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of Single-Channel DPSK/DQPSK Systems
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Abstract—This paper presents a novel method based on a
parametric gain (PG) approach to study the impact of nonlinear
phase noise in single-channel dispersion-managed differentially
phase-modulated systems. This paper first shows through Monte
Carlo simulations that the received amplified spontaneous emis-
sion (ASE) noise statistics, before photodetection, can be rea-
sonably assumed to be Gaussian, provided a sufficiently large
chromatic dispersion is present in the transmission fiber. This
paper then evaluates in a closed form the ASE power spectral
density by linearizing the interaction between a signal and a noise
in the limit of a distributed system. Even if the received ASE is
nonstationary in time due to pulse shape and modulation, this
paper shows that it can be approximated by an equivalent sta-
tionary process, as if the signal were continuous wave (CW). This
paper then applies the CW-equivalent ASE model to bit-error-rate
evaluation by using an extension of a known Karhunen–Loéve
method for quadratic detectors in colored Gaussian noise. Such
a method avoids calculation of the nonlinear phase statistics and
accounts for intersymbol interference due to a nonlinear wave-
form distortion and optical and electrical postdetection filtering.
This paper compares binary and quaternary schemes with both
nonreturn- and return-to-zero (RZ) pulses for various values of
nonlinear phases and bit rates. The results confirm that PG deeply
affects the system performance, especially with RZ pulses and with
quaternary schemes. This paper also compares ON–OFF keying
(OOK) differential phase-shifted keying (DPSK) systems, showing
that the initial 3-dB advantage of DPSK is lost for increasing
nonlinear phases because DPSK is less robust to PG than OOK.

Index Terms—Differential phase-shift keying (DPSK), differ-
ential quadrature phase-shift keying (DQPSK), Karhunen–Loéve
(KL) transforms, nonlinear phase noise, parametric gain (PG).

I. INTRODUCTION

O PTICAL phase-shift keying (PSK) modulation formats
are a promising technique to increase the performance

of long-haul transmission systems [1]–[4]. Compared with
the conventional ON–OFF keying (OOK) format, PSK formats
detected with an optical delay demodulator and a balanced re-
ceiver have the major benefit of a lower optical signal-to-noise
ratio (OSNR) requirement, which leads to an increased system
margin and an extended transmission distance, or equivalently
to reduced a transmitted power and thus an increased tolerance
to fiber nonlinearities.
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However, unlike OOK, the benefits of PSK formats may
be severely limited by nonlinear phase noise [5], i.e., the
amplitude-to-phase-noise conversion due to the nonlinear in-
teraction of signal and amplified spontaneous emission (ASE)
noise during propagation. Such an interaction manifests itself
also as a parametric gain (PG) of the received ASE noise. PG
changes the statistics and the correlation of the ASE noise,
which does not remain white during propagation. Moreover, in
presence of PG and return-to-zero (RZ) pulses whose intensity
is not constant, the ASE statistics are time dependent, and thus
the ASE is a nonstationary process.

Attempts have been made to theoretically study the statistics
of the nonlinear phase noise in order to assess the bit error rate
(BER) of binary differential PSK (DPSK) receivers based on
ideal phase discriminators, but an exact expression of these sta-
tistics was found only at zero group-velocity dispersion (GVD)
[6], [7] while an approximate expression including GVD based
on a phenomenological argument was presented in [8].

In this paper, we take a different approach to BER eval-
uation, which does not need the phase noise statistics. We
first numerically show that in practical dispersion-managed
(DM) systems, working at a sufficiently large OSNR and in
which some local GVD is present, the received ASE noise
before photodetection can still be reasonably modeled by a
Gaussian process. Thanks to this result, the system BER can
be evaluated through a rigorous Karhunen–Loéve (KL) method
for square-law detectors, which leads a generalized chi-square
distribution of the sampled current in the electrical domain
[9]. Then, focusing on a practical balanced PSK receivers
based on Mach–Zehnder delay demodulators, we extend the
KL method to DPSK/DQPSK modulation formats, much like
what is done in [9] and [10]. The main contribution of our
paper is in the extension of the method to the case of a
nonwhite ASE noise before demodulation, providing a BER
that accounts not only for the intersymbol interference (ISI) due
to propagation, optical, and electrical postdetection filtering,
but also for noise PG. All the analytical details needed for the
implementation of the extended KL method are provided in the
paper. Moreover, the KL expansion over the Fourier basis [9]
allows a more straightforward numerical implementation of the
BER algorithm, as compared with an alternative method that
explicitly computes the KL eigenfunctions through the solution
of an integral equation [11].

For BER computation with PG, under the above assump-
tion of Gaussian optical ASE, the exact nonstationary power
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Fig. 1. Scheme of the (a) DPSK and (b) DQPSK receiver.

Fig. 2. Setup of the single-channel DM DPSK/DQPSK system.

spectral density (PSD) of the ASE noise can be obtained
through a computationally intensive method based on a lin-
earization of the nonlinear Schrödinger equation (NLSE) [12]
around the noiseless solution obtained through the standard
split-step Fourier method (SSFM). However, its computational
complexity grows as the cube of the number of ASE time
samples, which makes the method extremely time consuming.

In this paper, we get around such an inefficiency by propos-
ing and verifying a novel model, based also on a linearized
version of the NLSE, which leads to an equivalent stationary
ASE process obtained by using a continuous wave (CW) signal
of properly modified peak power, which we call the CW-
equivalent ASE process.

We then apply our novel KL algorithm for BER evaluation
to a comparative study of the performance of single-channel
DM DPSK and differential quadrature PSK (DQPSK) systems,
both for nonreturn-to-zero (NRZ) and RZ supporting pulses.
Results are provided in terms of OSNR penalties for different
DM system parameters.

The paper is organized as follows. Section II describes
the PSK system setup studied throughout the paper. In
Section III, the Gaussian assumption for the received ASE noise
is discussed in DM terrestrial systems of practical interest.
Section IV is devoted to the small-signal model description
and its application to the ASE PSD computation, both in the
NRZ and RZ case. Section V describes the algorithm for BER
evaluation for DPSK/DQPSK signals, both with and without
PG. In Section VI, we numerically verify the accuracy of our
model for BER computation and we provide performance of
comparisons of DPSK/DQPSK systems, as well as OOK/DPSK
systems. In Section VII, we draw our main conclusions.

