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Abstract—We propose an efficient stratified sampling (SS) algo-
rithm for estimating the bit error rate (BER) of a digital communi-
cation system. Our algorithm efficiently exploits the observations
of an approximate, but usually fast, model of the system under in-
vestigation to drive a clever Monte Carlo (MC) estimation based
on SS. The proposed method is faster than standard MC even at
BER in the range �� � to �� �. Moreover, it is possible to eval-
uate the estimated standard deviation of the measured BER, such
as in an MC simulation, so that it is possible to associate a confi-
dence to the results. We test the algorithm both in a simple optical
system distorted by group velocity dispersion (GVD) and in more
complex differential quadrature phase shift keying (DQPSK) sys-
tems. In the last case, we measured computational savings up to
70% compared with standard MC.

Index Terms—Differential quadrature phase shift keying
(DQPSK), Monte Carlo (MC) methods, optical communication.

I. INTRODUCTION

T HE bit error rate (BER) is the main performance param-
eter of a digital communication system. The growing

complexity of optical links has increased the impact of non-
linear effects calling for efficient numerical algorithms for BER
estimation.

An effective and widely adopted BER estimation method
is the Karhunen–Loéve (KL) algorithm [1] based on signal
propagation through the split step Fourier method (SSFM),
followed by semi-analytical receiver analysis using noise ex-
pansion in a suitable base. The KL algorithm gives the exact
BER for common quadratic receivers in presence of additive
Gaussian noise. Unfortunately, there are situations where the
noise is not Gaussian, for instance in presence of nonlinear
phase noise induced by the Kerr effect of the optical fiber
[2]. An approximate extension of the KL algorithm to cope
with nonlinear phase noise was proposed in [3] for moderate
nonlinear phase rotations.

The most widespread BER estimation algorithm, working for
any set-up with the desired error confidence, is so far the direct
Monte Carlo (MC) error counting [4]. Unfortunately, MC simu-
lations are very slow because they require transmission of long
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bit patterns for accurate estimation. Such a problem can be alle-
viated at small BER values by multicanonical Monte
Carlo (MMC) algorithms [5]. To our experience, MMC is how-
ever less efficient than MC at predecoder BER comparable or
larger than , as commonly found in systems employing for-
ward error correction (FEC). One of the reasons is that the first
cycle in MMC is indeed a pure MC. Besides, the MC algorithm
is widely used in the community for three main reasons. First,
it is very simple to implement; second, where MC is based on
independent observations, its accuracy can be associated with a
reliable and simple parameter, i.e., the estimated variance of the
measured BER; third, it produces parallel measurements over
the entire propagated bit-sequence, instead of a single-target bit
as in MMC [6].

Motivated by such features of MC, in this study we present an
improved MC method based on stratified sampling (SS) [4], [7],
which can be more efficient than MC even at BERs in the range

to . The idea of SS is to run independent MC esti-
mations over disjoint subsets forming a partition of the sample
space, motivated by the intuition that one needs a few samples
to estimate the system observable in a given subset if the observ-
able varies very little within such a subset. Clearly, the identi-
fication of a suitable partition is a key point for SS and in this
paper we propose an original solution.

We will show that our practical implementation of the SS idea
is a novel form of adaptive importance sampling (IS) [8].

Optimal IS-biasing requires a detailed knowledge of the
system input/output relation, hence suboptimal, non-adaptive
biasing is usually implemented in traditional IS, either by
biasing the variance [9] or the mean [10] of the known input
sample statistics. However, such simple approaches have sev-
eral drawbacks. Biasing the variance leads to a dimensionality
problem [11], so that the intrinsic IS gain disappears in prob-
lems with large-dimensional input spaces. Unfortunately, this
is the case with standard optical simulations, where the input
space dimension (i.e., the number of random variables that
determine the decision statistic) easily exceeds . Biasing the
mean, instead, requires a signal-dependent optimization that
makes its implementation and control more difficult [11].

