth, hence, in the relevant case
of dispersion uncompensated links, we have:

Nsymb = O(|D|BWDMRL)

Nt = O
(
BWDM

R

)

after an optical link of length L. The symbol O(g(x)) indicates
a term whose magnitude is upper bounded by the function
Mg(x), with M a positive constant. The number of FFT points
thus scales with NFFT = O(|D|B2

WDML), independently of the
granularity of the bandwidth.

The second ingredient to estimate the SSFM complexity is the
number of steps Nh. Such a number depends on the length of
the first step h1 and the step updating rule. The first step should
scale with the inverse of the square of the signal bandwidth to
correctly capture the impact of FWM [12]:

h1 = O
(

1

|D|B2
WDM

)
. (3)

For longer steps, the FWM is overestimated since the phase
matching coefficient (18) is under-sampled along space and thus
FWM accumulates more coherently [12], hence at a faster rate.
Some popular step-updating rules, such as the constant local
error (CLE) [25], [26], the nonlinear phase criterion (NLP) [10],

Fig. 1. Computational time to evaluate a linear (LIN) and a nonlinear (NL)
step of the SSFM vs number of samples, both with or without GPU.

and the logarithmic step (LS) size [11], update the k-th step as1

hk+1 � hke
α
q hk (4)

in the limit of small step-size, as usual in UWB simulations. The
parameter q is 1 for the LS and the NLP, 2 and 3 for the CLE
with asymmetric/symmetric step, respectively [12], [25], [26].

As a reference, we found that an SSFM simulation of a 10 THz
WDM system over a 100 km single-mode fiber (SMF) including
Raman scattering is accurate with an SNR error < 0.1 dB by
using the symmetric-step CLE with the first step of 30 cm,
for a total of 300000 SSFM steps. Such a number corresponds
to a FWM-aware first step choice with ΦFWM = 25 rad [12,
eq. (13)]. The same first step with the NLP requires a nonlinear
phase per step of 6 · 10−5 [rad] with a WDM total power of
23 dBm (0 dBm/channel).

The step is thus increasing along distance thanks to the
decreasing nonlinear Kerr effect. For a lossless fiber the num-
ber of steps scales with Nh = O(L/h1). Such scaling is well
satisfied even in the limit of many steps per fiber, as usual in
time-consuming UWB simulations, since with very small steps
the stretching (4) is quite small over the fiber length.

The linear and nonlinear step evaluation takes time, whose
cost depends on the amount of parallelization available in the
computer architecture. As a reference, in Fig. 1 we estimated
the elapsed time to run an elementary linear/nonlinear step
for a polarization division multiplexing (PDM) signal vs NFFT.
In the linear step, we included only group velocity dispersion
(GVD), while in the nonlinear step only memoryless self-phase
modulation (SPM). The propagated signal constellation has no
impact on the computational time, hence we used a Gaussian
distributed complex signal.

The computational time for the linear step accounts for linear
filtering made by FFTs, the evaluation of the exponential func-
tion of the GVD filter, and the filtering operation in the frequency
domain. The nonlinear step needs the additional computation
of absolute square values to get SPM, but it is FFT free. We

1Such expression does not account for the Raman effect. However, by includ-
ing it in (4), we observed a negligible impact on the results since fiber attenuation
is the dominant effect on the power variations.
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used a cluster based on INTEL XEON E5-2683v4 2.1 GHz
32 cores central processing units (CPU) with 128 GB of RAM
and NVIDIA Tesla P100 graphics processing unit (GPU). All
simulations were performed with MATLAB R2017b. With GPU
we measured just the pure computational time within the GPU
since the transfer of data GPU/memory is generally performed
only at the beginning/end of a numerical simulation.

While the original FFT algorithm has been introduced for
signals having log2(NFFT) an integer, mixed-radix FFT algo-
rithms [27] relax this constraint and just require not too big
prime factorizations. For this reason, we used a number of
samples NFFT whose factorization contained only combinations
of powers of 2 or 3 or 5, e.g., 720000 = 273254. Such 3 numbers
are enough to sample the set N of the integers with a sufficiently
fine grid such that any value of Nsymb or Nt can be reproduced
without wasting too many resources as for a coarse grid made
of powers of 2 only.

In Fig. 1 we observe that the GPU parallelization performs
all computations at the same time up to about 105 samples, after
which the time starts to scale as much as in CPU. The reason is
related to the exhaustion of the floating point operations (Gflops)
available in the GPU. In the large NFFT region we observe that
the linear step is almost a factor 3 slower than the nonlinear
step in GPU, and a factor 18 in CPU. It is worth noting that
in the presence of the Raman effect the cost of the nonlinear
step is comparable to the cost of the linear step since the Raman
filtering on nonlinearity calls for an additional FFT/inverse-FFT
operation.

Since the cost of the nonlinear step is a fraction of the
cost of the linear step forNFFT � 1, we can focus on the number
of multiplications Cm to perform the linear step to have an idea
of the scaling properties of a reliable SSFM simulation. Putting
together all the previous observations, we have:

Cm = O (NFFT (log2 (NFFT) + 1 + κe)Nh)

= O (|D|B4
WDML2

(
log2

(|D|B2
WDML

)
+ 1 + κe

))
.

where κe is the cost of each exponentiation while the cost of
FFT has been taken to scale as NFFT log2 NFFT. The complexity
scales extremely fast for increasing bandwidths, with at least a
fourth power in BWDM. Such a scaling may be too fast for UWB
systems, so that alternative solutions have to be found. In the
next section we investigate in more detail the requirement of the
walk-off window to set Nsymb.

