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of Long Fibers Affected by Polarization Mode

Dispersion (PMD)
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Abstract—The unitary transfer matrix of a fiber affected by po-
larization mode dispersion (PMD) is analyzed using the Stokes rep-
resentation of its eigenmodes and its retardation angle, or equiva-
lently through its Pauli coordinates. We develop a statistical theory
applied to these parameters and relate it to the extensive existing
literature on the statistics of the PMD vector
 ( ). Dynamical
equations are established for the Pauli coordinates. Assuming a
standard “white Gaussian” model for the local birefringence, and
using the tools of stochastic calculus, we derive the distributions of
the eigenmodes, the retardation angle, the Pauli coordinates, and
of the frequency derivatives of all these parameters. The evolution
in space of the Pauli coordinates is also characterized as a stan-
dard Brownian motion on the unit sphere in 4. An expression for
the frequency autocorrelation function of the Pauli coordinates, the
eigenmodes and the retardation angle is derived and their coher-
ence bandwidth is compared to that of the PMD vector. All theoret-
ical results are supported by simulation over an ensemble of 10 000
fibers, using the standard retarder plate model.

Index Terms—Optical fiber communication, optical polariza-
tion, polarization mode dispersion.

I. INTRODUCTION

T HE stochastic analysis of fibers affected by polarization
mode dispersion (PMD) has so far concentrated on the sta-

tistics of the PMD vector and its frequency derivative [1]–[3].
The interest in the PMD vector is due to its stability in fre-
quency over the bandwidths of interest in optical communica-
tions at bit-rates of 10 Gb/s or lower. However, the upgrade to
the new 40 Gb/s digital hierarchy standard over installed single
mode fibers (SMFs) brings about a strong depolarization of the
PMD vector so that its higher order frequency derivatives, the
so-called “higher order PMD,” become increasingly important.
In this new scenario, the analysis of the output field based on the
PMD vector may not be any longer the simplest mathematical
description [4]. This motivated us to derive a stochastical de-
scription of the fiber Jones matrix and its frequency derivatives,
highlighting its relationship to the PMD vector description.

In order to describe the Jones transfer matrix in a compact
form, we will resort to its decomposition over the basis of Pauli
matrices. Our first objective is to derive dynamical equations for
the space evolution of the Pauli coordinates, in a similar way to
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what was done for the dynamical equation of the PMD vector
[1], [2]. Once a suitable model for the local birefringence vector
has been selected, such dynamical equations are tackled with
standard tools of stochastic calculus [5]: i) the Fokker–Planck
equation (FPE) is used to derive some useful probability density
functions (pdf); ii) the Dynkin formula, also known as the mar-
tingale differential equation (MDE), is used to derive some mo-
ments of interest, without knowledge of the related pdf; iii) the
characterization of canonical Brownian motion on spheres is
used to recognize the nature of the spatial evolution of the Pauli
coordinates. A rigorous in-depth treatment of such concepts is
provided, e.g., in [5]. However, a brief tutorial introduction, in
the context of PMD, can be found in the appendices of [1], [3].

On Notation: Throughout the paper, matrices are denoted by
capital letters, three-dimensional vectors by an arrow, and unit
magnitude vectors by a hat. Four-dimensional real vectors are
underlined. A column vector with elements is denoted
by . The symbols and denote vector scalar and cross
product. is the 3 3 identity matrix while is the 2 2
identity matrix. Ensemble averaging is denoted by .

II. JONESMATRIX OF A FIBER AFFECTED BYPMD

Using the Jones formalism to describe the state of polariza-
tion (SOP) of a given optical field, a linear fiber of length
affected by PMD but without polarization dependent loss can
be described as a two-input–two-output linear system whose
transfer matrix is the product of a scalar function and a unitary
matrix which has unit determinant.

We can compactly expressas a matrix exponential as sug-
gested by Karlsson [6]:

(1)
where is the Stokes unit vector associated with
the “slow” eigenvector of , is the retardation angleand

is the so calledspin vector, whose components
are the Pauli matrices 1, 2, 3, as defined in [7], so that the scalar
product is shorthand for , and represents a matrix.
Equation (1) shows that the decomposition ofon the basis of
Pauli matrices has coordinates

(2)
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where thePauli coordinates vector1 is a (column)
vector in . Since from (2) , the coordinates are
confined on the surface of a sphere with unit radius in, that
we will indicate with .