The proposed SS algorithm is simple, stable, and has the same
MC stopping criterion based on the estimated variance. It also
has a significant speed gain compared with standard MC. As
a case study, we apply it to a simple system distorted by only
group velocity dispersion (GVD) and a more complex one with
both nonreturn to zero (NRZ) and return to zero (RZ) differen-
tial quadrature phase shift keying (DQPSK) propagated along a
dispersion managed ultralong haul system with wavelength di-
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vision multiplexing (WDM). In both the cases, we compare the
performance with standard MC.

Besides our specific applications in the optical field, our SS
idea can, in principle, be applied to estimate the average value
of any function of random variables.

The paper is organized as follows. In Section II, we introduce
the basics of MC and SS. In Section III, we describe our original
implementation of the SS algorithm. In Section IV, we investi-
gate the performance of the SS algorithm. In Section V, we draw
our conclusions. The Appendix contains a brief introduction of
the SS concept, and to how it can be actually implemented as an
IS algorithm.

II. BACKGROUND

Suppose is a random variable with unknown average value
and variance . is a computationally expensive

function of the random vector taking values
in the input space . We wish to estimate . The maximum
likelihood estimator of is the sample mean,

(1)

with , , where are independent
realizations of the random vector . Such an approach is also
called MC estimation [4], [7], [12]. is an unbiased estimator
of , with standard deviation [7]

(2)

Since is unknown, in order to estimate from simulation
results, it is customary to replace the variance in (2) with its
maximum likelihood estimator, i.e., one computes

Thanks to the factor in the denominator of (2), the stan-
dard deviation of decreases for increasing , making a good
estimator of the true average value for . In this case, it is
possible to find such that the estimated average value and the
true one satisfy the following probability relation [12]:

(3)

where is the confidence level of the estimator, while is
the relative error at confidence ,

(4)

being the -percentile. By the central limit theorem
[12], will have approximately Gaussian statistics, and thus

[12]. For instance, when .
The procedure for an MC estimation is therefore the fol-

lowing. First, set a target relative error with confidence
level . Second, compute . Third, run the MC estimation by
increasing until the relative error .

is a simple measure of the estimation accuracy at a given
confidence level. Such observation is one of the reasons for the

success of MC among estimation algorithms. Another motiva-
tion for using MC relies on the fact that the accuracy is inde-
pendent of the size of , i.e., of the dimensionality of the input
space . This is probably the major motivation for using MC
to estimate integrals in spaces with large dimensionality, where
the complexity of quadrature formulas is too large [4], [7].

Before continuing, let us tailor the previous general discus-
sion to a digital system. becomes the error indicator, equal
to 1 when an error occurs and 0 otherwise. The desired average
value of , , is the probability of error. is a random vector
containing all the random variables of the discrete equivalent
model of the transmission system , including bits and dis-
crete noise samples generated along the line. is the number of
samples, which does not necessarily coincide with the number
of MC runs. Usually, in block simulations such as the ones using
the SSFM and thus based on fast Fourier transform (FFT), at
each run a block of bits is propagated, and all of them can
be used to update the sample mean.

The number of runs required in MC estimation scales as
. Although at BER values in the range to

the number of required runs may not look too large, for very
“expensive” computation of the system output we do have
a strong motivation for looking for more efficient estimation
algorithms.

A known improvement on MC is SS [4], [7], which runs dif-
ferent MC samplings on disjoint subsets (or strata) making up
a partition of the input space . The basics of SS are reviewed
in the Appendix. The key idea is that if is well known within a
stratum, then samples from that stratum have a small vari-
ance, and running a reliable MC estimation in that stratum re-
quires only a few samples, as per (2) and (4). We call the
probability of selecting stratum , with , the
sample mean of the MC estimation within stratum , its cor-
responding standard deviation as in (2), while is the standard
deviation of conditioned on stratum . and are related
through (2). From the total probability law [12], we have that
the global sample mean can be estimated as

(5)

while the variance of such estimator is

(6)