II. PSK MODULATION FORMATS

Two commonly used implementations of optical PSK for-
mats are based on differential binary and quaternary schemes
[2], [3]. DPSK modulation format is a binary modulation which
encodes the information onto the differential optical phase ∆Φ

between adjacent bits, which can be either 0 or π. The typical
transmitter for NRZ-DPSK requires a CW laser source fol-
lowed by a phase modulator or, alternatively, a Mach–Zehnder
modulator, which is driven by the information data to be en-
coded and generates an optical phase of 0, π. In the case of RZ-
DPSK, a second Mach–Zehnder modulator, synchronized to the
data, is used to carve the output RZ pulses with the required
duty cycle. The DQPSK format utilizes two-orthogonal DPSK
signals, which are differentially encoded with two independent
data streams and then combined. The signal phase on each
symbol belongs to the alphabet {±(π/4),±(3π/4)}, which
leads to the four possible values 0, π/2, π, 3/2 π of the
differential phase ∆Φ. Since for DQPSK, each value of the
optical differential phase corresponds to a pair of encoded bits,
the aggregate signal bit rate, and thus its spectral efficiency, is
doubled with respect to DPSK.

As shown in Fig. 1(a), the detection of the DPSK signal
is commonly based on a Mach–Zehnder interferometer with
a delay equal to the bit time T , followed by the balanced
receiver where half the sum of the input fields at times t
and t− T is detected by one photodetector, while half the
difference is detected by the other [13]. The DQPSK receiver
[see Fig. 1(b)] is usually based on two DPSK demodulators,
which independently detect the in-phase and quadrature signal
components with an additional phase shift of, respectively, π/4
and −π/4 in the Mach–Zehnder interferometer [2].

In Fig. 2, we show the scheme of the single-channel
DPSK/DQPSK multispan DM system that will be studied in the
following sections. All spans, each composed of a 100-km-long
transmission fiber followed by a dispersion-compensating fiber,
have a zero in-line residual dispersion (full span compensation).
For each launched power value, pre- and postcompensating
fibers, placed before and after the transmission line, are always
optimized in order to minimize the BER. The optical filter at
the receiver is Gaussian with bandwidth Bo = 1.8R, being R
the system bit rate. After the balanced receiver, the difference
between the received currents is filtered by a Bessel fifth-order
filter of bandwidth Be = 0.65R and then sampled.
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Fig. 3. Contour plots of ASE joint pdf on an NRZ-DPSK signal before the receiver for OSNR = 25 dB/0.1 nm. Fully compensated span with
Dtx = 0 ps/nm/km (left) and Dtx = 4 ps/nm/km (right). ΦNL = 0.3 πrad.

III. RECEIVED ASE STATISTICS

The ASE noise and the transmitted signal interact during
propagation through a four-wave mixing process that colors the
PSD of the initially white ASE noise components, both in-phase
and in-quadrature with the signal [14]. It is known that signal
and ASE noise have maximum nonlinear interaction strength
at zero GVD, yielding ASE statistics that strongly depart from
Gaussian [6], [7]. In this section, we numerically show that, in
a more practical DM system in which the transmission fiber
has nonzero GVD for effective four-wave mixing suppression,
the joint probability density function (pdf) of the in-phase and
quadrature-received ASE components before detection can be
reasonably approximated with a Gaussian distribution. To this
aim, we estimated the joint pdf of the received ASE before opti-
cal filtering by a Monte Carlo simulation (219 time samples) of
an NRZ-DPSK signal corrupted by the preamplifier noise at the
transmitter. The received OSNR in back to back was 25 dB over
the conventional bandwidth of 0.1 nm. The transmission link
was a single fully compensated span with transmission fiber
chromatic dispersion Dtx. The average cumulated nonlinear
phase was ΦNL = 0.3 π rad, according to the definition

ΦNL = γPLeffN (1)

where γ is the nonlinear fiber coefficient, P indicates the time-
averaged launched power, Leff =

∫ L
0 e−α(ξ)dξ is the effective

length of the transmission fiber with length L and attenuation
α, N is the number of spans, equal to 1 in this case. In (1), we
neglected any nonlinearity in the compensating fibers. In Fig. 3,
we plot the contour levels of the joint pdf of the imaginary
(quadrature) and real (in-phase) optical ASE components, for
Dtx = 0 (left) and Dtx = 4 ps/nm/km (right), down to a value
of 2× 10−6. The left figure confirms that Kerr nonlinearity
alone reshapes the input Gaussian ASE noise into a non-
Gaussian one. On the contrary, with a nonzero transmission
fiber GVD, we obtained the contours shown in Fig. 3 (right),
whose elliptical shapes match those of a Gaussian bivariate
distribution, at least down to the precision of the Monte Carlo
simulation. Being the single span, a worst case for the Gaussian

assumption, such a result holds true also for multiple spans at
the same overall nonlinear phase rotation. In fact, the increased
number of independent ASE sources provided by the in-line
amplifiers greatly accelerates the convergence to a Gaussian
pdf, according to the central limit theorem [15]. Note however
that the Gaussian assumption becomes unreliable at either
very low-OSNR values or at very large nonlinear phases. In
Section IV, we will make this statement more precise by
providing a simple formula, based on the results in [16], relating
the largest nonlinear phase for the Gaussian assumption to hold
and the key DM system parameters.

IV. MODEL FOR ASE PROPAGATION

In this section, we calculate the ASE noise statistics starting
from the NLSE of a single-channel periodic DM system. The
electric field A(z, t), where z is the distance and t the time
normalized to the mark duration d · T , where d is the duty cycle,
propagates in its retarded time frame as

∂A

∂z
= j

1
2Ld(z)

∂2A

∂t2
− j

1
LNL(z)

|A|2A+
g(z)
2

A (2)

whereA(z, t) is normalized to the square root of the transmitted
peak power Ppeak, LNL(z) = 1/γ(z)Ppeak is the local non-
linear length; Ld(z) = (d · T )2/β2(z) is the local dispersion
length referred to the mark duration; g(z) = −(1/LA(z)) +
ΣkGkδ(z − kL) is the net logarithmic gain/attenuation per unit
length, where LA(z) = 1/α(z) is the fiber attenuation length,
and eGk is the power gain of the kth lumped amplifier of the
link placed at z = kL. δ(.) indicates the Dirac’s delta function.
Ld(z), LNL(z), LA(z) and g(z) are z-periodic functions with
period equal to the span length L.

