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Abstract We provide a new expression of the pseudo-random sequence length needed for reliable testing of DM
periodic optical links with optimized pre- and post-compensation, and show that it scales linearly with bitrate.

Introduction
Reliable simulations and measurements of the perfor-
mance of dispersion-managed (DM) optical links are
based on the transmission of a pseudo-random bit se-
quence (PRBS) of length 2n−1, where n must exceed
an a-priori unknown integer m, i.e., the memory of the
DM system. The reason is that the PRBS contains all
patterns of n bits, and it must thus be able to reproduce
all intersymbol-interference patterns.
Knowing the memory of a DM system is of particular
interest in the pseudo-linear regime, where the large
accumulated dispersion may impose unpractical large
values of n in order to correctly reproduce all possi-
ble intra-channel distortions [1]. In [1], the authors
proposed a simple phenomenological estimate of m,
and experimentally validated it at 40 Gb/s for return-to-
zero (RZ) and carrier-suppressed RZ (CSRZ) modula-
tion formats. The formula in [1] is based on the maxi-
mum cumulated dispersion where signal power is large
enough to generate nonlinear effects, and it predicts a
scaling of m with the square of the bitrate R.
In this work we show that for an ultralong DM system
with optimized pre- and post-compensation and with
periodic in-line compensation a different expression for
m applies, which scales only linearly with R. The for-
mula is based on a linearization of the DM nonlinear
Schrödinger equation (DM-NLSE) [2], and is validated
against split-step Fourier (SSFM) simulations of a sin-
gle channel NRZ on-off keying (OOK) signal propagat-
ing into a 20×100 km DM link.

Theory
Starting from a linearization of the DM-NLSE around
a constant wave (CW) solution, in [3] a closed-form
expression of the power spectral density of amplified
spontaneous emission (ASE) noise at the end of a DM
link was provided. The same linearization can be used
for studying the propagation of a low extinction ratio
OOK signal, seen as a CW plus a small information-
bearing field. As in [3], the Fourier transforms P̃(z,ω)

and θ̃(z,ω) of the total field power/phase at coordinate
z and frequency ω, are related to their corresponding
values at the input of the system z = 0 by:

[
P̃(z,ω)

2P θ̃(z,ω)

]
= eM(ω)z

[
P̃(0,ω)

2P θ̃(0,ω)

]
, (1)

where P is the average power, and the matrix exponen-
tial eM(ω)z, detailed in [3], contains all the dispersion-
managed system parameters. For an ultralong N-span
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Fig. 1: Received power using SSFM (circles), eq. (1)
(solid). Dashed: Tx power. R = 100 Gb/s, ξin = 0.

periodic DM system of span-length L � 1/α, with α
the attenuation, such parameters have been shown
to be the nonlinear cumulated phase ΦNL = NPγ/α,
the map strength S = χ∆D/α, and the average cu-
mulated in-line dispersion ξin = χNDin. In the above
expressions, γ is the fiber nonlinear parameter; χ =
(λR/d)2/(2πc) is a normalized-to-standard units con-
version factor (with λ the channel wavelength, d the
pulse duty cycle and c the speed of light); and ∆D =
DT X −Din/L is the deviation of the transmission fiber
dispersion DT X [ps/nm/km] from the in-line cumulated
dispersion per span Din [ps/nm].
We argue that the simplified model (1) contains all the
basic information on the nonlinear propagation of a
practical modulated signal in a DM optical system, in-
cluding the memory of the optical system. Consider
for instance a 20× 100 km DM link, with DT X = 17
ps/nm/km, α = 0.2 dB/km, full in-line compensation
ξin = 0, and no pre- and post-compensation. Fig. 1
shows the response at bitrate R = 100 Gb/s and ΦNL =
0.2π [rad] to the sequence . . .1110111 . . ., which well
approximates the response to a negative Dirac delta.
The dashed line in the figure gives the transmitted
power, the solid line the received power predicted by
the filter (1), while the circles give SSFM simulations.
The figure shows that the presence of the space bit
perturbates the power within a time window whose du-
ration is well captured by the linear model (1).
The useful information about the DM system memory
must be extracted from the system matrix eM(ω)z. Us-
ing a singular value decomposition (SVD), the system
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Fig. 2: (Left): Nonlinear threshold [dB] at 1 dB of OSNR penalty @ BER = 10−5 vs. R and n with full in-line
compensation. (Center+right): OSNR penalty vs. n for various in-line dispersions @ R = 40 Gb/s and ΦNL = 0.15π.