Let be the number of visits in stratum so that
. The basic optimization problem in SS is the following:

for a given number of samples , how should they optimally
be subdivided into the strata? That is, what are the best ,

, so that is minimum? As shown in the Appendix,
the answer is [7]

(7)

The physical interpretation of the result is simple: concentrate
most samples in strata of low knowledge, i.e., large variance.
Using (7), it can be shown that for SS is smaller than the one
for MC [7].
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Fig. 1. Sketch of our implementation of an SS with two strata, � , and � ,
i.e., the sets in input space that provide/do not provide an error in the fast system,
respectively. � and � are error indicators at run � of the fast/true system,
respectively.� is the error set induced by the true system. In this example, the
input� induces an error both in the fast and the true system.

III. THE COARSE/FINE APPROACH

The key issue in implementing SS is identifying strata of good
knowledge. Our novel approach in the choice of the strata is de-
scribed next. We partition the input space in just two strata. The
strata are determined by a coarse, approximate model of the true
system, which we call the “fast system”, since it is much faster
to compute. The idea is sketched in Fig. 1. The true system
maps to at each run , and uniquely determines the
true error set , i.e., the set of all input such that .
The fast system, being an approximate model of the true system,
maps to a different , hence determining an approximate
error set (stratum 1), which hopefully well overlaps with

. Stratum 2 is the complementary set, i.e., . The
probability , , of selecting each stratum is estimated
by running the fast system with independent realizations of
at each run. Meanwhile, using a subset of the same samples,
we run separate MC simulations using the true system within
each stratum, and estimate the conditional BER and variance

in each stratum. From such estimates we can estimate the
global sample mean as in (5) and the variance of such an esti-
mator as per (6).

In order to make our SS scheme efficient we have to visit
each stratum with the optimal strategy (7). If we tested the true
system using all samples used by the fast system in place
of a subset, SS would visit stratum 1 with the probability of
error of the fast system, thus like a standard MC simulation
but different from the request of (7). In order to distribute the
visits between the strata along the lines suggested by the optimal
strategy, we have to skip some tested by the fast system.
To this aim, the number of MC samples within each stratum is
chosen by propagating in the true system sample in stratum
1 with probability , and in stratum 2 with
probability . The motivation behind this
choice is the following. Suppose that . Since all

yielding (i.e., stratum 1) are accepted and therefore
propagated also in the true system. runs in the fast system
yield on average runs in the true system in stratum
1. On the other hand, ; thus we have

runs in stratum 2 of the true system. Hence, the ratio of visits,
in stratum 1, to total number of runs in the true system is

exactly as prescribed by optimal SS, i.e., as derived from (7)
with and . Since the true standard deviations and

are unknown, we use their sample estimates derived from
propagation through the true system, which we adaptively up-
date at each run through the true system.

Note that is the variance of the true error
indicator when samples are in stratum 2 , i.e., no error was
signaled in the fast system. If the fast system is well chosen, i.e.,
if is reasonably close to , a gain in efficiency is achieved
since for most samples in stratum 2 even the true system will
have no errors, yielding and therefore the variance
will be close to zero. Hence, most samples in stratum 2 will not
be propagated in the true system. Such a gain in efficiency is
similar to the one achieved by the improved IS method proposed
in [13] and known as IS with excision [8].

However, our SS strategy has an overhead due to the runs into
the fast system. Efficiency comes from a trade-off between over-
head and skipped runs in the true system. The simulation ends
when the relative accuracy in (4) is less than a given tolerance

.
The SS idea has been described so far for a single error obser-

vation, . However, for a block simulation each contains
bits, hence for each run we have different observations of
. We can take into account all of these observations by ex-

tending the definition of stratum 1 to the set “at least one error
occurs in the fast system over the bits.” Then the SS method
can be applied along the same lines as before. Clearly, for large
values of and high error probabilities it is , thus the
method becomes similar to standard MC.