A. Walk-Off Window

We sized the number of symbols to tackle the worst case of
aliasing in the time domain, i.e., such that the walk-off between
the edge channels of the WDM is less than the signal duration.
The reason is related to the use of circular convolutions that make
the discrete time axis modulo NFFT. With this choice, cross-
channel nonlinear effects occurring at two different coordinates
are statistically independent and the simulation does not show
numerical artifacts. However, it is worth noting that, after the
distance corresponding to a walk-off equal to the entire signal
duration, the interfering signal may be well different than its
initial shape in case of large accumulated GVD, as in UWB

Fig. 2. Error on the unit-power NLI variance aNL versus sequence length
Nsymb. The error bars are one standard deviation from the average. The diamond
highlights the number of symbols required by the walk-off length between the
edge channels, eq. (6).

scenarios. Hence the aliased replica is only partially correlated
with the original one, such that the artificial resonances may be
small. We thus investigated how much temporal aliasing can be
tolerated by testing the following setup.

We estimated the unit-power nonlinear interference variance
aNL, which is related to the NLI variance per channel σ2

NLI by
the definition:

σ2
NLI � aNLP

3 (5)

withP channel power, equal to 0 dBm in our setup. In the figures
we express aNL in a dB-scale by using 10 log10(

aNL

1mW−2 ).
We tested different sequence lengths Nsymb in the range 210 to

217 with different random seeds and then computed the average
aNL and its standard deviation with respect to the most accurate
available value, i.e., the mean value with the longest sequence,
called abest

NL . The mean of aNL yields information about the
bias introduced by using a given number of symbols, while its
standard deviation yields information about the Monte Carlo
randomness.

We analyzed a transmission of 41 channels spaced 50 GHz
and modulated atR = 49 Gbaud by PDM quadrature phase shift
keying (QPSK) signals with 0.01 pulse roll-off. The CUT was
centered at λ = 1550 nm. The link was made of 20 × 100 km
spans of SMF with dispersion D = 17 ps/nm/km, third-order
dispersion coefficient 0.057 ps/nm2/km, attenuation 0.2 dB/km
and nonlinear coefficient γ = 1.26 1/W/km. We used a matched
filter based receiver where we recovered the average phase and
polarization mismatch by a trained least-squares estimation with
1 tap [28].

Fig. 2 shows the corresponding results. The error bars indicate
one standard deviation bar while circles indicate the average
values. The diamond is a label to indicate the number of symbols
Nwo called by the walk-off length between the edge channels,
which is [12]:

Nwo = |Dcum|BWDM
λ2

c

c
R · 10−3 [symbols] (6)

where BWDM is in GHz, the symbol rate R in Gbaud, the WDM
central-channel wavelength λc in nm, the speed of light c in
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Fig. 3. Example of contour levels of the fiber kernel |η|2and corresponding
normalized frequency grid by using sequences of Nsymb symbols.

m/s and the largest, channel-dependent, accumulated dispersion
along the link Dcum in ps/nm. We observe that below Nwo the
average aNL is appreciably smaller than the most accurate one,
thus showing a negative bias that is not canceled by iterating
over Monte Carlo runs.

The negative bias can be understood from the following
reasoning. Since we are using circular convolutions, our digital
signals are implicitly periodic signals, thus showing a spec-
trum concentrated at discrete frequencies multiple of 1/Nsymb

(see Section III). With reference to eq. (2) without loss of
generality, we are thus sampling both frequency axes (ω1, ω2)
over such a grid. Now, the fiber kernel η in eq. (2) has typical
contour levels which take the form of a cross concentrated over
the main (ω1, ω2) axes. Fig. 3 sketches the idea. On the axes the
kernel is real, which implies a nonlinear distortion in quadrature
with the symbol of interest, i.e., a constant phase shift. However,
at a given value ω1, the kernel is a decreasing function of |ω2|
(see Appendix B) at a faster rate when increasing |ω1|. Hence,
when decreasing the data length Nsymb, the frequency grid be-
comes coarser such that, because of the bad frequency sampling,
the dominant contribution is more and more provided by the
samples on the main axes, corresponding to the frequencies of
the interfering channel’s carriers. This way, the cross-channel
nonlinearity due to far away channels gets closer to a constant
phase shift for decreasing Nsymb. But a constant phase shift is
not distortion since it is fully recovered by the carrier phase
estimator, hence the negative bias observed in Fig. 2.

Fig. 2 also highlights the importance of the Monte Carlo esti-
mation noise. This is particularly evident in the large error bars
at small values of Nsymb, while it disappears at a large number
of symbols. We recommend using large symbol windows to
mitigate both the Monte Carlo uncertainty and the time aliasing
problems in a single simulation.

IV. VIRTUAL CHANNEL GROUPING

The previous discussion provided computational cost esti-
mates to explain why UWB simulations, e.g., encompassing the
C+L bands, are technically barely feasible with today’s simula-
tion technology. In this section we introduce a technique, which
we call virtual channel grouping (VCG), to speed-up UWB

simulations. The technique consists of partitioning the WDM
channels into Ng contiguous groups (akin to super-channels),
and separately simulate the propagation of the groups along the
fiber accounting for just self- and cross-group nonlinear effects.
Namely, the solution of the NLSE equation presented in Section
I is approximated by the superposition of the solutions of Ng

coupled-NLSEs, one for each group. Therefore, VCG represents
a group-wise version of the well-known separate fields approach
[2], [29] which we next describe, where the FWM among groups
is neglected.