We now normalize A(z, t) to the net fiber gain/attenuation
up to z, i.e.,

A(z, t) = U(z, t)e(1/2)
∫ z

0
g(x)dx = U(z, t)

√
f(z)
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being f(z) = exp(
∫ z
0 g(x)dx). Thus, (2) becomes

∂U

∂z
= j

1
2Ld(z)

∂2U

∂t2
− j

f(z)
LNL(z)

|U |2U +WA(z, t) (3)

where we have also included a zero-mean Gaussian noise
term WA(z, t) with autocorrelation R(z1, z2, t1, t2) =
E{WA(z1, t1)W ∗

A(z2, t2)} at times t1, t2 and coordinates
z1, z2 equal to

R(z1, z2, t1, t2) = δ(t1 − t2)δ(z1 − z2)
∑
k

N0kδ(z1 − kL)

where N0k is the white one-sided PSD of each ASE polar-
ization introduced by the kth amplifier, the asterisk denotes
complex conjugate, and E{.} indicates statistical averaging.

If the transmitted field is a CW, in absence of noise
the solution of (3) is U(z) = e−jΦNL(z), where ΦNL(z) =∫ z
0 f(x)(1/LNL(x))dx is the nonlinear phase cumulated by the

CW, in agreement with (1). By adding the noise contribution,
we search for a perturbed solution of (3) of the kind [14], [17]

U(z, t) = (1 + u(z, t)) e−jΦNL(z) (4)

where u(z, t) accounts for the noise. By inserting (4) into
(3), and by assuming |u|2 	 1, so that higher order powers
of u(z, t) can be dropped [12], [14], we obtain the linearized
NLSE for the perturbation

∂u

∂z
= j

1
2Ld(z)

∂2u

∂t2
− j

f(z)
LNL(z)

(u+ u∗) +WA (5)

where the phase rotation ΦNL in (4) has not changed the statis-
tics of WA. By indicating the Fourier transforms of u(z, t) and
WA(z, t), respectively, with ũ(z, ω) and W̃A(z, ω), where ω is
the angular frequency normalized to R/d, (5) in the frequency
domain rewrites as

∂ũ

∂z
= −j ω2

2Ld(z)
ũ(z, ω)

− j
f(z)

LNL(z)
[ũ(z, ω) + ũ∗(z,−ω)] + W̃A(z, ω). (6)

Thanks to its z-periodic behavior, the local dispersion length
can be written as 1/Ld(z) = (1/Ld) + (1/L∆(z)), where
1/Ld = (1/L)

∫ L
0 (1/Ld(x))dx is the inverse span-averaged

dispersion length, while 1/L∆ accounts for the local deviation
from such an average. Inside each span, we recognize two
different dynamics along z due to the fiber dispersion, a slow
dynamic due to Ld and a fast dynamic due to L∆. We next
move into a reference system that follows the fast dynamic by
making the change of variable

ũ(z, ω) = ã(z, ω)e−j
Θ∆(z,ω)

2 (7)

where Θ∆ = ω2
∫ z
0 (1/L∆(x))dx. Substituting (7) in (6) yields

∂ã

∂z
= −j ω2

2Ld
ã(z, ω)− j

f(z)
LNL(z)

·
[
ã(z, ω) + ã∗(z,−ω)ejΘ∆

]
+ W̃A(z, ω) (8)

where again, the phase rotation in (7) does not change the
Gaussian statistics of the noise W̃A. For a finite received
nonlinear phase, when the number of spans N → ∞, the in-
finitesimal nonlinear phase rotation per span turns out to drive
the evolution of a(z, ω) as a slowly varying z-function span by
span. Thus, drawing upon the idea of separating the fast and
slow noise dynamics, a(z, ω) cannot follow the fast variations
within each span due to LNL(z), f(z), and Θ∆(z), but only
their average effect. Hence, using the method of averaging [18],
we substitute the rapidly varying terms in (8) with their span-
averaged values

〈
f(z)ejΘ∆(z,ω)

LNL(z)

〉
=

1
L

L∫
0

f(x)ejΘ∆(x,ω)

LNL(x)
dx

∆= R(ω). (9)

Introducing the kernel of the transmission link r(ω) ∆=
R(ω)/R(0) [19], (8) rewrites as

∂ã

∂z
= −j ω2

2Ld
ã(z, ω)− jR(0)

· [ã(z, ω) + ã∗(z,−ω)r(ω)] + W̃ (z, ω) (10)

where, thanks to the method of averaging, we substi-
tuted the white ASE W̃A with a Langevin–Gaussian noise
process W̃ [20] with PSD at coordinates (z1, z2) equal to
E{W̃ (z1, ω)W̃ ∗(z2, ω)} = 2σ2δ(z1 − z2), being 2σ2 the one-
sided ASE PSD per unit length. For an N -span link it is
2σ2NL =

∑N
k=1N0k. In terrestrial systems having long spans

(L  LA), we find

r(ω) ∼= 1
1 + jSω2

(11)

where we call S
∆= −(LA/L∆) the map strength of the ter-

restrial DM system1 [21], [22]. It is also R(0) = (LA/L) ·
(1/LNL), which corresponds to the inverse span-averaged non-
linear length. Note that all parameters in the system lengths LA,
LNL, L∆ refer to the transmission fiber.

In the Appendix, we discuss the analytical details of the
solution of (10). Such a solution yields a stationary Gaussian
noise ã(z, ω) whose in-phase and quadrature components are
correlated by PG and whose normalized PSDs have the closed-
form expression given in (28). Such an expression can be shown
to coincide with the PSDs obtained in [23] in the limit N → ∞.

It is easy to verify that (10) is a linearization of the DM-
NLSE of Ablowitz and Hirooka [19]. The limits of applicability
of the method of averaging are discussed at length in [24],
where it is shown that the method holds for small nonlinear
phase rotations per span. We verified that the DM-NLSE yields
very accurate PSDs when the nonlinear phase rotation per span
is roughly below 0.02 rad and qualitatively reasonable results
up to nonlinear phase rotations per span of 0.1 rad.

Closer examination of (28) reveals that, in the long-span
terrestrial map case whose kernel r(ω) is given in (11), the

1Note that we associate to S the sign of the transmission fiber disper-
sion Dtx.
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ASE PSD solely depends on the three following dimensionless
parameters: 1) the strength S; 2) the normalized average in-line
dispersion z/Ld; and 3) the peak nonlinear phase ΦNL(z) =
(z/LNL)(LA/L). These three parameters provide general scal-
ing rules both for the noise PG analysis and for the general
design of DM terrestrial systems.

