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Abstract We propose an efficient stratified sampling algorithm for BER estimation and apply it to FEC-coded
DQPSK systems. We measured computational savings up to 70% compared with standard Monte Carlo.

Introduction
The traffic growth of current optical systems has in-
creased the impact of nonlinear effects, leading to a
complex optical propagation that cannot be analyzed
exactly through analytical tools. Numerical simulations
are commonly used to estimate some performance in-
dicators such as the bit error rate (BER). An efficient
BER estimation approach is based on a signal propa-
gation using the split step Fourier method (SSFM), fol-
lowed by receiver analysis using the Karhunen-Loéve
(KL) algorithm [1]. The KL algorithm is based on Gaus-
sian noise statistics, an assumption that may fail in
presence of strong nonlinear phase-noise. A correct
description of such effect has been so far achieved by
brute force Monte Carlo (MC) error counting. Unfortu-
nately, MC simulations are very slow because they re-
quire long bit patterns for accurate estimations. Such
a problem can be partly alleviated at small BER val-
ues (< 10−6) by multi-canonical Monte Carlo (MMC)
algorithms [2]. MMC is however less efficient than MC
at practical BER∼ 10−3 in systems employing forward
error correction (FEC).
In this work we present an improved Monte Carlo
method based on stratified sampling (SS) [3] which is
more efficient than MC even at BER=10−3. The pro-
posed algorithm is very simple, stable, with the same
MC stopping criterion based on the estimated variance.
It also has a significant speed gain compared to stan-
dard Monte Carlo. As a case study, we apply it to both
non-return to zero (NRZ) and RZ differential quadra-
ture phase shift keying (DQPSK) propagation on a dis-
persion managed ultralong haul system and compare
the performance with standard MC.

The Idea
Any Monte Carlo estimation is based on the observa-
tion that the true average value of a random variable I,
E{I}, can be estimated as [3]:

E{I} ≈ 〈I〉± σ̂ = 〈I〉±

√
〈I2〉− 〈I〉2

n
(1)

where 〈I〉 = 1
n ∑k I(k) is the sample mean and I(k),

k = 1, . . . ,n are independent realizations of random
variable I. σ̂ in (1) represents the estimated standard
deviation of 〈I〉 and it is a measure of the accuracy.
The estimated standard deviation σ of I is related to
σ̂ by σ̂ = σ/

√
n. It is thanks to the

√
n factor that

the relative accuracy σ̂/〈I〉 decreases for increasing

Fig. 1: Stratified sampling Idea.

n, making 〈I〉 a good measure of the exact average
value for large n. In our context, I is the error indica-
tor so that I(k) = 1 in presence of an error, 0 other-
wise. E{I} is the desired BER. Such an approach is
inefficient since at small BERs one has to wait many
samples from error to error. An improvement to the
method uses stratified sampling [3], which runs r dif-
ferent MC samplings on r disjoint subsets (or strata)
of the sample space Ω. We applied the method with
r = 2 , as shown in Fig. 1. A point X in Ω is a vec-
tor containing all the random variables (modulating bits
and added noise samples along the line) of a single run
of the simulation. The true transmission system maps
Xk to I(k) at each run k, and uniquely determines the
true error set H : {I = 1}. A faster, approximate model

of the transmission system maps Xk to a different I(k)
F ,

hence determines an approximate error set HF (stra-
tum 1) which hopefully well overlaps with H . Stratum
2 is the complementary set, i.e. Ω\HF . The prob-
ability of each stratum ps is estimated by running nF

times the fast system. Using a subset of the same Xk

samples, k = 1, ..,nF , we now run separate MC simu-
lations using the true system within each stratum, and
estimating the conditional BER 〈Is〉 and variance σ̂2

s in
each stratum as per (1), thus generalizing (1) as [3]

E{I} ≈
2

∑
s=1

ps 〈Is〉±
√

2

∑
s=1

p2
s σ̂2

s . (2)
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Fig. 2: Left: 10×100 km NRZ-DQPSK. Center: 20×100 km RZ-DQPSK. Right: SS algorithm FFT-reduction factor.
KL: Karhunen-Loève. MC: Monte Carlo. SS: proposed algorithm based on stratified sampling.