The total propagating field, composed ofNch WDM channels,
can be written as a multiplex of Ng ≤ Nch neighboring groups
as:

�A(z, t) =

Ng∑
n=1

�An(z, t) exp(jΩnt)

with �An the n-th group of channels with central frequency Ωn.
The corresponding set of coupled-Manakov equations for n =
1, . . . , Ng is:

∂ �An

∂z
= − α

2
�An − jB0n

�An −B1n
∂ �An

∂t
+ j

β2n

2

∂2 �An

∂t2

+
β3n

6

∂3 �An

∂t3
− j

8

9
γ

∑
k,�,m∈Sn

�A†
m
�Ak

�A� (7)

where the subscript n indicates that the parameters of the NLSE
in (1) are evaluated at frequency Ωn, and

Sn � {(k, �,m) : Ωk +Ω� − Ωm − Ωn = 0} (8)

is the set of group indexes (k, �,m)whose corresponding central
frequencies satisfy the law of conservation of energy [2]. In
the limit of a single group composed of the whole WDM,
the separate groups Manakov equations reduce to the standard
eq. (1). The VCG savings come from solving (7) for each
group of channels through the SSFM by accounting only for
cross-channel interactions and neglecting FWM, for which a
closed form expression of the nonlinear step exists [29]–[31],
as also reported in Appendix C for convenience. The solution
obtained in the single group scenario, that we call the unique
field solution, represents the “true” solution since it accounts for
all the nonlinear effects occurring during propagation, including
FWM. On the other hand, VCG neglects part of the FWM, as
we will discuss in detail in Section IV-A.

The VCG-SSFM requires to solve a set of coupled differential
equations, as opposed to the single equation of the unique field.
However, each group has a bandwidth Bg < BWDM and thus
can be sampled at a smaller frequency, such that the overall
number of samples is unchanged. The idea is thus an application
of multirate signal processing [27] to the NLSE. The reduction
of the complexity of the VCG-SSFM with respect to the unique
field SSFM is due to the possibility to increase the step size,
such that the first step (3) becomes O(1/(BgBWDM)). This way,
longer steps by a factor Ng are possible. However, while the
complexity of the linear step changes little by changing Ng [27],
the complexity of the nonlinear step significantly changes.
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Fig. 4. Ratio of the computational time of VCG over the unique SSFM for
different FFT sizes. Computations performed in GPU by vectorizing both the
nonlinear and the linear steps.

To quantify the computational advantage of the VCG we
measured the time to perform a single step with both methods,
and normalized the VCG time by Ng to account for the smaller
number of steps. Fig. 4 shows the computational gain of VCG
expressed as the ratio of such computational times versus the
number of groups Ng, for different signal sizes. We followed
the same procedure of Fig. 1 by optimizing the numerical imple-
mentation of each step at our best. In particular, all computations
have been vectorized in MATLAB. We note that for Ng > 3 the
cost is decreasing for increasing number of groups, yielding a
gain of almost a factor 10 in the separate groups setup with one
channel per group. Please remember that the larger the number of
groups, the larger the error introduced by VCG, hence a trade-off
complexity/accuracy exists. Numerical results in Section IV-B
will quantify this trade-off.

A. Physical Insight

The nonlinear Kerr effect is generally classified with differ-
ent names depending on the involved channels. Historically,
the classification was conceived for quasi constant-wave (CW)
WDM channels spaced far apart, thus focusing only on the
carriers involved in the process [2]. Referring to (7) where
the indexes label the WDM channels (rather than the groups),
in the standard classification the contribution in the nonlinear
term summation with indexes k = � = m = n corresponds to
SPM, those with indexes (k = �) �=(m = n) to cross-phase
modulation (XPM), and all remaining contributions to FWM
[2]. However, in modern transmissions with large bandwidth
efficiency, Poggiolini first showed in [32] that channels may in-
teract by means of the Kerr effect even if their carrier frequencies
do not meet (8). In this framework, with reference to eq. (2), it
is more appropriate to interpret the Kerr nonlinearity as a FWM
among the Fourier frequencies of the WDM spectrum satisfying
ω = ω1 + ω2 − ω3. If we set, for the sake of example, ω = 0 for
the low-pass frequency corresponding to the carrier frequency
Ωn of the CUT, the remaining frequencies are constrained by
ω3 = ω1 + ω2.

Fig. 5a sketches an example of the frequency domains in the
(ω1, ω2) plane involved in such FWM, i.e., the domain where

the cubic term in the integrand of (2) is non-zero [32], for
channels having the spectra depicted in Fig. 5e. We refer without
loss of generality to a single polarization since the additional
contributions coming from cross-polarization interactions can
be treated similarly [33]. In Fig. 5c we note that the traditional
SPM, XPM and FWM terms, which would correspond in the
quasi-CW regime to dots on a regular grid having the carrier
frequency spacing, show-up now as hexagons (inscribed in a
square of edge equal to the channel bandwidth Bch) centered at
grid dots. In this paper, we will keep calling the contributions of
such hexagons as SPM (purple), XPM (green), and classic FWM
(red). However, due to the close spacing of the WDM channels,
new important triangular domains appear, as first noticed in [32].

It is worth noting that in [15], [32] all contributions involving
two channels were called cross-channel interference (XCI),
while all the contributions involving three or four channels were
called multi-channel interference (MCI).

In this paper, we will call the contributions of the blue triangles
in Fig. 5a as XCI (this is consistent with the XCI naming in
[15, Fig. 7]), and those of the orange triangles as MCI, as better
specified in Fig. 5d, where we highlight by examples the position
of the four spectral frequencies generating the Kerr nonlinearity
(purple arrow is the carrier of the CUT), our labeling, and their
k, �,m, n index relations. For numerical purposes, we found
important to adopt the classification in the figure instead of
treating everything as FWM in order to efficiently sample the
islands by importance sampling, as discussed in Section V.