The model described by (10) is linear, so that ASE keeps
its initially Gaussian statistics also after propagation. In [16], a
simple bound on the average cumulated nonlinear phase was
provided, below which, the Gaussian ASE assumption was
guaranteed to hold in the evaluation of system penalties in long-
haul DM terrestrial OOK NRZ systems. Such a bound [16, Eq.
(11)], written in terms of our normalized system parameters, is

ΦNL =
(
12
√

2 |S|κ3 ∆ν
R/d

OSNR

) 1
4

(12)

where

OSNR =
P

2N0∆ν
(13)

is the OSNR in absence of PG, and where ∆ν = 12.5 GHz
(0.1 nm) is the conventional bandwidth for the OSNR measure-
ment, κ = P/Ppeak is the average energy per bit, and N0 =
2χσ2z is the one-sided PSD for each ASE noise polarization.
χ = (d/R)Ppeak is a conversion factor from normalized to
standard units.

A. Effects of Pulse Shape on ASE

Since the proposed ASE model is based on a CW assumption
for the signal, it does not take into account the influence of a
signal modulation and pulse shape. We investigated the above
subject by first measuring the PSD of the complex signal a(z, t)
for a DM NRZ-DPSK system, i.e., one with constant input
power. We compared the exact PSD computed through the
algorithm of Holzlöhner et al. [12] for a specific modulating
bit sequence, and that of the proposed solution based on a CW
signal of power equal to the normalized peak power Ppeak = 1.
According to our stationary ASE model, the normalized PSD
of a(z, t) coincides with the trace of the matrix G in (28).
Since the true PSD provided by the numerical algorithm in
[12] is nonstationary, for the comparison, we evaluated it at
times ts placed at the center of the information bits. The
analyzed 20 × 100 km DM system had Dtx = 8 ps/km/nm, and
z/Ld = 0, with optimized pre- and postcompensating fibers.
The average cumulated nonlinear phase was ΦNL = 0.3π.
Fig. 4 shows our CW-equivalent PSD (dashed line) and the
exact PSDs (algorithm in [12], solid lines), one for each bit,
versus normalized frequency fn = ω/2π, at a strength S =
0.03 (i.e., R ∼ 10 Gb/s). The exact nonstationary PSD traces
are found to almost coincide at all considered sampling times,
so that the received ASE is quasi-stationary in time [22]. The
good match with our CW-equivalent ASE PSD was expected,
since here the normalized signal power remains almost constant
in time and equal to one.

On the other hand, for RZ-DPSK systems, the received noise
is nonstationary in time and its PSD follows the signal power

Fig. 4. Normalized ASE PSD versus frequency fn for a DM 20 × 100 km
NRZ-DPSK system with z/Ld = 0, ΦNL = 0.3π, S = 0.03. Dashed
line: CW-equivalent ASE PSD (28); solid lines: exact PSDs at each sampling
time [12].

Fig. 5. Exact normalized ASE PSD [12] versus frequency fn and time t for
the same link of Fig. 4 but RZ-DPSK modulation and S = 0.1. On the back:
transmitted (dashed line) and received (solid line) power in arbitrary units.

profile P (t), as shown in Fig. 5 for a duty cycle d = 0.5. Here,
we plot the exact PSD [12] versus frequency and time for the
same link of Fig. 4 but at strength S = 0.1. In the figure, we
also show the power (dashed line) of 8 of the 16 transmitted
bits and the corresponding received signal power (solid line)
in arbitrary units. In spite of the nonstationarity of the noise,
the PSD is almost cyclostationary with period equal to the bit
time, which suggests that an equivalent quasi-stationary model
for the noise PSD should exist. We therefore expect that our
CW-equivalent model still applies by using as the CW reference
power a proper effective value Peff(ts) at times ts. The intuition
about the appropriate value of Peff comes from (10), which
reveals that, at a specific ω, the noise field gets energy from
the CW only within a proper frequency bandwidth. Such a
bandwidth, which is essentially set by the bandwidth of the
kernel r(ω), corresponds to a finite memory window, in the time
domain. Hence, we expect that the effective power Peff(t) to
be a filtered version of the transmitted power P (t) over such a
time window. For instance, in the limit of a very narrow time
window, Peff(t) should coincide with the local power at
time t (thus Peff(ts) = Ppeak), while for a very large memory
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Fig. 6. Normalized ASE PSD versus frequency fn for a 20 × 100 km
RZ-DPSK system with z/Ld = 0, ΦNL = 0.3π, and (a) S = 0.03, (b) 0.1,
(c) 0.35. Dashed line: CW-equivalent model; solid lines: exact model [12].

time window, the noise interacts with the average power on such
a window (thus, Peff(ts) = P ). For the terrestrial kernel (11),
we empirically found that a proper windowing filter for a fully
compensated system is

H(ω) =
1

1 +
(
S
4ω
2
)2 (14)

so that Peff(t) = P (t)⊗ h(t), where h(t) is the inverse Fourier
transform of H(ω), while ⊗ denotes convolution. Hence, the
quasi-stationary ASE noise PSD at time ts can still be evaluated
from (28), in which we use Peff(ts) in place of Ppeak in
the evaluation of ΦNL. The periodicity of Peff(t), due to the
periodicity of the PSK signal power, agrees with the observed
cyclostationarity of the ASE noise shown in Fig. 5. In Fig. 6,
we compare the exact ASE PSDs [12] at times ts with our
CW-equivalent ASE PSD for an RZ-DPSK 20 × 100 km DM
system with duty cycle d = 0.5 and ΦNL = 0.3π. The tested
strengths are S = 0.03, 0.1, 0.35, which correspond to bit-rates
R ∼= 5, 10, 20 Gb/s when Dtx = 8 ps/nm/km. Note that the
PSD at fn = 0 is now a function of strength S, and decreases
from small S to large S, as predicted by (14).

V. BER EVALUATION

The assumption of Gaussian statistics for the ASE noise be-
fore detection allows us to compute the BER of DPSK/DQPSK
systems by means of a known KL algorithm for quadratic
detectors in Gaussian noise [9], which we suitably modified for
PSK modulation formats, much as in [10], and extended them to
include PG. For an accurate BER evaluation the KL algorithm
is mandatory, since a Gaussian approximation for the electrical
sampled current statistics has been shown to fail for the DPSK
format [11].

