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Abstract A control algorithm for double-stage optical PMD compensators is devised, based on the spherical 
geometry interpretation of the concatenation rule. Outage probability of 10-5 is achieved for mean line DGD of 
40% the bit time. 

 
 
Introduction 
Optical Polarization Mode Dispersion (PMD) 
compensation is usually accomplished by cascading 
one or more compensation stages, each made of a 
polarization controller followed by a differential delay 
element – such as a Polarization Maintaining Fiber – 
with fixed or variable Differential Group Delay (DGD) 
/1/. Various double-stage compensators are designed 
and analyzed in the literature with the aim of 
minimizing the PMD vector up to second order, as, 
e.g., in /2/. 
The target of our compensation algorithm is the 
equalization of the fiber Jones matrix U(ω) at the 
frequencies ±ω0=±π/T, where T is the bit time, which 
implies that U(ω) does not deviate significantly from 
its central frequency value U(0), on the signal 
bandwidth [-ω0;+ω0]. Note that equalization at some 
given frequency is typically performed by tapped-
delay-line electrical equalizers. 
 To achieve our goal, we use tools from spherical 
trigonometry: explicit equations set the control 
parameters of the compensator, showing that its first 
stage must have a fixed DGD equal to one bit time T. 
We obtain our numerical results by explicitly setting 
the compensator controls to the values imposed by 
the proposed algorithm. Although this requires 
knowledge of some parameters of the line Jones 
matrix, still we believe that convergence to the same 
control values may be achieved in similar double-
stage compensators with large fixed-delay in the first 
stage and driven in feedback, e.g., so as to maximize 
the eye opening /2/. 
 
Compensator theory 
We describe the unitary line fiber Jones matrix with 
the formalism used in /3/, as 
U(ω)=Ul(ω)U0=exp{-j(∆φ(ω)/2) [b(ω)·σσ]} U0         (1) 
where U0=U(0) is factored out, so that PMD is 
included in the left-extracted exponential matrix Ul(ω). 
In (1), σσ is the spin vector, whose elements are the 
three Pauli matrices; the positive angle ∆φ is the 
retardation and the unit-magnitude Stokes vector b is 
the eigenmode. At any frequency, the fiber rotates the 
input state of polarization (ISOP) on the Poincaré 
sphere by an angle ∆φ around b. 
In /3,4/ we introduced the rotation model  for U(ω), 

which accounts for all orders of PMD. It assumes that 
∆φ(ω)=∆φωω is linear with frequency and that b(ω) 
describes a piece of circular trajectory on the 
Poincaré sphere as ω varies, at constant angular 
speed. Such model can be fitted to Jones matrices 
obtained from the standard Random Waveplate 
Model (RWM) over bandwidths of the order of the 
inverse mean DGD 1/<∆τ> /3,4/. Its parameters have 
been statistically characterized /4/ and related to the 
usual PMD-vector description /3/, which is less 
suitable for analyzing Jones matrices of actual fibers. 
While U0 is irrelevant for PMD, the left-extracted 
matrix Ul(ω) amounts to the identity matrix I at ω=0. 
Our objective is to equalize U(ω) so that Ul(±ω0)=I 
also at two opposite optical frequencies ±ω0=±π/T.  
To this aim, we apply a two-step algorithm:  
i)  let ec1 be the unit-magnitude Stokes eigenmode of 
the first stage and   ∆τc1 its DGD. We impose the 
following conditions on the first stage: 
  ec1 counter-aligned  to [b(+ω0)+b(-ω0)]         (2) 
  ∆τc1ω0=π                (3) 
Note that, from (3) and our choice of ω0, the DGD of 
the first stage is fixed and equals one bit-time T. To 
visualize the effects of choices (2-3), we resort to the 
concatenation rule for the eigenmodes and 
retardations of a series of Jones matrices, which is 
expressed in terms of spherical trigonometry /3/. 
Fig.1(left) shows how to find the eigenmode bT(+ω0) 
and retardation ∆φT(+ω0) of the line+first stage Jones 
matrix UT(+ω0), on the Poincaré sphere, starting from 
the eigenmode b(+ω0) of the line and ec1 of the first 
stage. We construct a spherical triangle from the 
vertices b(+ω0)  and -ec1 and their adjacent angles 
∆φ(+ω0)/2 (internal) and ∆τc1ω0/2=π/2 (external): the 
eigenmode bT(+ω0) and the angle ∆φT(+ω0)/2 result 
from the third vertex. 
If the line matrix is such that ∆φ(-ω0)=-∆φ(+ω0), which 
holds for the rotation model, then the construction for 
bT(-ω0) is the mirror image of the one just described, 
as shown by the dashed line spherical triangle, so 
that bT(-ω0)= bT(+ω0).  
Although fibers emulated with the RWM can deviate 
from the rotation model, the principle of operation of 
the compensator is still valid. Fig. 1(right) shows the 
trace of the line eigenmode b(ω) on a bandwidth [-
ω0;+ω0] computed before and after the application of 



