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Abstract  We show that in dispersion-managed DPSK systems the nonlinear phase noise can be described by  a 
Gaussian stochastic process whose statistics can be simply derived  from a linearized solution of the nonlinear 
Schrödinger equation. 
 
Introduction 
During propagation in an optical fibre link, the 
amplified spontaneous emission (ASE) noise interacts 
with the transmitted signal through a four-wave mixing 
(FWM) process. Such an effect, also known as 
parametric gain (PG), is the main impairment of 
phase modulated signals, such as differential phase 
shift keying (DPSK), and manifests itself as a 
nonlinear phase noise  [1]. For bit error rate (BER) 
evaluation, the PG statistics are needed. 
Recently, an experiment has shown that, in 10 Gb/s 
DPSK systems, the statistics of the sampled noise 
after demodulation  are not Gaussian, but  resemble 
an exponential distribution [2]. It has also been shown 
theoretically that, in the absence of group velocity 
dispersion (GVD), the received optical noise (i.e. 
nonlinear phase noise) statistics can be described by 
a linear combination of independent chi-square 
random variables [3].  
In this paper, we show that in actual systems, working 
at sufficiently large optical signal-to-noise ratios 
(OSNR) and where a small amount of local  GVD is 
present, the received optical noise can still be 
described by a Gaussian stochastic process. Hence, 
for BER evaluation, it is possible to use a standard 
Karhunen-Loéve expansion of a Gaussian colored 
noise in quadratic receivers, avoiding the simplified 
receiver model used in [3]. Instead of evaluating the 
BER by the time-consuming algorithm proposed in 
[4], which correctly accounts for the actual non-
stationarity of the received Gaussian noise, we  
provide a novel small-signal model for the ASE 
propagation, using a linearized solution of the NLSE 
versus a slow-varying reference signal, which 
accounts for an “average” impact of the signal on the 
phase noise. Aided by the periodic behaviour of 
DPSK formats, our model describes the received PG-
noise as a Gaussian cyclostationary process, whose 
power spectral density (PSD) can be rapidly 
evaluated in a closed  form, from which one can 
evaluate the BER for instance by using the algorithm 
proposed in [5] .  
 
Phase noise statistics 
In [3] it has been shown that in a single channel 
DPSK  system propagating in absence of GVD the 
nonlinear phase noise rotation due to the self-phase 

modulation (SPM) can be described by a linear 
combination of chi-square random variables. We 
verified such a conclusion by estimating the 
probability density function (PDF) of the received 
optical noise through a Monte Carlo simulation of 
non-return to zero NRZ-DPSK of a one fully 
compensated span operating at OSNR=25 dB in a 
resolution bandwidth of 0.1 nm, with transmission 
fibre GVD equal to either 0 or 4 ps/nm/km.  At zero 
GVD we obtained the results shown in Fig. 1(left), 
which clarify that SPM alone yields a PDF far from  
Gaussian. By including fibre GVD, we obtained the 
contour plots shown in Fig. 1(right), which have 
elliptical shape, typical of a Gaussian distribution. 
Hence, at sufficiently large OSNRs, a small amount of 
fibre GVD tends to reshape the noise PDF towards a 
Gaussian distribution. Being the single span a worst 
case, such a conclusion holds also for multiple spans, 
providing that the OSNR or the local GVD are not too 
small, according to [6].  

 
Fig. 1. Contour plot of ASE PDF before reception. 
Left: D= 0 ps/nm/km. Right: D=4 ps/nm/km. OSNR = 
25 dB. Nonlinear cumulated phase 0.3π rad. 
 
The model 
The statistics of a Gaussian distributed received noise  
can be obtained by a linearized solution of the NLSE 
[4]. We first start by assuming the transmitted signal 
is not modulated. By adopting a multiple-scale 
solution of the noisy  NLSE [7] in long periodic 
dispersion-compensated systems, and neglecting 
quadratic and higher order ASE  terms, one can show 
that the noise field a(z,ω), being ω the frequency and 
z the distance, follows the differential equation: 
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where LD is the span-averaged dispersion length, L∆ 

accounts for the deviation of the transmission fibre 
dispersion length Ld from the average LD, i.e. 1/Ld =1/ 
LD+1/ L∆; LA is the attenuation (effective) length 
defined as the inverse of the fibre attenuation, LNL is 
the span-averaged nonlinear length, proportional to 
the inverse of the signal power P. All the dispersive 
lengths are referred to the mark duration, and 
frequency ω  is normalized to it. Such an equation 
can be exactly solved in a closed form. 
In the signal modulated case, where the nonlinear 
length LNL is a function of time, eq. (1) is not valid. 
However, eq. (1) reveals that noise at time t will 
depend on the neighbouring samples into a proper 
memory window. Hence, in this case we expect that 
eq. (1) can still be used for evaluating the noise 
statistics at any time t  by substituting the signal 
power P(t) with a low-pass filtered version obtained 
using a windowed Fourier transform. We found that a 
proper filtering window is : 
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which well works for values of LD close to zero, i.e. at 
small in-line residual dispersions.  For instance, at 
each sampling time tk of a return-to-zero RZ-DPSK 
signal with sinusoidal intensity profile, the noise PSD 
can be evaluated by solving (1) with the reduced 
power: 
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while for NRZ-DPSK P(tk) still coincides with the peak 
power Ppeak. We assumed all equal PSDs at the 
sampling time, from which we evaluated the BER 
through a standard Karhunen-Loéve method for 
quadratic receiver in Gaussian random variables. 
 

 
Fig. 2 Q-penalty vs. transmitted OSNR for NRZ-DPSK 
(left) and RZ-DPSK (right) for the experimental 
system  tested in  [2] at P= 7 dBm. 
 
We first tested our model by trying to replicate the 
results shown in [2]. Fig. 2 shows the experimental Q 
penalty measured  in [2] with circles and the 
prediction of our model with NRZ-DPSK (left) and RZ-
DPSK (right) (duty cycle 33%) for a signal power of 7 
dBm. For the system parameters see [2]. For the RZ 
case we plot the Q penalty as measured by using the 
average Pavg, the peak Ppeak and the effective Pe  
power obtained by our approach.  With Pe the Q-
penalty well approximates the experimental results so 

that we conclude that the power correction in (2) 
becomes necessary whenever the signal power is 
modulated. 
We numerically tested the BER obtained by our 
model, and compared it with the exact BER for a  
Gaussian noise  evaluated with the algorithm 
proposed in [4]. We used a full in-line compensated 
RZ-DPSK (duty cycle 50%) amplified system, with 20-
span  of a 2 ps/nm/km transmission fibre, with 
optimized pre- and post-compensating fibres. We set 
LA/L∆=0.35 which corresponds to a bit rate equal to 
40 Gb/s while the received average nonlinear phase 
was 0.3π. 
Fig. 3 shows the exact BER (down-triangles), the one 
obtained with our model (up-triangles), and for 
comparison the BER as obtained by measuring the 
PSD at the sampling times with the time-averaged 
signal power (circles) and peak power (diamonds). 
The exact BER can be obtained by using an effective 
signal sampled power as measured with our model, 
while with the average/peak power one under/over 
estimates the BER. 

 
Fig. 3 BER vs. OSNR for a 40Gb/s 20-span full 
compensated system. Triangles-up: Exact BER. 
Triangles-down: proposed model. Circles/diamonds:  
proposed model with the average/peak signal power. 
 
Conclusions 
We show that in dispersion-managed systems the 
nonlinear phase noise can be described through a 
standard parametric gain approach in Gaussian 
random variables, for which we provide a model for 
the statistics. 
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