The basic algorithm is described in Fig. 2. The rejection test
is implemented by comparing a random number uniformly dis-
tributed in the unit interval (rand) with the ratio of the stan-
dard deviations evaluated over the available samples in the true
system. In order to use the same both in the fast system and
in the true one, we simply set the random state of the noise gen-
erator to the same value for both systems. Note that since is
a Bernoulli random variable, it is , there-
fore the sample variance can be inferred from the sample mean.
The sample mean can be updated recursively at each run as sug-
gested in ([7], Section 2.7.3).

We start applying the rejection test only after the occurrence
of one error in stratum 1. Such a condition ensures so
that . We cannot wait for an error also in stratum 2, since
its probability can be very small if . It may however
happen that the estimate of be zero, which implies that the
rejection test will always reject visits in stratum 2 after the first
error event in stratum 1. Prudently, in the accept/reject tests we
prefer to use ratio instead of , being

a bound we impose so that stratum 2 gets visited with a finite
probability even in the case of zero errors within it.

In the next section, we apply the algorithm to practical cases
of optical transmission systems by discussing our proposal for
the actual implementation of the fast system.
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Fig. 2. Proposed stratified sampling algorithm.

IV. APPLICATIONS

The proposed algorithm efficiency crucially depends on the
choice of the fast system. In this section, we first discuss an im-
plementation proposal in a simple case of a system affected by
GVD, then we move to practical cases working in the nonlinear
regime.

A. Only GVD

With only GVD the probability of error can be evaluated ex-
actly by means of KL expansion of signal and noise [1]. How-
ever, applying the SS algorithm to such a case allows us to
rapidly explore the behavior of several parameters in a wide
range of values, and thus to understand the efficiency of the
method. Hence, we use GVD as a simple source of intersymbol
interference (ISI).

The true system under investigation is a purely linear
fiber with cumulated dispersion , followed by a noisy
amplifier whose noise figure is chosen in order to have the
desired signal-to-noise ratio at the receiver. The signal is a
single-channel NRZ differential phase shift keying (DPSK),
with bitrate . We now need an approximate
and fast implementation of such a system. Since the BER is
a function of the optical signal-to-noise ratio (OSNR), the
GVD induced ISI degrades the BER in a similar way as a
back-to-back (B2B) transmission with noise inflated. Hence,
our fast system is a B2B transmission with a noise loading in

Fig. 3. Ratio � between the number of runs into the true system required by MC
and the one by SS, versus number of bits and B2B gain�.� � ���������,
NRZ–DPSK at 10 Gb/s. Only GVD.

front of the receiver having noise figure dB larger than the
true system. Such an approach allows to save 2 FFT (direct and
inverse) operations at each run. The optimal value of is not
known a priori, hence the SS-algorithm works efficiently if a
computational gain appears in a wide range of .

As a first test we fixed , which at
corresponds to a normalized dispersion

, where is the speed of light. The OSNR
was fixed at 8 dB over a bandwidth of 0.1 nm, which we veri-
fied using the KL method to yield . The
BER with zero GVD (standard B2B) was , yielding
an OSNR penalty w.r.t. B2B of 1 dB. The signal pattern was a
random sequence of variable length in the range to bits.
Each bit was discretized using 128 time samples. We measured
the BER using standard MC and SS, both stopped with the
same relative accuracy with confidence 95% .

Fig. 3 shows contour levels of the ratio between the number
of bits measured in the true system using MC and the ones using
SS, versus sequence length and B2B gain . Note that does
not include the overhead of the fast system, which has negligible
cost here compared to the true system. The contour levels are the
average among five simulations with different random seeds
in order to exclude possible best/worst cases. From the figure
we learn that the largest “computational gain” is reached with
short bit sequences, as discussed in Section III. Note that at best
the average gain is a factor 10 when . However,
a large gain exists in a wide range of , showing that the SS
improvement also appears away from the optimal setup. We ob-
served a negligible difference between the SS estimated BER
and the MC one at every point, consistently with the same rela-
tive accuracy of the simulation.