A. DPSK Case

1) No PG: Let us start with the DPSK modulation in ab-
sence of PG. Fig. 1(a) depicts the DPSK receiver, where we
imagine to collect all amplifiers’ noise into a white Gaussian
source, added to the optical signal s(t) (obtained through
the noiseless SSFM) before the optical filter with frequency

response Ho(f). The one-sided PSD of each noise polarization
N0 can be expressed as a function of OSNR from (13). As
in [9], for OOK formats, the signal is expanded in Fourier
series on its period NbitT as s(t) = ΣL̄

l=−L̄sle
j2πl(t/NbitT ),

where Nbit is the number of transmitted bits, and L̄ takes
into account the nonnegligible harmonics of s(t). Note that, in
this section, time and frequency are not normalized. Besides,
a KL expansion on the Fourier orthonormal basis is applied to
the noise around the sampling time tk = t0 + (k − 1)T, k =
1, . . . , Nbit, so that the noise copolarized with the signal is2

w(t) = Σ∞
i=−∞wie

j2πi(t−tk+T0)/T0 with tk − T0 < t < tk. T0
is a measurement time longer than the receiver memory time,
which in practice can be assumed as finite and equal to

T0 = µ

(
1
Bo

+
1
Be

)
+ T

where µ plays the role of time-expansion factor, as defined
in [9], and T is the memory time of the Mach–Zehnder
delay demodulator. The Fourier coefficients wi are complex
independent identically distributed Gaussian random variables
(RVs) with zero mean and real and imaginary components of
variance σ2w = N0/(2T0). After the optical filter, the Fourier
series of the noise is n(t) = ΣM

i=−Mnie
j2πi(t−tk+T0)/T0 , where

M accounts for the nonnegligible harmonics of w(t) selected
by the optical filter and ni = wihi, with hi = Ho(i/T0), i =
−M, . . . ,M , are still Gaussian RVs. We also define the optical
signal at the Mach–Zehnder input as e(t) = s(t) + n(t), yield-
ing a photodetected current before the electrical filter HR(f)
equal to

y(t) =
1
4
|e(t) + e(t− T )|2 − 1

4
|e(t)− e(t− T )|2

=Re {e(t)e∗(t− T )} . (15)

The signal at the sampler is I(t) = y(t)⊗ hR(t), where hR(t)
is the inverse Fourier transform of HR(f). The insertion of
the Fourier series expansion of s(t) and n(t) in I(t) yields a
quadratic form for the sampled current I(tk) at time tk [9],
which can be expressed in a vector notation as

I(tk) = ck + n†vk + v†
kn + n†Tn (16)

where † indicates transpose conjugate, k = 1, . . . , Nbit, and

1) ck is the sampled current at time tk in absence of noise;
2) n = (n−M , . . . , nM )T is a (2M + 1)-column vector of

the Gaussian RVs ni, where T indicates the transpose
operation;

3) T = (1/2)(D†Q + Q†D) is a (2M + 1)× (2M + 1)
matrix that accounts for the noise-to-noise beat, where
the matrix Q has components3 qim = HR((m− i)/T0),
with i, m = 1, . . . , 2M + 1, and D is a diagonal matrix
of elements dii = e−j2π(i−M−1)T/T0 ;

2In the following calculation, we neglect the impact of the noise orthogonal
polarization. We will discuss its inclusion at the end of the analysis.

3Note that in [9], the indexes m and i were erroneously inverted. The
typo was corrected in E. Forestieri, J. Lightwave Technol., vol. 21, p. 1592,
Jun. 2003.
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4) vk = (1/2)(D†xk + xk−1) is a (2M + 1)-
column vector which accounts for the received
signal at time tk, while xk has components
xki = ΣL̄

l=−L̄ŝlie
j2π(kl/Nbit), i = 1, . . . , 2M + 1, where

ŝli = slHR((l/NbitT )−((i−M−1)/T0))ej2πl(to/NbitT ).

The elements xki and ŝli can be viewed as the compo-
nents of the Nbit × (2M + 1) matrix X and (2L+ 1)×
(2M + 1) matrix Ŝ, respectively. By this way, we have
that X = F̂ · Ŝ, where the Nbit × (2L+ 1) matrix F̂
has components ej2πkl/Nbit . This matrix product can
be quickly evaluated by observing that it is F̂ = F · Î,
being F the Nbit ×Nbit Fourier matrix whose (k, l)
element is still equal to ej2πlk/Nbit , and Î = [I, I, . . . , I]
is a repetition of NT = (2L+ 1)/Nbit instances of the
identity matrix.4 Note that NT is the number of discrete
points per bit of s(t). We finally have X = F · (̂I · Ŝ).
The first product can be quickly evaluated by the fast
Fourier transform (FFT) algorithm, while the second
involves only NT nonzero multiplications per row, which
implies an under sampling of s(t).

The insertion of the optical-filtering transformation n = How
in (16), with Ho = diag{hi}, yields n†Tn = w†H†

oTHow =
w†Aw, where the matrix A is Hermitian. A can be diag-
onalized by the unitary matrix U formed by its eigenvec-
tors, corresponding to the eigenvalues λi, i = 1, . . . , 2M + 1.
Since a unitary transformation does not change the statistics
of the white Gaussian vector w, after diagonalization one can
express the sampled current as a sum of independent chi-square
RVs. Strictly speaking, the introduction of the whitened vector

z ∆= U†H−1
o n allows us to write the received current in (16) as

I(tk) = ck +ΣiM
i=1λi|zi + (bki/λi)|2 − ΣiM

i=1(|bki|2/λi)

where iM = 2M + 1 and, for a fixed k, bki, i = 1, . . . , iM
are the components of the complex vector bk = U†H†

ovk.
The covariance matrix of z is E{z · z†} = 2σ2wI; hence, zi
are independent identically distributed complex Gaussian RVs.
The RVmk = ΣiM

i=1λi|zi + (bki/λi)|2 is a noncentral quadratic
form of Gaussian RVs with a moment generating function
(MGF) equal to [25], [26]

Ψmk
(s) =

iM∏
i=1

exp
(

αkis
1−βis

)
(1− βis)

ξ/2
(17)

where αki = |bki|2/λi and βi = 2λiσ2w, and ξ = 2 since the zi
are complex RVs. From the MGF of mk, one can finally eval-
uate the BER through a saddle point integration, as described
in detail in [9]. Notice that the BER should not be derived
from the inverse FFT of the MGF because the tails of the
corresponding pdf are limited by a numerical precision. If there
is ASE in the orthogonal polarization with Fourier coefficients

4Since Nbit is usually a power of 2, for NT to be an integer, one should
choose an expansion of s(t) over 2L frequencies (instead of 2L + 1) and
choose L as a power of 2.

n̂, an additional quadratic form n̂†Tn̂ should be added to (16).
This new term leads to an MGF as before but by using ξ = 4.
2) With PG: As shown in the Appendix, the inclusion of

noise PG breaks the symmetry between the in-phase and
quadrature noise PSD, which calls for doubling the dimension
of w. Moreover, (29) reveals that PG acts as a transfer matrix H
on the noise w(t). These conditions ensure the reliability of the
above procedure, even with PG, provided that n(t) is whitened.