The efficiency of a generic FWM process is weighted by the
fiber kernel, which depends on the phase matching coefficient
Δβ defined in Appendix B, being maximum for Δβ = 0. This
can occur only when the four frequencies are degenerate or pair-
wise degenerate, e.g., the carrier frequencies involved in the
SPM and XPM effects. In Fig. 5d, the contributions of SPM and
XPM are thus highly efficient. Among the other effects, XCI is
generally efficient since it involves closer frequencies coming
from neighboring channels. Classic FWM and MCI are generally
much less efficient since they involve far away frequencies.

The unique field approach treats the whole WDM comb as
a single super-channel, hence it implicitly accounts for all the
SPM, XPM, XCI, FWM and MCI effects. On the other hand, as
we observed previously, a bad SSFM setup with too long steps
emphasizes XCI, FWM, and MCI as if they had a smaller phase
matching coefficient, especially in UWB systems, thus inducing
wrong estimations.

The Kerr contributions captured by the separate groups ap-
proach of (7) are visualized in Fig. 5b, where as an example
we grouped the 9 WDM channels in groups of 3. We will call
the group containing the CUT as the group under test (GUT).
Fig. 5b is organized on two layers, with the channel islands at
the bottom layer and the group islands at the higher layer. We
note that in the higher layer all the triangles have disappeared
since they correspond to group index combinations which do
not satisfy (8). However, some triangles remained in the lower
layer within the group-hexagons, which are able to capture all
the Kerr effects within each group.

The proposed VCG method reduces the computational com-
plexity of (7) by neglecting all classic group-FWM terms, as
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Fig. 5. a©: Frequencies ω1, ω2 involved in the Kerr effect of (2) at ω = 0, where the fourth frequency of the FWM-related process is ω3 = ω1 + ω2 for the law
of energy conservation. b©: Same as left but referred to (7) with superimposed the group- islands accounting for intra-group SPM, inter-group XPM and FWM.
c©: Islands accounted by the VCG algorithm. d©: corresponding NLI classification with examples. The example is for a 9 channel WDM transmission with 3

channels-per-group VCG, as sketched in e©.

exemplified in Fig. 5c. The gain comes not only from avoiding
classic FWM computations, but also from the fact that the
nonlinear term in the SSFM can be expressed in closed-form,
as discussed in Appendix C. Unfortunately, not all the FWM
contributions can be captured by VCG, as visible by comparing
Figs. 5a and 5c. In fact, inter-group FWM, cross-group inter-
ference (XGI) and multi-group interference (MGI) are missed
by VCG. VCG thus saves time at the expense of a bias. Such a
trade-off is investigated in the next Section.

B. Numerical Results

In order to highlight the main features of the VCG-SSFM
approach, in this section we focus on a scenario where FWM
is non-negligible [34]. Namely, we consider a 216 WDM chan-
nel transmission of PDM-16 quadrature amplitude modulation
(QAM) signals with symbol rate 4 Gbaud and channel spacing
4.7 GHz, for an overall bandwidth of ≈1 THz, with per-channel
power −9 dBm. We analyzed a 20 × 100 km dispersion uncom-
pensated SMF link. The transmitted sequence length was 4096
symbols to capture the maximum walk-off length Nwo in (6),
while the number of points per symbol was set to have a Nyquist
frequency per group a factor 1.5 larger than the group bandwidth.
The SSFM was implemented with the CLE step-updating rule,
with the symmetric step described in Section III.

Figure 6 shows the SNR evaluated at CUT as a function of
the number of SSFM steps, both for the unique field approach

Fig. 6. SNR vs the number of SSFM steps for a PDM-16QAM transmission
after 20× 100 km. Solid lines: VCG with variable number of channels per group
Ng = 216,73,44,23,15,11,9,5,3. Dashed line: unique field solution.

and the VCG with a decreasing number of groups Ng. For
each scenario, we increased the number of steps until observing
convergence, considering an SNR error smaller than 0.005 dB as
a convergence criterion. Thus, the point of each curve associated
with the largest number of steps represents the most accurate
solution for that setup.

We note that, according to the adopted stop-criterion, the most
accurate SNR of VCG with a single channel per group, i.e.,
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Fig. 7. aNL vs the number of channels per group. Markers: SSFM simulations
(triangle for the unique field, circles for the VCG). The solid lines show the
EGN model of VCG, thus accounting only for the islands of Fig. 5c, and its
corresponding Kerr contributions to aNL.

the standard separate-fields approach, is obtained after only 920
steps, thus with big step-savings compared to the 103820 steps
required by the most accurate unique-field benchmark SNR,
called SNRbest. However, the separate-fields estimate suffers
from a bias of ≈1.5 dB with respect to SNRbest. Such a bias
approaches zero as we increase the group size. For instance, the
green curve in the figure with Ng = 23 saturates with a bias
of 0.28 dB with respect to SNRbest after 5660 steps. The same
error, in absolute value, is reached by the unique field curve
after 26000 steps, thus with a reduction of steps by VCG by a
factor 4.6. For the edge channels of the WDM comb we observed
convergence at almost twice the number of steps. We ascribe this
result to the lower NLI variance of such channels that calls for
more accuracy to keep the SNR error unchanged over the WDM
bandwidth, according to [12, eq. (6)]. However, we noted that
the SNR of 90% of the WDM channels showed to saturate at a
comparable number of steps.

We stopped all the simulations with a very small confidence
error on the SNR of 0.005 dB, to clearly observe saturation and to
have a reliable reference value for SNRbest. However, it is worth
noting that using larger confidence errors might help, thanks to a
cancellation of errors. In fact, a higher confidence error calls for
a smaller number of steps, hence with an SNR for sure smaller
than the saturation value at infinite steps [12], as visible in Fig. 6.
On the other hand, VCG always overestimates SNR.