The number of MC samples within each stratum is
adaptively chosen by propagating sample Xk in stratum
1 in the true system with probability min(1, σ1

σ2
), and in

stratum 2 with probability min(1, σ2
σ1

). If HF is well cho-

sen, the conditional error probability in stratum 1, 〈I1〉,
is close to 1. Hence a gain in efficiency is achieved
since very few samples falling in stratum 1 need to be
propagated in the true system.
However SS has an overhead due to the runs into the
fast system. Efficiency comes from a trade-off between
overhead and spared true runs in stratum 1. The sim-
ulation ends when the relative accuracy in (2) is less
than a given tolerance. Note that in each run we mea-
sure the BER over all the Nb bits of the fast Fourier
transform (FFT) window, hence n true-SSFM runs yield
n ·Nb samples I(k).

Results
Clearly the efficiency of the SS algorithm depends on
the choice of the fast system. We simulated the true
system using a fine SSFM with variable step-size hav-
ing a maximum nonlinear phase rotation per step equal
to ∆Φ = 3 · 10−3 rad [4]. For the fast system we used
a coarse SSFM with phase rotation per step 5 times
greater, which we separately verified yield more than 1
dB error in the Q-factor over a wide range of powers.
The system under investigation had TeralightTM trans-
mission fiber with in-line dispersion compensation and
pre- and post-compensating fibers before/after trans-
mission. The pre-fiber had a residual dispersion of
−290 ps/nm, while post-fiber dispersion was adjusted
to have zero overall dispersion. We used 5 DQPSK
40 Gb/s (R = 20 Gbaud) channels, 50 GHz spaced,
shaped with both NRZ and RZ pulses, using de Bruijn
sequences of 64 bits x channel. The interferometric
receiver used a 2nd order supergaussian optical fil-
ter of bandwidth 1.5R and a post-detection 5th order
Bessel electrical filter of bandwidth 0.65R. In order to
test different configurations we analyzed a 20×100 km
system with RZ pulses and amplifiers with noise figure
F = 4 dB, and a 10×100 km system with NRZ pulses
and F = 9 dB. In the first case we overlooked four wave
mixing (FWM), while in the second we accounted for all
nonlinear effects in the SSFM. We used 25 ps/nm/span
residual dispersion along the line for the NRZ case and
12.5 ps/nm/span for the RZ one. All BER measure-

ments were taken on the central channel at 1550 nm,
at a relative accuracy 0.1, both with the MC and the
SS algorithm. Fig. 2(left) shows the Q factor vs. the
channel power measured using MC (crosses), SS (cir-
cles) and the KL algorithm (no symbols) for the NRZ
case. First, note the inaccuracy of KL at large pow-
ers due to the large nonlinear phase noise induced by
the line, which is neglected by the white noise-based
KL algorithm. Second, the MC and SS show compara-
ble values, consistently with the same tolerance of 0.1.
We repeated the same test for the RZ system obtaining
again the same behavior, with a larger impairment due
to phase noise, see Fig. 2(center).
Having verified that the BER is consistent, we moved
to measure the algorithm efficiency. Since more than
98% of the simulation time was spent in the fibers, we
used as a fair cost-criterion the number of FFTs used
by standard MC and SS. With SS we have to sum the
FFTs of the fast system and the ones of the true sys-
tem. The FFT-reduction factor of SS w.r.t MC (gain),
expressed in %, is shown in Fig. 2(right) vs. power.
Note that we averaged the gain among 4 different sim-
ulations with different seeds in order to exclude possi-
ble best/worst cases. We note that at best SS requires
70% less FFT than MC for NRZ, and 50% for RZ in
absence of FWM. As a reference, with P = 0 dBm in
the NRZ case the MC algorithm used 1.6 · 107 FFTs
while SS, at the same accuracy, used 3.3× 106 FFT
in the fast system and 1.3× 106 in the true system.
It turns out that the trade-off overhead/variance reduc-
tion of SS does give a significant computational time
advantage.

Conclusions
We showed a fast and simple Monte Carlo stratified-
sampling strategy for BER measurement and applied it
to BER estimation of DQPSK systems.
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