The Müller matrix associated with (1) is [6]

(3)

where is the skew-symmetric matrix corresponding to the
vector cross product operation. When (3) is applied to a Stokes
vector, it causes a counterclockwise rotation of such vector
about the axis by an angle , thus giving a geometrical
meaning to the eigenmodes and the retardation angle.2

Our main motivation for the study of the Pauli coordinates
comes from the fact that an exact closed-form expression exists
of the photodetected field intensity in an optical communication
system. It is proven in [8] that the received intensity can be ex-
pressed as

(4)

where is the input Stokes SOP, and , are calculated
using the Pauli coordinates as

(5)

where denotes convolution, the real part, is complex
conjugate, and is the scalar input field, filtered by common
mode chromatic dispersion.

III. T HE PAULI COORDINATESDISTRIBUTION

The local birefringence vector governs the spatial
evolution of the unitary Jones matrix (see, e.g., [7, eq. (6.4)])

(6)

where is completely rep-
resented by its Pauli vector , as
per (2). From the properties of Pauli matrices, it can be shown
that the Pauli coordinates of the product of matricesand
with coordinates and are

(7)

Applying such result to (6), we get the dynamical equations gov-
erning the evolution of

(8)

1For brevity, we will refer tou as thePauli vectorand to its elementsu as
thePauli coordinates.

2Note that one might be tempted to deal with the vector~�=��b̂, by analogy
with the PMD vector~
 = ��q̂. Indeed it is possible to derive a dynamical
equation for~� similar to (8), which however involves nonlinear functions of its
elements, making such equation readily intractable.

There are several models adopted in the literature for
, and the choice of each model has nontrivial implica-

tions. For analytical simplicity, we choose the model adopted
by Gisin et al. [2] for analyzing “long” fibers, which assumes

, where is a three-dimensional
Gaussian process with independent and identically distributed
components, each being a scalar white Gaussian process with
zero mean and unit variance. The scalar parameterinfluences
the birefringence variance. A discussion of this choice is
provided in Appendix A.

With such model, we must be careful to interpret the sto-
chastic differential equation (SDE) system (8) in the proper way:
since an unbounded white noise term appears, all the products
involving must be interpreted as Stratonovich products
[1], [5]. Denoting with the differential of
standard three-dimensional Brownian motion and applying the
Stratonovich rules for the evaluation of products,3 we recast the
dynamical system (8) in itsIto form

(9)

or, equivalently, in thecanonical form[5]

(10)

where thedrift is a 4 1 vector, and thediffusion [5] is a
4 3 matrix, defined as follows:

(11)

We now apply the Fokker–Planck equation (FPE) [5] to the
Ito system (10). This powerful mathematical tool is used to de-
rive the distribution of a vector process, given the SDE gov-
erning its evolution, by solving a partial differential equation. It
has been used, e.g., in [1] to obtain the distribution of the PMD
vector, and is briefly discussed in Appendix A in [1]. In our case,
the FPE describes the evolution alongof the joint probability
density function (pdf) of the processes

(12)

where the elements of the drift are , and

the matrix in our case becomes
.

As for any partial differential equation, there is no standard
method for solving the FPE. However, we next prove that a pdf

which does not depend oncan be a solution
of (12). Such a pdf corresponds to a uniform distribution for

on its domain of definition . For the proof, the FPE can
be evaluated using the drift coefficient and the matrix ,

3For a discussion of the Ito–Stratonovich duality in the context of PMD, see
[1, Appendix A], [3, Appendix], and [2, Appendix D], reporting the rule for
Stratonovich products.
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whose diagonal elements do not depend on and whose
off-diagonal terms are simply . Equation
(12) thus reduces to , whose solution is a constant
pdf along , and does not depend on. It is then proved that
the uniform distribution and zero
elsewhere, is the FPE solution giving the joint pdf of the Pauli
coordinates , since is the hyper-surface of , as shown in
Appendix B.

Note that the solution does not depend on, meaning that
reaches its steady state uniform distribution immediately after
the fiber input. From a mathematical standpoint, this is due to
the unbounded white noise term that models the local birefrin-
gence (see Appendix A for a discussion). This model is also the
cause of the discontinuity in the distribution of at
(recall that is deterministic and equal to ). A
transient behavior in would appear if the birefringence were
a colored bounded-variance stochastic process, similarly to the
transients for the PMD vector studied in [2, Appendix C]. How-
ever, we are interested inlong single mode fibers, i.e., hun-
dreds of times longer than the correlation length. On such length
scales, the variations of the birefringence incan be suitably
modeled as white noise, as the good match between theory and
simulations will show.