To this aim, we decompose the vectors n and w in their
real and imaginary components, e.g., n = nr + jni, which
we compact in the vector notation into nd = [nr;ni] and
wd = [wr;wi], respectively, with doubled dimension 4M + 2.
Equation (16) can be written in terms of nd as

I(tk) = ck + nT
dvd + vT

dnd + nT
dTdnd (18)

where vd = [vr;vi], and Td =
[
Tr −Ti

Ti Tr

]
, where the in-

dexes (r, i) indicate the real/imaginary component of vk and
T, respectively. We need to relate nr,ni to the corresponding
complex Fourier coefficients of the in-phase and quadrature
components np,nq of n(t). It turns out that by introducing the
vectors nPG = [np;nq] and wPG = [wp;wq], we get

nPG = HPGwPG
∆=
[
H11 H12

H21 H22

]
wPG (19)

where Him = diag{him(l/T0)}, (i,m) =(1, 2), and l = −M,
. . . ,M includes the effect of the link of the postcompensating
fiber and of the optical filter on the noise. The relation between
him and the received PSD is written in (29). Under the as-
sumption of equivalent-stationary noise the PSD is evaluated
using Peff(ts), which turns out to be the same for all bits due
to the periodicity of the DPSK signal. We observe that with
PG the GVD of the postcompensating fiber affects the statistics
of the colored ASE noise, unlike the case without PG, where
the circularly symmetric noise remains unchanged. By writing
n = np + jnq, and using (21), the vector nd can be easily
related to nPG by the relationship nd = BnPG, where the
(4M + 2)× (4M + 2) matrix B takes the form

B =
1
2

[
I + Do j(I − Do)

−j(I − Do) I + Do

]
. (20)

In (20), Do is a (2M + 1)× (2M + 1) matrix equal to one
on the off-diagonal elements and 0 otherwise. It follows that
nd = BHPGB−1wd

∆= HBwd, where HB is a real matrix.
We can repeat the same steps followed in presence of a white
noise, obtaining again a quadratic form for I(tk) but now
with iM = 4M + 2. The matrix A is now a symmetric real
matrix equal to HT

BTdHB, and the whitening operation on the
received noise yields z ∆= UTH−1

B nd, whose covariance matrix
becomes E{z · zT } = σ2wI here. We finally have the same MGF
as in (17) but, now, with ξ = 1, since in this context, the zi
components are real RVs. βi and αki are computed by using
the new eigenvalues and eigenvectors of matrix A with PG.

In this case, the ASE in the orthogonal polarization requires
the replacement of (1− βis) with (1− βis)(1− β̂is) in the
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Fig. 7. Q-penalty versus transmitter OSNR for NRZ- (left) and RZ-DPSK (right) for the experimental system tested by Kim and Gnauck in [13] with a launched
power of 7 dBm and d = 0.33.

denominator of the main fraction only, with β̂i evaluated in
absence of PG.

B. DQPSK Case

Fig. 1(b) shows the DQPSK receiver. We infer from it that
the insertion of the phase shifts of π/4 or −(π/4), respec-
tively, on the upper and lower arm of the receiver, gives an
output signal in absence of noise equal to cos(∆Φk − (π/4))
and sin(∆Φk − (π/4)), where ∆Φk is the differential optical
phase at the sampling time tk. Because the decision symbol
is equal to ±1/

√
2, we identify two DPSK modulated signals

on each receiver’s arm, IP (tk)
∆= Ik and IQ(tk)

∆= Qk, re-
spectively, which allows us to apply the extended KL method
previously described, both with and without PG. Hence, Ik and
Qk can still be written as quadratic forms as in Section V-A,
but now, the signal vector is equal to vk = (1/2)×
(D†xke

∓j(π/4) + xk−1e
±j(π/4)), and the noise-to-noise beat

matrix becomes T = (1/2)(D†Qe∓j(π/4) + Q†De±j(π/4)),
where the upper/lower sign before π/4 in the exponential terms
refers to the computation of Ik/Qk. In general, the RVs Ik and
Qk are not independent, but, as an average case, we compute
the BER of the DQPSK signal as if they were [27]. The overall
BER is defined as

BER = (1/2)[1− (1− PQ)(1− PP )] � (1/2)(PQ + PP )

where PQ and PP are the BER on Qk and Ik, respectively.
Alternatively, PQ and PP can be separately studied [28].

VI. RESULTS AND DISCUSSION

In this section, we prove the accuracy of our model for
BER evaluation in the presence of PG by checking it against
experimental and numerical results. We then apply it to the
analysis of PSK system performance, comparing binary and
quaternary schemes.

We first tried to reproduce the experimental results of Kim
and Gnauck in [13] for a 6 × 100 km nonzero dispersion-
shifted link working at 10 Gb/s and with a launched power of
7 dBm. Fig. 7 shows the Q-factor penalty measured in [12]
with circles and the prediction of our model (solid line) for
(left) NRZ- and (right) RZ-DPSK (d = 0.33). Note that for

Fig. 8. BER versus OSNR for a 20 Gb/s 20-span full compensated RZ-DPSK
system (d = 0.5) with ΦNL = 0.2π. Triangles up: BER using the algorithm
in [12]. Triangles down: proposed model by using Peff . Circles/Diamond:
proposed model with P or Ppeak.

our method, the Q-factor is evaluated by inverting the BER.
In each curve, the penalty is referred to the Q-factor at a
transmitter OSNR = 37 dB, which is the highest value used in
the experiment. For the details of the system setup, see [13].
For the RZ case, we evaluated the Q-penalty by using the
CW-equivalent ASE model with either the average power P ,
or the peak power Ppeak, or the effective power Peff obtained
through (14). From the comparison with experimental data, the
case using Peff is found to reasonably fit the experimental data
up to penalties of 2 dB, with some over estimation at lower
values of OSNR.