The improvement in accuracy of VCG for an increasing num-
ber of channels per group is related to the inclusion of subsets of
FWM, XCI, and MCI effects. To better appreciate this point and
corroborate the discussion of Section IV-A, we plot in Fig. 7 the
aNL estimated with VCG as a function of the group size, and
the relative contributions of SPM, XPM and FWM (including
MCI and XCI). The corresponding variance contributions (solid
lines) were computed by means of the perturbative EGN model
that will be discussed in Section V, whose accuracy is confirmed
by the excellent match with SSFM simulations in Fig. 7. Please
note that the red curve accounting for FWM, XCI, and MCI
with one channel starts from −∞ dB with one channel per
group, with a significant error in the VCG prediction. However,
by including the two next-neighbor channels, hence XCI, the

Fig. 8. aNL vs the shift from the WDM central frequency for a PDM-64QAM
transmission over a 10 THz bandwidth after 100 km and 10× 100 km. Solid
lines: SSFM simulations. Dashed lines with markers: EGN-model.

accuracy improves by 1 dB saturating for increasing number of
channels per group.

V. SAMPLING METHODS FOR THE EGN MODEL

An efficient alternative to the SSFM is provided by semi-
analytical models such as the EGN model, which we next discuss
in more efficient importance-sampling based versions.

The EGN model accurately evaluates the variance of the NLI
under the approximation that the Kerr effect is a perturbation.
Such a variance can be written as the sum of two contributions
[14]–[16], [33]:

σ2
NLI = σ2

GN + σ2
HON (9)

where σ2
GN accounts for the second order cumulants of the

constellation symbols, while σ2
HON accounts for the higher-order

cumulants [33]. Since only Gaussian distributed symbols have
σ2

HON = 0, the part σ2
GN is called the GN-model contribution and

σ2
HON the modulation-format dependent EGN correction.
Equation (9) can be easily converted to a signal-to-noise ratio

(SNR), while the SNR is usually converted to a bit-error rate
(BER) under the assumption of an additive white Gaussian noise
channel. The latter assumption holds whenever the receiver is
not able to exploit correlations in the NLI or when the NLI shows
a negligible contribution of nonlinear phase and polarization ro-
tation noise (PPRN) [35], and represents a good approximation
for nowadays dispersion-uncompensated ultra-long links. For
instance, in Fig. 8 we show the aNL coefficient defined in (5)
evaluated by the EGN together with SSFM simulations for a
201 WDM channel transmission with per-channel power 0 dBm,
symbol rate R= 49 Gbaud and channel spacing Δf = 50 GHz,
for an overall bandwidth of 10 THz, for a PDM-64QAM system
after n× 100 km of SMF, n = 1,10, with fiber parameters as
in Section III-A. We included the stimulated Raman scattering
among channels in the EGN model by means of the triangular
approximation of the polarization-averaged Raman profile [36]
with slope 0.028 (THz ·W · km)−1, while in the SSFM we used
a polynomial interpolation of the experimental profile [2], with
a peak value of 0.42 (W · km)−1. The numerical setup used
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Nsymb = 65700, Nt = 432 with a symmetrized-SSFM with a
first step of 18 cm and the CLE step-updating rule. The fit is
very good, confirming the validity of the EGN as well as the
triangular approximation of the Raman profile up to a bandwidth
of 10 THz, i.e., close to the frequency-shift of maximum Raman
gain [2].

The numerical computation of (9) aims at evaluating multi-
dimensional integrals [15], [18], [33]. For instance, if all chan-
nels are modulated with sinc pulses, σ2

GN after matched filtering
requires the evaluation of the following:

σ2
GN =

(
8

9
γ

)2

P 3
∑
h,�,s

∫∫∫ ∞

−∞
|η(ω, ω1, ω2)|2

∣∣∣P̃n(ω − Ωn)
∣∣∣2

×
∣∣∣P̃ ∗

h(ω + ω1 + ω2 − Ωh)
∣∣∣2
∣∣∣P̃s(ω + ω2 − Ωs)

∣∣∣2

×
∣∣∣P̃�(ω + ω1 − Ω�)

∣∣∣2 dω
2π

dω1

2π

dω2

2π
(10)

where P̃k(ω) is the Fourier transform, with rectangular shape,
of the supporting pulse of the channel modulated at carrier
frequency Ωk. The triple integral in (10) is over the islands
shown in Fig. 5a, while the triple summation is over the set
of channels satisfying |Δh�sn| ≤ 2πBch, with Δh�sn�Ωh −
Ω� − Ωs +Ωn. In particular, we observe that the combina-
tions yielding |Δh�sn| = 2πBch correspond to the triangles in
Fig. 5a.

In [18] Dar et al. proposed to evaluate the triple integral in (10)
by Monte Carlo (MC) integration, which in high dimensions is
more efficient than quadrature rules based on interpolating poly-
nomials since it better tolerates the “curse of dimensionality”
[37], i.e., for well-behaved functions the standard deviation of
the MC error, contrary to quadrature rules, scales with 1/

√
NMC

independently of the number of dimensions, where NMC is the
number of samples. Besides this aspect, the simplicity of the
MC method is another argument to support its application.