As shown in Appendix B, the spherical coordinates
of are found to be independent random

variables (RVs). Thus, at fixed and , the eigenmode
is independent

of . The marginal densities of the azimuthand the
ellipticity are

(13)

which give a uniform distribution of on the Poincaré sphere, a
result already given in [9] without proof. Moreover, we also get
the pdf of the fiber retardation angle

(14)

which is symmetric around the mean value . We can
then state that, “in the average,” a long fiber operates arotation
around a completely random axis on any input SOP. Since the
Euclidean coordinates , , are a transformation
of the RVs , they are found to have identical marginal
pdf

(15)

and hence , for every
, which also implies , i.e., a zero average value

for the Jones matrix.
Toquote justonepossibleapplicationof theobtainedresults, in

[10,Sec.V] theauthorsdiscussthecoarsestepmethodforsolving
the Coupled Nonlinear Schrödinger equation, which requires, at
a certain step of the method, a uniform scattering of the field on
thePoincarésphere.TheconcatenationofseveralsimulatedJones
matrices[10,Eqs.(34)and(35)] issuggestedtoproduceauniform
mixingof the field. Our results suggest instead that such goal is
achievedbysimulatingasingleJonesmatrixwiththedistributions
of and given in (13) and (14).

A. Pauli Coordinates Incorrelation and Evolution in Length

The Cartesian coordinates are not independent. Nonethe-
less, we can prove that they are uncorrelated resorting to
the Dynkin formula [5, Ch. 7]. This important mathematical
tool of stochastic calculus allows the evaluation of a given
moment of the vector process , without
knowledge of the related pdf, by solving the differential
equation . Here, is
a second-order differential operator called theIto generator,
defined on the dynamical system (10), that depends on the drift

and on the matrix defined below (12). The Dynkin formula
is briefly introduced in [1, Appendix A] with the alternative
name of MDE, along with the Ito generator, in order to evaluate
some moments of the PMD vector. Reference [3, Appendix]
also discusses the related concept of Stratonovich generator,
which is applied to SDEs in the alternativeStratonovich
form [3, eq. (18)]. In our case, defining , with

, the application of the Ito generator to yields
and the Dynkin formula gives

, whose solution is zero:

for any because for a zero length fiber,
, thus showing the incorrelation

of the Pauli coordinates .
A further important result is that the dynamical equations (10)

imply a Brownian motion on the unit sphere for the evolu-
tion along of the fiber coordinates . It is possible to
show that the normalized Brownian motion in coincides in
law with (i.e., has the same finite-dimensional distributions as
[5]) the process of our interest, by applying [5, Th. 8.4.3],
which requires the comparison of the drift and diffusion coeffi-
cients of the processes. The expressions ofand in (11)
satisfy the conditions of such theorem, after a suitable change
of the scale which depends on, thus proving that the process

, for every frequency , coincides in law with a four di-
mensional Brownian motion on the unit sphere and that the mo-
tion evolves at different rates, along, for different frequency
components.

B. Check by Simulation

A set of 10 000 fibers was simulated and the parameters,
and were measured at the reference frequency. For fiber

simulation we used the standard retarder plate model (see,
e.g., [11]), where each fiber realization consists of
independent polarization maintaining fiber (PMF) plates, each
characterized by local eigenmodes that are uniformly dis-
tributed on the equator of the Poincaré sphere. The retardation
angle of each th plate is , where

is a RV uniform on and the local birefringence
strength was chosen in order to have the desired
root mean square (rms) differential group delay (DGD) for
the global fiber: [12], whose value we
chose equal to 10.5 ps for the set of simulated fibers. Possible
frequency periodicities for the global Jones matrix resulting
from a fixed local [11] are not an issue when performing
first order statistics. For frequency-distributed measurements,
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(a)

(b)

(c)

Fig. 1. Probability density of (a) retardation angle��; (b) eigenmode azimuth
� ; (c) eigenmode ellipticity" . Theory (14) and (13): lines; simulations: circles.

performed in Section VII-A, the artifact of frequency pe-
riodicities is overcome if the number of fiber plates obeys

, where is the measurement band-
width, so that measurements are confined in one period only
[13]. Such condition was always satisfied in our measurements.

In Fig. 1, the theoretical pdfs (14) of the retardation angle
(top), and (13) of the eigenmode azimuth (center) and ellipticity
(bottom) are plotted and compared to simulation results, which
represent histograms computed over the fiber realizations at the
reference frequency , and a good agreement is found. In
all the presented figures, lines represent theory and symbols rep-
resent simulation. The marginal densities of the cartesian Pauli
coordinates are plotted in Fig. 2, using different symbols for

, and compared to the expression (15) obtained
from theory.