the first stage to a RWM emulated fiber: the typical 
bending of the eigenmode trace reduces the system 
matrix to a nearly first-order PMD matrix.  

  
Fig.1 Left) Geometrical construction showing the 
principle of operation of the first stage. Right) 
application to a RWM emulated fiber. 
 
ii) let ec2 be the eigenmode of the second stage and   
∆τc2 its (variable) DGD. We now impose that ec2 is 
opposite to  bT(±ω0) and that ∆τc2=∆φT(ω0)/ω0, so as to 
perform first-order compensation of the Jones matrix 
UT(±ω0). Explicitly, we set: 
  ∆τc2= (2/ω0)ArcCos(-Sin(∆φ(ω0)/2) ec1·b(+ω0))      (4) 
  ec2= -[Cos(∆φ(ω0)/2) ec1 + 
         + Sin(∆φ(ω0)/2) ec1×b(+ω0)] / Sin(∆τc2ω0/2)    (5) 
 
After such two steps, we have equalized the line 
Jones matrix at ±ω0. It can be shown that conditions 
(2-3) are  both necessary and sufficient for such 
equalization. 
 
Simulation results 
We evaluated the Outage Probability (OP) versus the 
average line DGD <∆τ>, following the semi-analytical 
technique described in /4/, where OP is defined here 
as the probability that the sensitivity penalty (SP), at 
BER=10-10, exceeds 3dB. To summarize the method 
described in /4/, 10Gb/s NRZ transmission was 
performed over 363 representative sample fibers, 
extracted from a pool of 500,000  DRW emulated 
fibers. For each fiber sample, propagation was 
repeated using 62 different ISOPs, uniformly tiling the 
Poincaré sphere, for a total of more than 20,000 SP 
calculations. Propagation and SP evaluation was then 
repeated, using the same ISOPs, on 648 fibers 
synthesized with the Rotation Model, for the purpose 
of covering those cases of very large high-order PMD 
not occurring in the half-million set of DRW fibers. 
Using SP data from the 648 Rotation Model samples 
and the 363 DRW samples, the leftmost curve in 
Fig.2 reports the OP for the uncompensated case, 
showing that, for an OP=10-5 (5 minutes outage per 

year), the maximum tolerable mean DGD is 15ps. 
Such curve, already obtained in /4/, is reported here 
for comparison with the OP obtained using our 
double-stage compensator driven as described 
above, corresponding to the rightmost curve, which 
shows that, for the same target OP, the maximum 
tolerable <∆τ> reaches 40ps. For completeness, we 
also report in Fig.2 the OP curve obtained using a 
single stage compensator with a fixed DGD set at 
60ps. 
 

 
Fig.2 Outage Probability vs. mean DGD of the 
transmission fiber. 
 
Conclusions 
We described a control algorithm for a double-stage 
optical PMD compensator, whose target is the 
equalization of the fiber Jones matrix U(ω) at the 
frequencies ±ω0=±π/T. The enabling concept for the 
compensation strategy is the eigenmodes 
concatenation rule /3/, which is expressed in terms of 
spherical trigonometry. We described how the tasks 
of the two stages are conceptually different: the first 
stage compensates for the depolarization of the line 
eigenmodes, i.e., eliminates higher-order PMD, while 
the second stage compensates for the residual PMD, 
which is nearly first-order. Though we refer to a well-
known compensator structure, another element of 
novelty is the large DGD (∆τc1=T)  that is needed in 
the first stage to achieve our goal.  
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