Depending on the random seed, in some cases stratum 2
was never visited, yielding a very fast answer about the BER.
Nonetheless, the error on the BER was negligible, showing that
the SS algorithm works efficiently. On the other hand, with
some seeds we observed some errors in stratum 2 yielding a
small ratio which slowed down the simulation time.
However, we always observed a gain compared to standard
MC.

In Fig. 4, we repeated the measurement by fixing the B2B
gain to and then varying the OSNR for
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Fig. 4. SS gain � versus OSNR (dB @ 0.1 nm) using 16, 32, and 64 bits.� �

��������, � � 	
�. Only GVD.

and 64. The cumulated dispersion was , which
gives an OSNR penalty of 0.5 dB @ . Note that
the SS gain is larger at higher OSNRs, i.e., smaller BERs. At
very large BERs it is very likely to observe at least one error in
the fast system, hence SS almost coincides with MC.

B. DQPSK in Nonlinear Regime

Having verified the SS algorithm in a simple case, we now
move to a more practical one. We measured the BER of a
five channel DQPSK system, shaped with both NRZ and RZ
pulses [14]. Each channel had symbol rate Gbaud

, and was spaced from the neighboring ones
by 50 GHz. All channels were synchronous in time.

We simulated the true system using a fine SSFM with variable
step size having a maximum nonlinear phase rotation per step of

rad [15]. For the fast system we used a coarse
SSFM with maximum phase rotation five times greater per step,
which we separately verified to yield more than 1 dB differ-
ence in the Q-factor over a wide range of powers. The system
under investigation was the periodic repetition of 100 km of

fiber @ . The fiber had at-
tenuation 0.2 dB/km, effective area 63 and nonlinear co-
efficient . At the end of each period
a linear dispersion compensating fiber gave the desired in-line
residual dispersion while a noisy amplifier recovered the atten-
uation losses. Since the amplified spontaneous emission (ASE)
noise has been introduced along the line, such a scheme allows
to correctly reproduce the impact of nonlinear phase noise. Be-
fore transmission we inserted an ideal precompensating fiber of
residual dispersion , while at the end of the link
a postcompensating fiber brought the overall cumulated disper-
sion to zero. We used a standard DQPSK transmitter [16] with
the Mach–Zehnders suitably modulated to have a de Bruijn qua-
ternary signal1 of samples for each DQPSK channel. We used
different de Bruijn seeds for different channels. The receiver was
composed of an optical second-order super-Gaussian filter of
bandwidth , a Mach–Zehnder delay interferometer, two
ideal photodiodes and an electrical lowpass fifth-order Bessel
filter, of bandwidth .

1A De Bruijn quaternary sequence of � symbols contains all subsequences
of � symbols in alphabet 4 exactly once.

Fig. 5. Q-factor (dB) versus power (dBm) for a 10� 100 km NRZ–DQPSK
(top) and 20� 100 km RZ-DQPSK (bottom). KL: Karhunen–Loève.
MC: Monte Carlo. SS: Stratified sampling.

In order to test different configurations we analyzed a
20 100 km system with RZ pulses and amplifiers with noise
figure , and a 10 100 km system with NRZ pulses
and . In the first case we overlooked four-wave
mixing (FWM), while in the second we accounted for all
nonlinear effects in the SSFM. We used 25 ps/nm/span residual
dispersion along the line for the NRZ case and 12.5 ps/nm/span
for the RZ one. All BER measurements were taken on the
central channel at 1550 nm, at a relative accuracy 0.1 with
confidence level , both with the MC and the SS algorithm.
Fig. 5 (top) shows the Q-factor versus the channel power mea-
sured using MC (crosses), SS (circles) and the KL algorithm
(no symbols) for the NRZ case. The KL algorithm used white
noise statistics for the ASE noise. The Q factor is defined as

First, we note the inaccuracy of KL at large powers, which
is due to the large nonlinear phase noise induced by the line.
Second, MC and SS show comparable values, consistently with
the same tolerance value. We repeated the same test for the RZ
system obtaining again the same behavior, with a larger impair-
ment due to phase noise, see Fig. 5 (bottom).