Note that the good agreement between theory and simulation
is obtained despite the remarkable differences between the as-
sumptions made in the retarder plate model used for simulations
and the white Gaussian theoretical model of birefringence.

IV. ON THE INDEPENDENCEBETWEEN PMD VECTOR

AND PAULI VECTOR

The white Gaussian model adopted for the local birefringence
can be inserted in Poole’s dynamical equation [1]. The SDE
so obtained governs the evolution of the output PMD vector

along : translated in Ito form its expression

(16)

Fig. 2. Probability density of the cartesian Pauli coordinates. Theory (15): line;
simulations: symbols.

is different from that obtained in [1], due to the different bire-
fringence models. Equation (16) can be expressed in the canon-
ical form (10): the drift and diffusion coefficients in this case
are and , respectively. We
can check that the pdf of the PMD vector that solves
the associated FPE is the well-known trivariate Gaussian dis-
tribution with zero mean and covariance matrix equal to .
Due to the white Gaussian model of birefringence, which is in-
herently suitable for “long” fibers only, there is no transient be-
havior in for and the PMD vector reaches immedi-
ately its steady state Gaussian distribution. Hence, the rms DGD

, grows as the square root of the fiber
length, as typical of “long” birefringent fibers [2].

We are now ready to prove the following.
Theorem: The PMD vector and the Pauli vector

are independent RVs for any .
Proof: Let us consider the values taken by the PMD vector

and by the Pauli vector at any two (possibly equal) frequencies,
and , at the same positionalong the fiber.

The joint stochastic differential system obtained from (9), at
, and (16), at , can be associated to a FPE whose

solution is the joint pdf . It is straightfor-
ward to show that the solution to such FPE can be factorized
into the product of the marginals and ,
which satisfy the respective FPEs, if and only if

(17)

where is the ma-
trix accounting for the statistical cross-interaction in the joint
FPE.

We show next that (17) is always verified for the joint system
(9) and (16). Given the structure of below (16), and
in (11), an explicit evaluation of shows that each of its
elements does not depend on nor on

, and hence, can be taken out of the derivative in (17). As
a second step toward the verification of (17), we call on the
spherical uniformity of the marginal distributions
and obtained above. Their derivatives can then
be expressed as
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and , and the verifica-
tion of (17) reduces to proving that the double summation

is zero. Such
double summation is a quadratic form

which is zero since , for any . This last prop-
erty has a simple geometrical explanation. Since (8) can be
written as for any , and since

and are orthogonal because , then
for any , which implies

.
As a consequence of the aforementioned theorem, expanding

in Taylor series, such
independence implies that the derivatives of any
th order of the PMD vector are independent of .

In the next section, we will use such independence, for
, to statistically characterize the derivative of the Pauli

vector in terms of . The same procedure can be iterated
to characterize higher order derivatives in terms of

.

V. THE PMD VECTOR FROM A NEW PERSPECTIVE:
THE DERIVATIVE OF THE PAULI VECTOR

The output PMD vector is defined by the analogue of (6),
where the derivative is taken with respect to (w.r.t.), and
is replaced by [7, eq. 5.11]. From such an equation, a linear
differential system governing the evolution in frequency of the
Pauli vector is obtained as in (8)

(18)

where subscript denotes derivative w.r.t. optical frequency.
Given , by the independence of and , (18) is a linear

transformation of a Gaussian random vector, henceis con-
ditionally Gaussian, with conditional mean and
covariance matrix .

The Pauli vector has unit magnitude, hence its derivative
is always orthogonal to it in , and consequently, given, the
probabilistic space in which is distributed is only 3-D, the
fourth dimension being determined by the orthogonality condi-
tion. Operating a rotation of the reference system inby the
4 4 unitary rotation matrix

(19)

is rotated onto theth canonical axis . By applying
the same transformation to (18), is transformed into the
vector . This shows a fundamental result:the PMD
vector can be viewed as2 times the last three components of

, once this is recast in a reference system wherecoincides
with , or equivalently, once we identify the hyper-
plane orthogonal to in as the ordinary 3-D Stokes space.
The conditioning on only influences the domain of definition

of , i.e., the orientation of its hyperplane of definition in,
but not its distribution.

VI. DISTRIBUTION OF THEDERIVATIVE OF THE JONESMATRIX

From the previous results, the direction of is uniformly
distributed on and its magnitude, amounting to , is
Maxwellian and independent of its direction. Hence, the statis-
tics of the polar coordinates of are com-
pletely characterized, since, from geometrical results on the uni-
form distributions in reported in Appendix B,
are independent RVs with marginal pdf’s

(20)

with and .
By averaging the conditional covariance matrix of w.r.t.