In Fig. 8, we also numerically tested our BER algorithm
using the CW-equivalent ASE with either P (circles), or Ppeak
(diamonds) or Peff (up-triangles) by comparison with the exact
BER (down triangles) evaluated through the algorithm pro-
posed in [12]. The BER curves are plotted against the received
OSNR and refer to a 20-span fully compensated RZ-DPSK
(d = 0.5) system, with a transmission fiber chromatic disper-
sion Dtx = 8 ps/nm/km, pre- and postfibers optimized, for
S = 0.35 (i.e., R = 20 Gb/s) and for an average ΦNL = 0.2π.
The best fit is again given by the case using Peff , while the use
of P or Ppeak under/overestimates the BER.

We now use our BER algorithm for the numerical study
of both NRZ/RZ DPSK and DQPSK systems, according
to the fully compensated schemes explained in Section II.
The performance is measured in terms of OSNR penalty (at
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Fig. 9. OSNR penalty versus S for (left) NRZ and (right) RZ (d = 0.5) (top) DPSK and (bottom) DQPSK modulation formats with (solid line) and without PG
(dashed line). Triangles: ΦNL = 0.1π; Circles: ΦNL = 0.2π; Diamonds: ΦNL = 0.3π.

BER = 10−10) referred to back to back at different nonlinear
phases and strengths S. For the DQPSK case, L∆(and thus S)
is referred to the bit rate of the signal.

In Fig. 9, we plot the OSNR penalty versus S for ΦNL =
0.1π (triangles), ΦNL = 0.2π (circles), and ΦNL = 0.3π (dia-
monds) computed with (solid line) and without (dashed line)
PG, for NRZ- (left) and RZ-(right) DPSK (top) and DQPSK
(bottom) signals. We also draw in the top x-axis the bit rate
corresponding to S for the system under investigation (Dtx =
8 ps/nm/km, d = 0.5). The pre- and postcompensation fibers
were optimized for each nonlinear phase in the presence of PG,
and the same values were used even in absence of PG. We
numerically searched the optimal pre- within the normalized
range [−5S, 5S] and the optimal post- by varying the overall
normalized cumulated dispersion, i.e., the sum of the pre-
and postcompensation, within the range [−0.3, 0.3]. The opti-
mal normalized precompensation was found to be very close to
−S log(2), much like in OOK systems [29], while the optimal
total dispersion was close to zero for all tested nonlinear
phase values (hence, postcompensation values were close to
+S log(2)), which is strikingly different from OOK systems.
In all cases, the performance is set by PG at small S, while
the distorting nonlinear effect of self-phase modulation (SPM)
is dominant at large S. For this reason, at each ΦNL, the
distance between the curves with and without PG decreases for
increasing S, both in DPSK and DQPSK. However, RZ pulse
shaping is more robust to ISI both with and without PG at large
S, while at small S, it suffers more from PG than NRZ shaping
[13]. This last conclusion should be expected since, when PG is
dominant, i.e., for small S, in the RZ system, Peff approaches

Ppeak, which is twice that of NRZ shaping. Regarding the
comparison between binary and quaternary systems, we first
note that the reduced distance among the DQPSK symbols
decreases its robustness to SPM with NRZ pulses, while the use
of RZ pulses can actually reduce such an impairment. On the
other hand, PG strongly worsens DQPSK performance, much
more than in the DPSK case. The reason is that the amount
of PG depends solely on the symbol rate, regardless of the bit
rate. Hence, since quaternary formats support two channels at
a halved symbol rate, they are less robust to PG, where PG is
much stronger at lower symbol rates.

It is worth observing that the conclusions drawn from Fig. 9
may change with different dispersion maps, i.e., with a nonzero
in-line dispersion. The presence of a practical in-line dispersion
should not affect the validity of the Gaussian assumption for
the tested nonlinear phases, according to what observed in [16]
and [30]. However, the in-line dispersion is expected to shift
the effective power Peff away from the value predicted by (14),
since it affects the system memory time. Such an issue is worth
of further investigation.

A. Comparison With OOK

We compared the Q-factor of DPSK format with the one of
an OOK modulation with NRZ pulses. For OOK, we evaluated
the BER by following the same lines shown in Section V-A
adapted to an OOK demodulator. A peculiar difference between
the models relies on accounting PG for OOK only during
marks. Moreover, since PG for OOK appears only at large
nonlinear phases [16], we estimated its PSD through off-line
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Fig. 10. Q-factor versus ΦNL for NRZ-DPSK (solid), RZ-DPSK at 50%
duty cycle (dashed), and NRZ-OOK (circles). 20 × 100 km fully compen-
sated system at R = 10 Gb/s (S = 0.02 for Dtx = 8 ps/nm/km), OSNR =
11 dB/0.1 nm.

Monte Carlo simulations as in [16] and [30] to correctly cap-
ture the strongly nonlinear PG. For DPSK, instead, we used
the analytical ASE PSD (28) since the performance rapidly
deteriorates already at small nonlinear phases. For this reason,
penalties are slightly overestimated at large ΦNL, where the
system is however unable to work.

The optical link analyzed is the same as in Fig. 2, working
at an OSNR = 11 dB/0.1 nm. Fig. 10 depicts the measured
Q-factor versus the average nonlinear phase ΦNL defined in
(1), for NRZ-DPSK (solid), RZ-DPSK (dashed) and NRZ-
OOK (circles). From the figure, we note the well-known 3-dB
difference between DPSK and OOK at small ΦNL, while
for increasing ΦNL, we observe different distortions on the
modulation formats, mainly due to PG [30]. As discussed in
Section IV-A, RZ-DPSK is strongly affected by PG since in this
case Peff is close to Ppeak, twice the value than in NRZ-DPSK.
Meanwhile, we observe that OOK for increasing ΦNL recovers
the previously mentioned 3-dB gap, and it overcomes DPSK at
large ΦNL. The reason can be found in the greater PG-induced
increase of the noise quadrature component with respect to
the in-phase one. Such an inflation has a strong impact in
terms of nonlinear phase noise on the performance of DPSK.