Having verified the consistency of the BER estimation,
we moved to measure the algorithm efficiency. Since more
than 98% of the simulation time was spent in the SSFM fiber
propagation, we used as a fair cost-criterion the ratio between
the number of FFTs used by standard MC and the ones by
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Fig. 6. Percentage reduction in number of FFT calls (gain) of the SS algorithm
compared with MC at the same confidence level for the DQPSK system.

SS. Unlike the pure GVD case analyzed in Section IV.A, here
we cannot declare costless for the runs within the fast system.
Hence, with SS we have to sum the FFTs of the fast system to
those of the true system. The FFT-reduction factor, i.e., gain, of
SS w.r.t. MC, expressed in , is shown in Fig. 6 versus power.
Note that we averaged the gain over four different simulations
with different seeds in order to exclude possible best/worst
cases. We note that at best SS requires 70% less FFT than MC
for NRZ, and 50% for RZ in absence of FWM. As a reference,
with in the NRZ case the MC algorithm used

FFTs while SS, at the same accuracy, used
FFT in the fast system and in the true system. It turns
out that the tradeoff overhead/variance reduction of SS does
give a significant computational time advantage.

Such an advantage depends on the reliability of the fast
system. In Table I, we compare the performance of the SS
algorithm by varying the nonlinear phase per step in the fast
system. We analyzed the NRZ–DQPSK case with .
The table collects the results in terms of the enhancement factor

, where is the nonlinear phase per
step in the fast/true system, respectively. From the table we
note that for decreasing fast system reliability, i.e., increasing

, the fast system calls for an increased number of runs ,
according to the observation that the fast and the true system
do not match very well and hence a larger number of trials is
required for a correct estimation. However, a larger does
not necessarily mean a larger computational effort, since the
number of FFTs in the fast system decreases faster
than the growth of . At there is an inversion in
the computational effort, i.e., the number of FFTs in the true
system exceeds . From the table we also note
that while , i.e., the number of runs in the stratum “errors
in the fast system”, follows the behavior of , is almost
constant. This is an indicator of an high rejection ratio so that
most of the samples in stratum 2 (no errors in the fast system)
are collected during the initialization runs where SS waits for
the first error in stratum 1.

We separately ran a very accurate MC simulation with the
same tolerance but with confidence level of 99%. The BER was

. The BER estimated by the SS algorithm and shown
in Table I is consistent with this value and with the confidence

TABLE I
PERFORMANCE OF SS ALGORITHM VERSUS. FAST SYSTEM ACCURACY � .

NRZ–DQPSK CASE WITH � � ����. ��� , ��� : NUMBER OF FFTS IN

THE FAST, TRUE SYSTEM, RESPECTIVELY. � � � � � NUMBER OF MC RUNS

IN THE FAST SYSTEM, STRATUM 1 AND STRATUM 2, RESPECTIVELY

Fig. 7. Relative error � (4) at confidence 68% versus number of observed
bits. NRZ–DQPSK case with � � �	���, and � � 
. Solid line: SS with
�� � 
�. Dashed line: SS with �� ��. Dashed-dotted line: MC.

used in the SS, i.e., we expect of measurements within
.

A final investigation regarded the impact of the bound in
the rejection ratio . As observed at the end
of Section III, this forces SS to a nonzero visit in both strata in
every case. Fig. 7 shows the behavior of with (i.e., at
confidence 68%) for a simulation with increasing number of bits
and either or . The system was NRZ–DQPSK
with . The solid line refers to SS with , the
dashed line refers to SS with while the dashed-dotted
one is for MC. Note that the MC curve decreases almost as

according to (2). In both SS cases, the first error in the true
system occurred in stratum 1, hence after that occurrence took
the value , according to our strategy detailed in Section III.
Thus, after the first error in stratum 1, the SS algorithm never
visited stratum 2 with , while it seldom explored stratum
2 with . From the figure we note that the SS curve with