, the cartesian coordinates of are found to be uncorrelated
zero mean RVs, each with variance equal to . They
all have the same pdf, which is obtained from a transformation
of the polar coordinates as

(21)

where , is the Gamma function and
is the confluent hypergeometric function of second

kind [14, eq. (9.211.4)].
We are now interested in evaluating the distributions of the

retardation angle derivative and the eigenmodes deriva-
tive . These two parameters have a precise physical meaning:

is the differential delay introduced by the Jones matrix for
each spectral component of the signal, whileis the depo-
larization vector associated with the eigenmodes: if it is zero,
the fiber is a PMF, i.e., we are in the “first-order PMD” case.
Otherwise, thedepolarization rate will cause higher order
pulse distortions.4 Expressing the derivative of the Pauli coor-
dinates in terms of the fiber retardation angle and eigenmodes,
from (2) and (18) we have , where

is the angle between two independent unit magnitude vec-
tors, uniformly distributed on the Poincaré sphere, with pdf:

. Since is independent of ,
can be easily shown to be Gaussian distributed:

and independent of . From the discussion
at the end of Section V, it can be shown that the direction ofis
spherically uniform in Stokes space, and, taking the magnitude
of both sides of (18), we get ,
with , and independent RVs. The pdf of the depolar-
ization rate is then

(22)

where is the Beta function and is the con-
fluent hypergeometric function of first kind [14, eq. (9.211.1)].
It is also possible to show that is Rayleigh dis-
tributed and independent of .

4The only exception to this statement is when the fiber under consideration
is made up of a PMF concatenated with a frequency independent polarization
controller: in this case the propagating pulse only suffers the DGD effect (pulse
splitting) andj~b j is not zero [8].
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(a)

(b)

(c)

(d)

Fig. 3. Probability density of: magnitude of the Pauli vector derivativeju j;
spherical coordinates� ; � ; � of u . Theory (20): lines; simulations:
circles.

Note that depends through on the only parameter
. Since is an indicator of higher order PMD effects,

(22) physically quantifies the impact of the average DGD on
such indicator.

A. Check by Simulation

The same set of fibers as in Section III-B, simulated with
the retarder plate model, was used for computing the numerical
distributions of , and .

Starting from the polar coordinates of , Fig. 3(a) compares
the Maxwellian distribution obtained for the magnitude ,
which corresponds to half the DGD, with the simulation results,
which were computed from the Jones matrix frequency deriva-
tive by extracting its Pauli vector . The estimated pdfs of the
spherical coordinates , which identify the orientation
of in , are also reported in Fig. 3, and compared to theory
(20).

The distribution of the derivative of the retardation angle
is reported in Fig. 4, well matching with the zero mean

Gaussian .

Fig. 4. Probability density of the retardation angle derivative�� . Theory
N (0; (E[�� ]=3)): line; simulations: circles.

(a)

(b)

(c)

Fig. 5. (a) Probability density of: depolarization ratej~b j. (b) Depolarization
vector azimuth� (c) Ellipticity " . Theory (22) and approximation (23)
(a): lines; simulations: circles.

The theoretical analysis performed in Section VI predicts
a uniform orientation of the direction of in Stokes space.
Defining its azimuth and ellipticity similarly to those
of in Section III, their pdfs are the same as in (13): such
result is confirmed by the simulation results plotted in Fig. 5
(center and bottom plots). As for the depolarization rate,
we plot in Fig. 5(a) the theoretical pdf (22) together with the
approximating Rayleigh density

(23)

shown in solid line, with mean value . Equation
(23) is based on the analytical approximation of the confluent
hypergeometric function which, though
well fitted to the exact solution, tends to underestimate the tail
of .
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Fig. 6. Probability density of the cartesian coordinates ofu . Theory: exact
pdf (21) in dashed line and Gaussian approximation in solid line; simulations:
symbols.

We can provide a simple analytical approximation also
for the marginal distributions of the cartesian coordinates of

. Approximating the confluent hypergeometric function
, we get a normal distribution

for . Such approximation is shown
in solid line in Fig. 6 and compared to the exact solution (21)
in dashed line and to simulation.

VII. A UTOCORRELATIONFUNCTION OF THEPAULI VECTOR

Considering the Ito dynamical system (16) expressed for two
different frequency values, we can establish a differential equa-
tion for the evolution along of the frequency autocorrelation
function (ACF) of the PMD vector

. Since the differential of the PMD vector involves the
unbounded quantity , we must treat as a
Stratonovich product. We obtain the following differential equa-
tion for the ACF:

where is the frequency deviation, and the initial
condition is at (a zero length fiber has
a zero PMD vector), with solution

(24)

and peak value equal to the mean
square DGD. As noted in Section IV, , hence,
(24) coincides with the ACF obtained by Karlsson/Shtaifet al.
[15] and [16] following different approaches.