VII. CONCLUSION

A PG approach to the ASE noise impact on DM PSK
modulated systems in the nonlinear regime has been presented.
We have shown that in practical DM systems in presence of a
chromatic dispersion, the statistics of the received ASE noise
can still be assumed as Gaussian, and a novel closed-form
expression for the received ASE PSD has been obtained from
a linearization of the NLSE based on a CW signal (28). We
have shown that, even in presence of the signal modulation,
an equivalent stationary ASE process exists, which has the
same statistics as the true nonstationary ASE process at the
sampling times. The CW-equivalent ASE PSD is obtained by
using a lowpass filtered version of the modulating power at the
sampling times in the calculation of the nonlinear phase in (28).

Once the Gaussian ASE statistics are available, the BER can
be computed by extending a known KL method for quadratic
detectors in Gaussian noise. Such an approach avoids the

explicit calculation of the nonlinear phase noise statistics, and
allows taking ISI arising from the nonlinear waveform distor-
tion, optical, and electrical filtering into account. Our method
has shown good agreement with both published experimental
results and exact numerical results obtainable from the method
of Holzlöhner et al. [12] but with very large savings in compu-
tation time.

We finally applied our model to a performance evaluation of
single-channel DPSK and DQPSK systems with both NRZ and
RZ supporting pulses, for varying map strength and nonlinear
phase values, both in the presence of PG and SPM distor-
tion. We found that PG is the main impairment at small map
strengths, especially for RZ pulses. We also found that the
doubled spectral efficiency of DQPSK is paid in terms of a
larger penalty due to PG. In a comparison with a single-channel
NRZ-OOK at 10 Gb/s, we found that the 3-dB OSNR advantage
of DPSK disappears at large nonlinear phases due to the larger
sensitivity of DPSK to nonlinear phase noise.

APPENDIX

SOLUTION OF (10)

In Section IV, in the case of a CW signal, we derived the
averaged (10), which describes the noise dynamics over a slow
spatial scale. To solve such an equation, we now decompose
the perturbation field in its real and imaginary components, i.e.,
a(z, t) = ap(z, t) + jaq(z, t). Having referred the noise to the
signal nonlinear phase [see (4)], ap and aq coincide with the in-
phase and quadrature noise components. In the Fourier domain,
we have ã(z, ω) = ãp(z, ω) + jãq(z, ω), where

ãp(z, ω) =
ã(z, ω) + ã∗(z,−ω)

2

ãq(z, ω) =
ã(z, ω)− ã∗(z,−ω)

2j
(21)

with which we form the column vector ã ∆= [ãp, ãq]T. In
the same way, we write the Fourier transform of the noise
W̃ (z, ω) = W̃p(z, ω) + jW̃q(z, ω) and form the vector W̃ ∆=
[W̃p, W̃q]T. Substituting (21) in (10) yields the following ma-
trix differential equation:

∂ã(z, ω)
∂z

= M(ω) · ã(z, ω) + W̃(z, ω) (22)

with initial condition ã(0, ω) = 0 and with

M(ω) =
ω2

2Ld

[
0 1
−1 0

]
+R(0)

[
ri 1− rr

−1− rr −ri

]
(23)

where rr and ri are the real and imaginary parts of the kernel
r(ω), respectively. Thanks to the method of averaging, (23) is
a linear differential equation with constant coefficients, whose
solution is [18]

ã(z, ω) =

z∫
0

eM(ω)(z−x)W̃(x, ω)dx (24)
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where the matrix exponential can be decomposed as

eM(ω)z = cosh(kz)I +
sinh(kz)

kz
Mz

where I is the identity matrix and ±k the eigenvalues of matrix
M, with

kz =

√
Φ2NL(z) |r(ω)|

2 −
(
ω2

2
z

Ld
+ΦNL(z)

)2
where, at the space coordinate z, ΦNL(z) = zR(0) accounts for
the cumulated nonlinear phase by the CW.

By applying the Wiener–Kinchine theorem [15], we can now
evaluate the PSD matrix of the received ASE noise in (24) as

G(z, ω)=
[
Gpp Gpq
Gqp Gqq

]
∆= lim

τ→∞

1
τ
E
{
ã(z, ω)ã†(z, ω)

}
(25)

where τ is a time window over which we truncate the ASE
terms Wp(z, t) and Wq(z, t). Gpp and Gqq are, respectively,
the PSD of the in-phase and quadrature components of ã, while
Gpq = G∗

qp is the cross spectrum. From (24) and noting that

(eMz)† = eM
†z , we get

G =

z∫
0

z∫
0

eM(z−y)E
{
W̃(y, ω)W̃†(x, ω)

}
eM

†(z−x)dydx. (26)

Because W̃ is the white noise with PSD per component per
unit length equal to σ2, we have E{W̃(y, ω)W̃†(x, ω)} =
σ2δ(y − x)I, which, inserted into (26), gives

G = σ2
z∫
0

eMηeM
†ηdη. (27)

Substituting (23) in (27) yields the following ASE PSD
normalized to σ2z, i.e., the white noise PSD per component
at coordinate z:

G
σ2z

= k0I − k1

[
−ri rr
rr ri

]
− k2

[
rr ri
ri −rr

]
(28)

where
k0 = 1 + 4Φ2NL(z)

|r|2
(2kz)2

(
sinh2kz
2kz − 1

)
k1 = 2ΦNL(z) cosh2kz−1(2kz)2

k2 = 4ΦNL(z)
(

z
Ld

ω2

2 +ΦNL(z)
)

1
(2kz)2

(
sinh2kz
2kz − 1

)
.

If the link is followed by a linear device, e.g., an ideal com-
pensating fiber and/or an optical filter, the output PSD can be
found by a straightforward extension of (25) [15, p. 319]. In the
limit ω −→ 0, we have (Gpp/σ2z) −→ 1 and (Gqq/σ2z) −→
1 + (4/3)Φ2NL; hence, at large ΦNL, the quadrature component
is dominant and manifests itself as nonlinear phase noise.

Since G is a positive semidefinite matrix, it has the represen-
tation G = σ2z(H · H†) [25], where

H =
[
h11 h12
h21 h22

]
=


√
Gpp 0(
G∗

pq√
Gpp

) √∣∣∣Gqq − |Gpq|2
Gpp

∣∣∣
 .

(29)

This condition ensures that the received noise has the same
statistics as a dummy Gaussian white noise with PSD σ2zI
filtered by the transfer matrix H.
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