Here we suggest to fully exploit the MC idea to randomly sam-
ple also the triple summation

∑
h,�,s over the channel indexes in

(10). The approach gives some advantages in evaluating FWM
contributions because it removes the loops of

∑
h,�,s in favor

of a single MC summation, whose vectorized implementation
yields some improvements in numerical interpreted languages
such as MATLAB. For FWM estimations, instead of sampling
the channels independently over a square grid, we suggest to
sample only in the visible islands in Fig. 5a, thus by generating
one channel index at random and by conditioning the generation
of the remaining one.

We also found some advantage in using importance sampling
(IS) [38], [39] by using different sampling distributions than
the simplest uniform distribution adopted by the MC method. A
first IS strategy, also called stratified-sampling (SS) [37], [40], is
to estimate independently each nonlinear effect according to the
terminology of Fig. 5. We propose to estimate XPM by sampling
channel n, n �= nCUT, by a warped probability mass function
(PMF) equal to c/|n− nCUT|x, with c a normalization constant.
Such a sub-optimal PMF pushes more samples in channels closer
to the CUT, following intuition, with a probability governed by

Fig. 9. Ratio of the number of samples with MC and SS to get a given relative
error vs. WDM bandwidth.

x. The parameter x can be found by a least-squares fitting of
the optimal SS-strategy σn/

∑
n σn [37], with σn the standard

deviation of the integrand within stratum n. The value of σn can
be found by a short MC pre-run (e.g., a factor 100 shorter of the
target number of samples) in the XPM islands. The least-squares
fitting helps in smoothing the uncertainty of σn estimations. The
FWM and XCI islands can be sampled in the same way by using
the same PMF for each channel involved in the process. The
warped PMF can be sampled by the inverse-transform sampling
method [37].

The samples generation and the pre-run add a small overhead
to the computational time. However, the proposed SS strategy
allows to save samples, particularly for the most computationally
intensive terms as FWM, XCI, and MCI. Fig. 9 shows the ratio of
the number of samples required by MC and SS for the evaluation
of each nonlinear effect at the same relative error of−30 dB. The
figure refers to 10 spans including the Raman effect. We note
significant savings for multi-channel effects, with increasing
gains for increasing bandwidths. Even if not reported here, we
observed similar gains without the Raman effect.

In the SS strategy, the variables (ω, ω1, ω2)within each island
are sampled randomly by MC.2 However, for homogeneous
point-to-point links, it is possible to apply IS even within the
islands of Fig. 5c, in particular for the GN-part of the EGN.
The motivation comes from the observation that in such ultra-
long links the phased-array term becomes a peaked function,
whose random sampling is very inefficient by standard MC. The
problem can be circumvented in the following way. The triple
integral in (10) is weighted by the kernel function, hence by the
phase matching coefficient Δβ between the four frequencies
involved in the FWM process. If, for instance, we sample in
(10) (h, �, s) by a discrete uniform distribution and (ω, ω1) by
a uniform distribution as in the MC method, it is convenient to
sample the remaining ω2 over the regions where the kernel takes
the largest absolute value. Such regions appear periodically atω2

values where the phased array (see Appendix B) has resonances,
that is forΔβ = 2πk with k an integer. Fig. 10 sketches the idea,
where we can observe: the kernel function (absolute squared

2It is important to have independent frequency samples in each island to ensure
independent errors among islands.
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Fig. 10. Example of kernel and Monte Carlo (MC) or importance sampling
(IS) distributions for sampling the frequency ω2 normalized to the symbol rate.
Both sampling strategies randomly select a lobe of the kernel.

TABLE I
COMPUTATIONAL TIME PER CHANNEL AND ACCURACY

value) versus the variable ω2 for a given random choice of the
remaining variables; the probability density function (PDF) of
ω2 with pure MC sampling (red dashed) and an example of
importance sampling by using a Gaussian PDF for ω2 (solid
green). In practice, pure MC is equivalent to randomly selecting
a given lobe of the phased-array, i.e., a value of k, with a discrete
uniform distribution, and to randomly sample with a uniform
distribution between the two neighboring lobes, as illustrated in
the figure. On the other hand, IS concentrates probability around
the peak. The best IS PDF replicates the kernel shape. However,
it may be better to use simpler PDFs in favor of simpler algo-
rithms, motivated by the observation that any PDF sufficiently
concentrated around the peak, may give some computational
advantages. In particular, we used a Gaussian PDF of variance
equal to twice the variance of the absolute squared value of the
kernel around a lobe.

As a reference, Table I shows some values of the uncertainty
on aNL, obtained by evaluating σ2

GN with the proposed methods,
and the corresponding computational time in different scenarios,
by using MC or IS with 106 samples per effect. All the results are
referred to the central WDM channel and are obtained with an
INTEL XEON E5-2650 v4 2.20 GHz CPU based architecture.
IS was applied only to XPM and FWM hexagons of Fig. 5 which
experience the largest number of phased-array peaks.

The computational time is very short. If the NLI variance of
each channel is required, the computation has to be repeated for

each of them. However, since the aNL is a smooth function over
the WDM bandwidth, we suggest to estimate it just for a few
channels and to use interpolation to find the missing values.

Please note that the accuracy of the proposed EGN depends on
just one theoretical approximation, i.e., the perturbative solution
of the Manakov equation, while the accuracy of the MC/IS
is under control depending on the number of points. Hence,
the proposed algorithm differs from approximations available
in the literature, such as [41] where the authors were able to
close integrals by further approximating them, for instance by
neglecting FWM, XCI, and MCI.

VI. CONCLUSION

We investigated the challenges in numerical simulating ultra-
wideband systems. We discussed three options, i.e., SSFM,
VCG-SSFM, and the EGN model. We first analyzed the scaling
properties of SSFM and its main bottlenecks, by investigating the
implications of modern computing hardware based on GPU. We
introduced VCG-SSFM as a faster algorithm able to capture just
the dominant contributions of FWM. Finally, we discussed the
EGN model and introduced advanced Monte Carlo techniques
to speed up its numerical implementation.