Similarly, the ACF of the
Pauli vector can be obtained starting from the dynam-
ical system (9) considered for two different frequency values.
The differential equation so obtained is

with the initial condition (a fiber
of length zero has the Pauli vector of the
identity matrix), with solution

(25)

Using the Dynkin formula it is also possible to prove the fol-
lowing result:

(26)

where is the Kronecker symbol. Equation (26) extends
the incorrelation result of Section III-A and shows that
each of the four Pauli coordinates gives an equal contribu-
tion to the ACF in (25). In the derivation of (26), we used
the asymptotic stationarity of the process , and let

while keeping finite, according
to the Appendix A. From such result we also get the ACF
of as follows. From the product formula (7), the Pauli
coordinates of are

. Using
(26) we see that only the zero-th component has nonzero mean,
so that , extending to the Jones
matrix a result already known for the Müller matrix [15], [16].

The importance of the autocorrelation function for the Pauli
vector—and for the PMD vector—lies in its interpretation in
terms of mutual statistical dependence between the value taken
by the vector , and hence by the Jones matrix, at a certain
reference frequency and the value it takes at a dif-
ferent frequency. The ACF gives an indication of how quickly,
on average, the vector moves in frequency w.r.t. its reference
frequency value, but does not give information on the shape of
the trajectories the vectors are likely to follow. Nevertheless,
we can compute acorrelation bandwidthfor and for

, based on (24) and (25), respectively, which gives a
measure of the frequency span over which the vectors can be
regarded as “nearly constant” (this condition is practically ver-
ified only for a fraction of the correlation bandwidth). Defining
the correlation bandwidth for a stochastic process
with ACF as , we find

, consistently with [15], [16], and
, which is times the cor-

relation bandwidth of the PMD vector. Hence, we conclude that
the PMD vector is characterized by a slightly larger stability
in the frequency domain, i.e., it undergoes smaller changes
in magnitude/orientation, over given frequency bandwidth, as
compared to the Pauli vector of the Jones matrix. For signal
bandwidths comparable with the correlation bandwidth ,
the PMD vector is no longer sufficient to accurately describe
the output field, and the so-called higher order PMD must
be taken into account. We defer the discussion of the Jones
matrix eigenmodes ACF to the next section, dealing first with
numerical results.

A. Check by Simulation

The same set of 10 000 fibers as in Section III-B, was
used to validate the results obtained for the ACFs
and through numerical simulations, with the only
difference that an rms DGD of 10 ps was imposed in the
simulation (instead of the value 10.5 ps used in Section III-B).
Measurements were performed on a two-sided bandwidth of

GHz, where obeys the
condition stated in Section III-B [13]. However, such
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Fig. 7. ACF of the Pauli vector and of its coordinates. Theory (25), (26): line;
simulations: symbols.

includes any bandwidth of practical interest for transmission on
fibers with the chosen rms DGD.

Since in the dynamical equations (9) the optical frequency
always appears multiplied by the birefringence standard devia-
tion , all the dynamical properties of Pauli coordinates in the
frequency domain are expected to scale with, and hence, with

, as confirmed by (25). Thus, the ACF ofand of its
four components is plotted in Fig. 7 versus the normalized fre-
quency deviation , as done in [17] for .
We note the excellent match of simulations with the theoreti-
cally predicted Gaussian ACFs (25), (26).

Information on the ACF of the retardation angle
and the eigenmode is buried in the ACF of , and we
did not find a way to extract it analytically. However,

is the ACF
of . Defining the ACF of as

and the ACF of the eigenmode as
, we would be allowed to factorize

as only under the
incorrelation of and for any

. We only proved independence for , but not
for .

In Fig. 8, we again plot in dashed line the theoretical
ACF , while in circles we plot the func-
tion . Since the two
curves are closely matching, we conclude that and

are practically uncorrelated for any choice
of . In Fig. 8 we also report, in stars, thesimulated
ACF alone and we note that .
The significant implication of this simulation result is that the
correlation bandwidth of the eigenmode, equal to , is

that of the PMD vector . Hence, it is confirmed that
the PSPs possess a slightly greater stability in frequency than
the eigenmodes, and are then preferable as a frame of reference
for expressing the transmitted field if the signal bandwidth is
small enough. But it is also true that the correlation bandwidths

Fig. 8. ACF of the eigenmodes, plotted versus the theoretical ACF of
u. Factorized ACFR (! ; ! ) + R (! ; ! )R (! ; ! ) showing the
incorrelation of̂b(z; ! ) andsin(��(z; ! )=2).