experiences an abrupt change around 4000 bits, which
is not present in the case. Such a sharp raise corresponds
to a visit in stratum 2 (i.e., at least one error over the block of
bits). Such an error yields which does decrease to
a value lower than 50. Consequently, the estimated uncertainty
suddenly grows up and then starts to fall again toward small
values as the number of runs increases. The case avoids
such a behavior. The absence of visits in stratum 2 in the
case does not imply a completely wrong BER estimation, since
with a good choice of the fast system stratum 2 has a negligible
impact. In this experiment we measured
with and with . The
BER with MC at confidence 99% was . In conclu-
sion, we suggest to use a finite value for because (on average)
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it avoids to get BER estimates without even visiting a stratum.
The algorithm computational cost slightly increases, but still re-
mains largely smaller than MC as clearly shown in Fig. 7.

V. CONCLUSIONS

We showed a fast and simple MC SS strategy for BER mea-
surement. The idea is based on running an MC estimation after
observing an approximate, but usually faster to simulate, de-
scription of the system under test, and then to use such infor-
mation to drive the estimation on the true system. It was shown
that our proposed implementation of the method is a new form
of adaptive IS, which is similar in spirit to the “excision IS”
method [8]. The algorithm showed a significant computational
gain compared to standard MC at practical values of

to . Moreover, the relative error of the proposed al-
gorithm can be simply inferred from the estimated variance of
the observable, like in an MC estimation, thus providing a sta-
tistical confidence on the results.

We verified the accuracy of the algorithm by comparing its
predictions with the ones of standard MC at the same confi-
dence level. We studied two possible implementations of the
fast system, one in a simple case distorted by only GVD and
a second in a practical WDM–DQPSK in the nonlinear regime.

The method can be applied to any system with random inputs.
In such a case, SS needs to identify a fast system yielding an
approximate description of the true system under investigation.

APPENDIX

This Appendix provides the basic connections among MC,
SS, and IS.

Monte Carlo: Given the random variable , i.e., a
scalar function of the random vector taking values in the
multidimensional input space , the MC method estimates the
expected value of by drawing independent samples

from the known distribu-
tion and then computing the sample mean as in (1). The
implicit assumption is that we are able to draw samples from

.
Stratified Sampling: The SS method instead assumes the

input space is partitioned into disjoint subsets (strata)
whose probabilities ,
, are known. By the total probability law, the

exact expectation can be written as ,
where is shorthand notation for the conditional expecta-
tion . By similarity with the total probability
law, the SS estimator of is

(8)

where is the MC estimator of in stratum , based on
drawing independent samples from the
conditional distribution , with .
Clearly SS implicitly assumes that drawing from such condi-
tional distributions is feasible. Note that in SS the samples in

each stratum are deterministic, known quantities. From (8) we
get the variance of the SS estimator as

(9)

where . Equations (8),
(9) are the explicit versions of (5), (6) in the text.

Now let be the fraction of samples in stratum
, with the constraint . Thus is a

probability mass function (PMF). Let us look for the optimal
by extremizing the Lagrangian ,

being the Lagrangian multiplier. Setting for all
yields the optimal . Substitution into the con-
straint gives , hence finally the optimal
fractions are

(10)

which yield (7) in the text.
Importance Sampling: Let us now keep the same strata

partition as before, with known strata probability PMF
. Let us warp the original input distribution

to a new , such that the warped strata probabilities are,

for all : . To obtain this warping, the
warped input distribution must equal for
all in stratum . Hence the IS weight on stratum is uniform
and equal to

Hence the IS estimator [8] of the expectation of RV is

. By collecting samples within
each stratum we can rewrite it as

(11)

Now, in IS the number of warped samples that fall in
stratum is a random variable, whose expectation is

, and by the law of large numbers almost surely
as the number of runs goes to infinity. Hence, for large the
two estimators in (8) and in (11) do coincide.

The procedure that we adopted in the text, described in Fig. 2,
does in fact implement the above mentioned IS version of SS.
The warped is obtained from the original (whose
samples feed the fast system) by the reject/accept mechanism
that feeds samples to the true system.
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