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Abstract We show that kerr-induced nonlinear effects in long-haul dispersion mapped WDM systems follow general
scaling laws that quickly allow both finding the best dispersion map and setting up accurate numerical simulations.

Introduction
The performance of an optical wavelength-division
multiplexed (WDM) transmission system in the non-
linear regime depends on self-phase modulation
(SPM), cross-phase modulation (XPM), four-wave mix-
ing (FWM), parametric gain (PG), and their interplay
with group-velocity dispersion (GVD). The balance
among these effects can be optimized by a careful
link design through the use of pre-, in-line and post-
compensation fibres. The numerical optimization of
system performance is a very time-consuming task,
which is usually carried out by introducing several ap-
proximations which neglect part of these effects. In this
paper, we address the problem of finding general scal-
ing rules that help the designer to i) identify systems
with equal performance ii) setup the numerical param-
eters for a correct and fast simulation. To this aim, we
study a WDM system with on-off-keying (OOK) modu-
lation and non-return to zero (NRZ) pulses over a wide
range of bit rate, power and spectral efficiency, showing
how they can be combined into simple scaling rules.

Theory
It has been shown in [1] that an ultra-long periodic
dispersion-mapped system, having N spans of L km
each, with transmission fibre attenuation α, nonlin-
ear coefficient γ and dispersion coefficient D, can
be described by the dispersion-managed nonlinear
Schrödinger equation (DMNLSE). For a single chan-
nel A(z, t) normalized to its peak power Ppeak, the
DMNLSE can be written in integral form as:
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where t is the retarded time normalized to d/R, R being
the bit rate and d the duty cycle; LNL = αL/

(

γPpeak
)

is the span-averaged nonlinear length; LD is the span-
averaged dispersion length, which can be derived from
the normalized in-line dispersion ξin = −N · L/LD =
χDin, being Din [ps/nm] the in-line dispersion cumu-
lated after N spans. The normalized-to-standard con-
version factor is χ = (λR/d)2/(2πc), with λ the chan-
nel wavelength and c the speed of light. We call S =
χ∆D/α the strength of the terrestrial map [2], propor-
tional to the deviation of the transmission fibre disper-
sion D from its average, i.e. ∆D = D−Din/(NL). The
fibre kernel r (t1t2) has two-dimensional Fourier trans-
form r (ω1ω2) = (1+ jsgn(S)ω1ω2)

−1, being ω1,2 an-

gular frequencies. The DMNLSE reveals that the non-
linear effect at time t depends on the signal over a
memory time window that scales with

√

|S|. More-
over, for small S, the SPM effect scales with the ratio
|S|/LNL. The XPM effect can be well described by the
simple model in [3], in which the XPM distortion is ob-
tained as a filtering of the interfering WDM channels.
Here we generalize such model to our ultra-long case
by including XPM in (1) and by exploiting a lineariza-
tion of the interference perturbation as in [3]. Below
we report, for the first time, a closed-form expression
of the XPM filter HX that relates the received optical
field distortion to the AC power of an interfering chan-
nel, placed p times the channel spacing ∆ f [Hz] to the
left of the reference channel:
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where, similarly to ξin, we introduced the normalized
cumulated dispersion ξpost of a post-compensating fi-
bre placed right before the receiver. ΦNL = EbNL/LNL
is the average cumulated nonlinear phase, being Eb
the normalized average energy per bit. η = (R/d)/∆ f
[bit/s/Hz] is the WDM system spectral efficiency. The
closed form expression (2) allows to gain physical in-
sight into the XPM impact. For instance, the number
of interfering channels that must be accounted for in a
fair simulation with XPM scales with the bandwidth of
(2). As a worst case with ξin = 0, the bandwidth scales
almost as η/ |S|. HX is also used to estimate the XPM
crosstalk variance [3].