Fig. 9. ACF of the retardation angle��(z; !), compared to a Gaussian shape
with the same variance ofR . The analytically computable central value and
asymptotic value are also reported.

are comparable ( ) and that if the signal band-
width is increased, e.g., due to increased transmission rate, and a
higher order description is needed, the most appropriate output
field description uses the eigenmodes, because of their more
regular circular contours, in frequency, on the Poincaré sphere.
The “all-order” compensator described in [4] is based on this
principle.

An exact coincidence of and would
imply a constant . In fact, the peak value

and the asymptotic
value

, both evaluated analytically from (14),
justify that is always close to , as we verified
numerically.

Regarding , we can compute its peak value5

and asymp-
totic value

from (14). Numerical simulations, reported in Fig. 9, show a

5We assume wide sense stationarity for the process��(z; !). Under this
assumption, it is true that the central valueR (0) is the absolute maximum
of jR (�!)j.
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remarkable feature: has the same Gaussian shape as
, with appropriate scaling. A feature for which we did

not find an analytical justification.
From the simulation results, we conclude that

(27)

(28)

can be used with good accuracy for approximating the ACFs
of the fiber retardation angle and eigenmodes. An intuitive
justification for the Gaussian shape of is found by ex-
panding in Taylor series, to the first order,
around , and calculating . We get

, that has the same shape as (27),
though it slightly underestimates the peak value of .

We again stress that, in all the cases where theoretical re-
sults are available, simulation and theory are in good agree-
ment, notwithstanding the remarkable differences between the
retarder plate model used for the simulations and the theoret-
ical model, in which the local birefringence direction has a uni-
form distribution on the Poincaré sphere, the local birefringence
strength has Maxwell distribution, and there is no retardation at
the reference frequency.

VIII. C ONCLUSION

Assuming Gisin’s “white Gaussian” model for the local bire-
fringence [2, Appendix D], we were able to prove the following.

i) For any given frequency and fiber length, the eigen-
modes are a random vector uniformly distributed on the
Poincaré sphere and are independent of the retardation
angle, whose pdf follows a cosine law.

ii) For any given frequency, the uncorrelated Pauli coordi-
nates evolve in space like a standard Brownian motion
on the unit sphere in .

iii) For any given frequency and fiber length, the Pauli vector
is independent of the PMD vector and of its derivatives.
The frequency derivative of the Pauli vector is a vector in

whose direction is uniformly distributed and whose
magnitude is Maxwellian, being a linear transformation
of the PMD vector.

iv) The frequency derivative of the retardation angle is
Gaussian, independent of the retardation angle, and the
depolarization rate of the eigenmodes, which depends
on the retardation angle but not on the eigenmodes, has
a “quasi-Rayleigh” distribution, modified by a confluent
hypergeometric function.

v) For fixed fiber length, the Pauli coordinates have iden-
tical Gaussian frequency autocorrelation function. The
ACF of the eigenmodes and retardation angle is also
practically Gaussian-shaped, with coherence bandwidth
equal to that of the PMD vector.

APPENDIX A
A CRITICAL COMPARISON OF THEDIFFERENT MODELS

FOR THELOCAL BIREFRINGENCE

In order to analyze the system of SDE in (8), we need to suit-
ably model the variations of the local birefringence along the

fiber length, i.e., the stochastic process . In the litera-
ture, mostly two models are adopted for long fibers. The first one,
used by Foschini and Poole [1], assumes

, where the -dependent term is linear in frequency and ori-
ented along the first axis of Stokes space, while the -de-
pendent term is a three-dimensional white noise process with
independent components, each with variance. The second
model [2, Appendix D] for fibers much longer than the corre-
lation length, assumes , with the same white
noise process as in [1] (indicated by in [2]).