matrix can be expressed as eMz = UDVT , where T

indicates transposition, U and V are orthogonal matri-
ces that diagonalize P = eMzeMT z and Q = eMT zeMz,
respectively, while D is a diagonal matrix whose diag-
onal elements are the nonnegative square roots of the
eigenvalues of P. The geometric interpretation of the
SVD is simple: at a specific frequency ω, the transfer
matrix acting in the power/phase plane introduces first
a rotation through V, then a stretching due to D, and
finally a rotation due to U. When the rotations of U and
V are counteracted by an optimal choice of pre- and
post-compensating fibers [4], then the net effect of the
nonlinear distortion, and thus the memory, comes from
the eigenvalues of D. For small ΦNL, we evaluated the
3 dB bandwidth of such eigenvalues, and used twice
the inverse of the smallest value to get an estimate of
the memory of a DM link with optimized pre- and post-
compensation as:

m ∼=
⌈

4πd√
3

(
3S2 +ξ2

in
)1/4

⌉
, (2)

being dxe the smallest integer larger than x. Since both
S and ξin are proportional to R2, a noteworthy implica-
tion of (2) is that m scales linearly with R.

Numerical Checks
We next check the above theoretical results. Our tar-
get was to measure the DM link memory from SSFM
simulations by varying either the bitrate R or the in-line
dispersion Din of a single NRZ-OOK channel propa-
gating into a 20× 100 km DM system, with DT X =
8 ps/nm/km. For the sake of simplicity we over-
looked fiber’s slope. Once the three system parame-
ters ΦNL, S, ξin have been extracted from the physi-
cal parameters, the simulations acquire a much more
general meaning [3]. We derive information on mem-
ory by measuring the threshold ΦNL that gives 1 dB of
optical signal-to-noise ratio (OSNR) penalty vs. back-
to-back at a bit error rate BER = 10−5 for increasing
PRBS lengths. With this procedure, the nonlinear dis-
tortion remains comparable for all cases. We used
SSFM simulations for the nonlinear propagation into
the fibers and the Karhunen-Loève algorithm for semi-

analytical BER estimation. First we checked the impact
of strength S by analyzing a fully compensated sys-
tem. We used -173 ps/nm of pre-compensation before
transmission and we optimized the post-compensation
after transmission for each R in the longest PRBS case,
corresponding to 217 = 131072 bits. The propagation
inside the pre- and post-fibers were assumed purely
linear. Fig. 2(left) gives the nonlinear threshold vs. the
PRBS length and the bitrate R. The threshold is repre-
sented in a dB scale as 10log10 (ΦNL/(0.1π)), so that
threshold penalties are equal to power penalties. The
solid line with circles gives equation (2), and it captures
quite well the edge of the stable zone of the contour, i.e.
with horizontal levels, where the threshold is indepen-
dent of the PRBS length.
In the center and right plots of the same figure we
fixed ΦNL = 0.15π and S = 0.35 (i.e. R = 40 Gb/s
in this case) and measured the OSNR penalty by
varying the cumulated in-line dispersion. The center
graph refers to Din = −70,−60,−40,−20, 0 ps/nm,
the right graph to Din = 0, 20, 40, 60, 70 ps/nm. Here
the pre-compensation was chosen as −173− N−1

2 Din
ps/nm [4] while the post-compensation was optimized
to 223− N−1

2 Din ps/nm. Solid lines refer to SSFM sim-
ulations, while dashed circles refer to approximate for-
mula (2). We note that (2) gives a good estimation of
DM system memory when the in-line dispersion does
not exceed ±50 ps/nm, i.e. when |ξin| . 6|S|.

Conclusions
We proposed a novel expression for the minimum num-
ber of bits required to correctly test the performance of
a dispersion-managed optical system. We showed that
such a number scales linearly with the bitrate R.
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