Numerical results
We simulated a 20 × 100 km NRZ-OOK system
with D=8 ps/nm/km, slope 0.058 ps/nm2/km, γ=1.7
W−1km−1, and 95% of in-line dispersion compensa-
tion. Before and after the link, pre- and post-dispersion
compensating fibres have been inserted to optimize
the performance. Such an optimization has been done
by exhaustive numerical simulation for each tested
setup, i.e. for each bit rate, power and spectral effi-
ciency. At the receiver, a 6th order Butterworth filter
of bandwidth Bo = 1.8R for η ≤ 0.5, and Bo = 1.5R
otherwise, selects the central channel of a very large
WDM comb. The scaling properties of the nonlinear
effects have been investigated by testing different bit
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Fig. 1: Nonlinear phase threshold ΦNL @ 1 dB of
OSNR penalty vs. Bit rate R. “◦”: spectral efficiency
η = 0.2; “�” η = 0.4; “�” η = 0.6; “4” η = 0.8. Dashed
line: threshold from the XPM filter (2).

rates in the range 7÷80 Gb/s, and different spectral ef-
ficiencies in the range η = 0.1÷ 0.8. As a reference
starting point in simulations, we verified that at R = 10
Gb/s, and η = 0.4, 19 channels and 64 bits/ch were
enough to accurately evaluate the OSNR penalty in the
presence of cross-channel nonlinearities. Then, for the
other values of R and η we scaled the simulated num-
ber of bits with

√

|S| and the number of channels with
η/ |S|, as observed in the previous section. The last
rule is a conservative worst case bound for XPM. The
Nyquist frequency was chosen to capture at least FWM
between the reference and the last side channel.
Fig. 1 shows in a log-log scale the simulated ΦNL
that gives 1 dB of OSNR penalty vs. back-to-back at
BER=10−5. At small bit rates the curves spread be-
cause of the XPM effect depending on the spectral ef-
ficiency, while at large bit rates, where XPM has disap-
peared, the curves tend to merge, being affected only
by SPM. The dashed line in the figure shows the cor-
responding ΦNL predicted from (2) along the lines in
[4] (only the η = 0.4 case is shown for clarity). The
good match between analytical and numerical results
is also a good indicator that FWM is negligible in this
case study. When SPM dominates, the threshold is
ΦNL ∝ 1/ |S| ∝ 1/R2, i.e. it has slope -2. From the plot
we infer that, for a given spectral efficiency η, there ex-
ists an optimal transmission fibre dispersion length (i.e.
a product DR2) for which the penalty of XPM and SPM
are the same. For the case under investigation with
D = 8 ps/nm/km the best bit rate varies in the range
15÷30 Gb/s by varying η.
Fig. 2 depicts OSNR penalty versus the product ΦNLη
at R = 10 Gb/s and R = 20 Gb/s by varying ΦNL =
0.1π÷0.6π and η = 0.4÷0.7. Here we optimized the
entire link, including in-line dispersion, for each ΦNL
and η. The solid lines represent a best fit of the mea-
sured points showing that the XPM penalty, here dom-
inant, indeed scales with the product ΦNLη.
Fig. 3 shows the 1dB nonlinear threshold vs. strength
in a very large WDM comb when SPM, XPM, FWM
and noise PG act individually. Here we fixed the nor-
malized in-line dispersion to ξin = 1.5 ·10−3, while we
set the post-compensation to either ξpost = 2.5 · 10−3
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Fig. 2: OSNR penalty vs. the product ΦNLη. “�”: η =
0.4; “+”: η = 0.5; “◦”: η = 0.6; “4”: η = 0.7.

(dashed lines) or ξpost = 5 · 10−3 (solid lines). Pre-
compensation was equal to zero. The penalty of XPM
was evaluated from (2) as before, the penalty of FWM
was obtained using the standard undepleted-pump ap-
proximation, and the threshold due to PG was shown
in [2] to scale as ΦNL ∝ |S|1/8 and to decrease with
OSNR. It can be shown that the FWM nonlinear phase
scales as ΦNL ∝ |S|/η2, while the XPM nonlinear
phase as ΦNL ∝ |S|/η when S is large enough. In the
figure, note the opposite impact of post-compensation
on XPM and SPM, which moves the optimal strength
to the right for increasing ξpost , while FWM is basi-
cally unaffected. Finally, as the strength increases from
zero, one can clearly understand from this figure that
the dominant impairment is first FWM, then XPM, then
PG (if the OSNR is sufficiently small) and lastly SPM.

Fig. 3: SPM, XPM, FWM, and PG nonlinear thresholds
ΦNL @ 1 dB of OSNR penalty vs. S. Dashed: ξpost =
2.5 ·10−3. Solid: ξpost = 5 ·10−3. η = 0.2.

Conclusions
We clarified how nonlinear penalties in long-haul WDM
dispersion mapped systems with OOK modulation
scale with the main system parameters, namely map
strength, nonlinear phase and spectral efficiency, thus
showing the regions of operation in which the individual
effects of FWM, XPM, PG and SPM dominate.
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