As a general rule, we suggest to use SSFM when accuracy is
mandatory, provided that the algorithm is set up correctly, while
VCG-SSFM is the right solution to speed up simulations when
a bias can be tolerated. We stress the importance of a correct
SSFM setup, since in some scenarios we found more reliable to
run a simulation without FWM rather than an SSFM accounting
for FWM but with the wrong step size.

If the target of the simulation is the SNR of a basic receiver
unable to exploit any correlation in the received signal, the EGN
is definitely the best model to use. Thanks to the proposed Monte
Carlo techniques, the EGN computational times including all
nonlinear contributions can be reduced to the order of seconds,
with excellent accuracy and without the need to limit the compu-
tation to just SPM and XPM as typically done in approximated
closed-form formulas.

We also discussed the validity of the Manakov equation in
ultra-wideband systems. We were able to show that it is a
reliable equation by bounding the error of the corresponding
NLI variance with respect to the most complete coupled-NLSE,
showing a maximum error of 0.5 dB.
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APPENDIX A
CNLSE VS MANAKOV EQUATION

We want here to show that the error introduced by the Man-
akov equation is tolerable even in the extreme case of fibers
having Lcorr � Ls with Ls = min (LD, LNL). We make use of
the GN model which can be extended to the CNLSE by treating
the additional nonlinear term as a FWM term. The nonlinear
term experienced by the generic x-polarization for the Manakov
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TABLE II
MAIN CONTRIBUTIONS TO THE KERR EFFECT

equation and the CNLSE is, respectively:

Nx
(Manakov)

= −jγ
8

9

(
|Ax|2 + |Ay|2

)
Ax

Nx
(CNLSE)
= −jγ

[(
|Ax|2 + 2

3
|Ay|2

)
Ax +

1

3
A2

yA
∗
x

]
(11)

Each nonlinear term appearing in (11) contributes to the EGN
NLI variance through a GN contribution and an additive term
accounting for the input-constellation higher-order moments, as
for (9). In a UWB system, the higher-order noise contribution is
essentially due to the fourth-order noise (FON) term [14].

Let PG be the NLI power contributed by the second order
moments of the input constellation (GN-model contribution)
through the cross-polarization nonlinear term |Ay|2 Ax only. In
absence of PMD the self-polarization nonlinear term |Ax|2 Ax

yields a NLI power of 2PG because of twice combinations of
coupling a symbol with its conjugate in the NLI variance evalua-
tion [33]. The additional CNLSE termA2

yA
∗
x is a FWM term that

can be analytically managed as much as the cross-polarization
one, but with a higher phase matching coefficient, depending on
the amount of birefringence [2]. It contributes with a power P

′
G

where0 ≤ P
′
G ≤ PG. The two extrema occur with very small and

very large beat length LB, respectively. With similar arguments,
the FON power PF given by the term |Ay|2 Ax is 4 times smaller
than the FON of |Ax|2 Ax [33], and larger than the term A2

yA
∗
x.

By weighting such contributions with the coefficients in Table II
we have the following variance of the NLI:

σ2
NLI =

16

81
(3PG + 5PF) =

16

27
PG +

80

81
PF,

Lcorr � Ls (12)

σ2
NLI =

1

4

(
23

9
PG +

40

9
PF

)
=

23

36
PG +

40

36
PF,

Lcorr, LB � Ls (13)

σ2
NLI =

1

4

(
22

9
PG +

40

9
PF

)
=

22

36
PG +

40

36
PF,

LB � Ls � Lcorr (14)

where the GN factor 16
27 = 2( 12 )

3( 89 )
23 is commented in [33].

While (12) is well known, equations (13) and (14) are introduced
here for the first time and represent the mentioned extreme cases
of the CNLSE that we are trying to bound. We observe a minor
impact of the beat length, and a maximum discrepancy between
the Manakov equation and the CNLSE of 10 log10(

23
36

27
16 ) =

0.32 dB for the GN contribution and 10 log10(
40
36

81
80 ) = 0.51 dB

for the FON.3 Such numbers are quite small, with even a smaller
impact at the best power maximizing the Q-factor, where any
variations in σ2

NLI in [dB] maps almost in a variation of σ2
NLI/3

[dB] on the best Q-factor [42].
The Raman effect has minor implications when moving from

the CNLSE to the Manakov equation since it just weights by a
factor fR the memoryless nonlinear Kerr effect of (11), while
it adds to the nonlinear effect a contribution with memory
−jγfR(|| �A||2 ⊗HR) �A, with HR the Raman filter [4], that re-
mains identical in both equations. With the typical Raman factor
of fR � 0.2 [2], [4] the memoryless Kerr effect contributes with
a NLI 0.2 dB higher in the CNLSE compared to the Manakov
case.