Both models resort to a white noise process, which is con-
venient for analyzing dynamical equations with the standard
tools of stochastic calculus, but are physically very different,
leading to some difficulties in the length or frequency domains,
respectively. In Poole’s model, for , the direction of

is uniformly distributed on the Poincaré sphere
and its magnitude, the birefringence strength, is distributed as
a Maxwell random variable. As increases, the birefringence
vector increases along, and thus, for large, the birefringence
of the fiber sections has a preferential orientation () which
prevents the global PMD vector from having a uniformly dis-
tributed direction, unless the fiber is long enough. This problem
is circumvented in [1, Appendix C] by letting , to obtain
the equilibrium density for the PMD vector, which is uniform
on the sphere. On the other hand, the second model includes
fiber segments with a uniformly distributed birefringence direc-
tion, for every , but it neglects the birefringence effects at the
reference frequency, since and, consistently with
the assumptions in [12], all the fiber segments have an identity
transfer matrix at . Stated in other words, any global fiber
descriptor, which is a random process both in theand the
domains, suffers from a stationarity problem since the birefrin-
gence is anchored to an initial condition (a preferential orienta-
tion dictated by , for , in the first model, and the null
birefringence strength, for , in the second model). Such
processes will nevertheless be asymptotically stationary and the
problem of initial values is circumvented by letting in
the first model (long fibers) as well as by letting in the
second model (large reference frequencies).

As we see in Section VII, the dependence of some moments
of on the absolute frequency referenceis thus an artifact
introduced by the stochastic birefringence model

. When regarding the coordinates as stochastic
processes in the frequency domain, stationarity cannot be ex-
pected since their value at is anchored to an initial con-
dition [ and , , for any
] because of the absence of a random frequency-independent

birefringence term in . Nevertheless, if we regard the
fiber transfer matrix as the concatenation of infinitesimal fiber
plates, each has a Müller transfer matrix

. For , the random rotation
introduced by the term , when the new frequency vari-

able goes to zero, makes the global fiber Jones
transfer matrix a stationary process in, provided the phase ro-
tation can be regarded as a uniform variable on , which
is consistent with the assumptions of the retarder plate model
[11], commonly adopted for fiber simulation. Stated in other
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words, the Pauli coordinates are asymptotically sta-
tionary random processes in the variableand their moments
must be evaluated for (keeping the frequency deviation

finite, for second order moments) in order to obtain phys-
ically meaningful results from the application of the adopted
birefringence model.

There is indeed a third model in the literature (the
“first model” proposed in [3, p. 150]) which assumes

with birefringence
strength fixed along and a Wiener process. This
model seems to best reflect our physical understanding of fiber
birefringence, since the birefringence strength, which is mostly
induced by the ellipticity of the fiber core, can be reasonably
assumed to be constant due to the manufacturing process. The
third component of is zero since silica fibers are linearly
birefringent. Finally, the rate of change in the orientationof
the linear axes of birefringence is due to local stresses: while
such rotational stresses can be regarded as a scalar white noise
process, on a suitably long scale, the birefringence orientation
is a -continuous Wiener process.

Despite possible criticism regarding the neglect of , we
choose for analytical simplicity the Gisin model. We will see
that its predictions agree with simulation results, despite the dif-
ferences between the theoretical model and the retarder plate
model employed for fiber simulation. Thus, in this paper, we
assume , with defined as a 3-D nor-
malized white noise, i.e., with independent components and unit
variance per component.

APPENDIX B
UNIFORM DISTRIBUTIONS ONSPHERES

The coordinates of a point lying on a sphere of radiusin
are

with and . Note that , with
, express the coordinates ofif is interpreted as twice

the azimuth and as twice the ellipticity of the eigenmode.
Extending to the space , the coordinates of a point lying on a
hypersphere of radius are

(29)

with , and . Assuming ,
the last equality in (29) relates the coordinatesto the Pauli
coordinates , provided is interpreted as . In
particular, given , (29) is a set of parametric equations.
When the set of parameters varies in a
domain , (29) defines a region with degrees of
freedom, i.e., anhypersurface in the Euclidean coordi-
nates . It is a basic result of multidimensional calculus (see,
e.g., [18, Sec. 6.1.8]) that, if the parametersare each varied

by an infinitesimal amount , the vector
describes an element of surface with area

(30)
The square root term in (30) can be evaluated from the Jacobian
matrix by deleting, for , the
th column from , and computing the determinant of the re-

sulting matrix. The value of eachth deter-
minant is defined as theth element of a vector , and
(30) can be compactly expressed using the norm of such vector:

. To compute the area of , one can in-
tegrate with and , where

is obtained from (29) as described above.
Integration, with , yields .

We are now ready to evaluate the joint probability density of
the angular coordinates for a uniform distri-
bution on the sphere of unit radius in . For a uniform distri-
bution, the probability that a point lies in the element of
surface is the ratio between the area of and the area
of the whole sphere. Hence, if is the joint
pdf

and, for , we get

(31)

The marginal densities can be obtained by integra-
tion w.r.t. the remaining two variables. The above product
form proves that the three angles are independent random
variables.
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