Having observed minor discrepancies between CNLSE and
Manakov equation, we now focus on PMD. If we push PMD
at its extreme values, the Manakov nonlinearity experienced by
channel �A1 = [A1x, A1y] due to channel �A2 = [A2x, A2y] is [4],
[30]:

Nx
(Manakov)

= − jγ
8

9

(
|A1x|2 A1x + |A1y|2 A1x

+ 2 |A2x|2 A1x + |A2y|2 A1x

+A2xA
∗
2yA1y

)
, PMD � 1 (15)

Nx
(Manakov)

= − jγ
8

9

(
|A1x|2 A1x + |A1y|2 A1x +

3

2
|A2x|2 A1x

+
3

2
|A2y|2 A1x

)
, PMD � 1 (16)

IfPGX is the XPM variance induced by |A2x|2 A1x, using similar
arguments as in the previous case, |A2y|2 A1x and A2xA

∗
2yA1y

contribute withPGX andPGX/2, respectively [33]. Therefore, the
large PMD case has a smaller average XPM nonlinear variance
compared to the small PMD case by at most 10 log10(

4+1+1
9
4+

9
4

) =

1.25 dB regarding the GN contribution [46]. Such a number
represents an upper bound that is extremely difficult to reach.
With practical values of PMD one should expect much smaller
deviations. In any case, PMD helps to mitigate nonlinearity,
as observed numerically [47] and experimentally [48] in the
context of single-mode fibers, and theoretically in space-division
multiplexing in [4]. Hence the worst-case analysis of the Kerr
effect provided by the Manakov equation can be taken as a safely
achievable bound of the nonlinearity for link design.

APPENDIX B
FIBER KERNEL

The fiber kernel weights the FWM process [14], [22], [23],
[42] for any optical link, even those including Raman ampli-
fication [43]. For the sake of example, for a homogeneous
N -span link with span length L1 and lumped amplification it
is η(ω, ω1, ω2) = η1(ω, ω1, ω2) · χ(ω, ω1, ω2), where χ is the

3We assumed that cross-channel contributions have twice the weight of intra-
channel terms withinPG and equal weight withinPF,which is an approximation
for (13) with minor implications.
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phased array function while η1 is the kernel of a single span:

χ(ω, ω1, ω2) =
1− ejNΔβϑL1

1− ejΔβϑL1

η1(ω, ω1, ω2) =

∫ L1

0

e−
∫ ξ
0 ΔαdζejΔβξdξ (17)

where ϑ is the normalized residual dispersion per span and Δβ
is the phase matching coefficient, equal to:

Δβ � β(ω)− β(ω + ω1)− β(ω + ω2) + β(ω + ω1 + ω2)

= ω1ω2

[
β2 +

1

2
(ω1 + ω2 + 2ω)β3

]
. (18)

In (17) Δα is defined as:

Δα � − 1

2

[
α(ω)− α(ω + ω1)− α(ω + ω2)

− α(ω + ω1 + ω2)
]

where α(ω) is a frequency and distance dependent attenuation
accounting for the fiber attenuation and the possibly Raman
effect [6]–[8]. When α is frequency independent it is Δα = α,
such that the single-span kernel takes the simple expression:

η1(ω, ω1, ω2)|α(ω)=const. =
1− e−αL1ejΔβL1

α− jΔβ
. (19)

In the other case, an analytical expression for the term

e−
∫ ξ
0 Δαdζ in (17) can be found when the spectrum of α(ω)

is set by Raman as [36]:

e−
∫ ξ
0 Δαdζ � Ptote

−αξe−
1
2πPtotLeffCr(ω+ω1+ω2)∫∞

−∞ GTX(μ)e−
1
2πPtotLeffCrμ dμ

2π

(20)

where Ptot is the total WDM launched power, GTX(ω) is the
power spectral density of the transmitted signal, and the Raman
gain is approximated by a triangular profile of slope Cr [44].

APPENDIX C
CLOSED-FORM SOLUTION OF THE NONLINEAR STEP

WITHOUT FWM

According to the Manakov equation in presence of the Raman
effect, the nonlinear step experienced by the unique field �A is:

∂ �A

∂z
= −jγ

′NR( �A) �A

NR( �A) �
(
|| �A||2(1− fR) + fR|| �A||2 ⊗ hR(t)

)
(21)

where γ
′
= 8

9γ, hR(t) is the impulse response of the Raman
effect [2], ⊗ indicates convolution, and fR (≈ 0.2) indicates
the fractional contribution of Raman. The SSFM solves (21) by
neglecting the signal depletion along the step:

�A(z) � e−jγ
′NR( �A(0))z �A(0). (22)

Such a result is exact in absence of the Raman effect, and an
excellent approximation for very short step sizes as for UWB
transmissions. For numerical purposes, it is more convenient

to include the attenuation in the nonlinear step rather than in
the linear step, with a minor modification of substituting z with
Leff(z) in (22) [9].

By splitting the field �A in groups, a closed form solution can be
found in absence of Raman and FWM. In such a case, the generic
group �An experiences the following Kerr effect [29]–[31]:

∂ �An

∂z
= −jγ

′ | �An|2 �An − j
3

2
γ

′ ∑
k �=n

| �Ak|2 �An

− j
1

2
γ

′ ∑
k �=n

(�ak · �σ) �An (23)

where �σ is the Pauli tensor [21] and �ak � �A†
k�σ

�Ak the Stokes
representation of the Jones vector �Ak. The closed-form solution
is [29]:

�An(z) = e

−j γ
′

2 z

⎛

⎜
⎝| �An(0)|2+3

∑
k �=n

| �Ak(0)|2
⎞

⎟
⎠

e−
jγ

′
z

2 (�st(0)·�σ) �An(0)

with �st �
∑

k �ak(0) the Stokes vector of the pivot, and e(.)

denotes matrix exponential, which can be computed for the
generic real vector �s = [s1, s2, s3] as:

e−j(�s·�σ) = cos(|�s|)σ0 − j
sin(|�s|)

|�s| (�s · �σ)

where σ0 is the identity matrix and:

�s · �σ =

[
s1 s2 − js3

s2 + js3 −s1

]
.

The inclusion of the Raman effect in (23) is more challenging.
However, since the groups are likely to have much smaller
bandwidth thanhR(t), a polarization-averaged Raman effect can
be included as a channel-dependent gain as in [5], [45].
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