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Statistical Characterization of the Jones Matrix
of Long Fibers Affected by Polarization Mode
Dispersion (PMD)

Armando VannucgiMember, IEEEand Alberto Bononi

Abstract—The unitary transfer matrix of a fiber affected by po- ~ what was done for the dynamical equation of the PMD vector
larization mode dispersion (PMD) is analyzed using the Stokes rep- [1], [2]. Once a suitable model for the local birefringence vector

resentation of its eigenmodes and its retardation angle, or equiva- o 'poan selected, such dynamical equations are tackled with
lently through its Pauli coordinates. We develop a statistical theory !

applied to these parameters and relate it to the extensive existing Standard tools of stochastic calculus [5]: i) the Fokker—Planck
literature on the statistics of the PMD vectorﬁo(w), Dynamical equation (FPE) is used to derive some useful probability density
equations are established for the Pauli coordinates. Assuming a functions (pdf); ii) the Dynkin formula, also known as the mar-
standard “white Gaussian” model for the local birefringence, and tingale differential equation (MDE), is used to derive some mo-

using the tools of stochastic calculus, we derive the distributions of . . .
the eigenmodes, the retardation angle, the Pauli coordinates, and MeNts of interest, without knowledge of the related pdf; iii) the

of the frequency derivatives of all these parameters. The evolution Characterization of canonical Brownian motion on spheres is
in space of the Pauli coordinates is also characterized as a stan-used to recognize the nature of the spatial evolution of the Pauli
dard Brownian motion on the unit sphere in ®*. An expressionfor  ¢qordinates. A rigorous in-depth treatment of such concepts is

the frequency autocorrelation function of the Pauli coordinates, the ided in I51. H brief tutorial introducti .
eigenmodes and the retardation angle is derived and their coher- provided, e.g., in [S]. However, a brief tutorial introduction, in

ence bandwidth is compared to that of the PMD vector. All theoret- - the context of PMD, can be found in the appendices of [1], [3].
ical results are supported by simulation over an ensemble of 10000  On Notation Throughout the paper, matrices are denoted by

fibers, using the standard retarder plate model. capital letters, three-dimensional vectors by an arrow, and unit
Index Terms—Optical fiber communication, optical polariza- magnitude vectors by a hat. Four-dimensional real vectors are
tion, polarization mode dispersion. underlined. A column vector with elemenis b, c is denoted
by [a; b; ¢]. The symbols andx denote vector scalar and cross
I. INTRODUCTION product./ is the 3x 3 identity matrix whileog is the 2< 2

) ) ) __identity matrix. Ensemble averaging is denotedHyy].
HE stochastic analysis of fibers affected by polarization

mode dispersion (PMD) has so far concentrated on the sta-
tistics of the PMD vector and its frequency derivative [1]-[3]. II. JONESMATRIX OF A FIBER AFFECTED BY PMD
The interest in the PMD vector is due to its stability in fre- . . . .
: . . . .~ Using the Jones formalism to describe the state of polariza-
quency over the bandwidths of interest in optical communica- : . . X i
! ) lon (SOP) of a given optical field, a linear fiber of length
tions at bit-rates of 10 Gb/s or lower. However, the upgrade : L
- ) ) ! ected by PMD but without polarization dependent loss can
the new 40 Gb/s digital hierarchy standard over installed single . . )
) . L € described as a two-input—two-output linear system whose
mode fibers (SMFs) brings about a strong depolarization of the o . .
oS — ransfer matrix is the product of a scalar function and a unitary
PMD vector so that its higher order frequency derivatives, the_, . : . .
o N . . . matrix U(z, w) which has unit determinant.
so-called “higher order PMD,” become increasingly important. We can compactly exore€s as a matrix exponential as su
In this new scenario, the analysis of the output field based on the bactly exp P 9

PMD vector may not be any longer the simplest mathematic%?Sted by Karlsson [6]:

description [4]. This motivated us to derive a stochastical de- ‘ o A A\ [s
scription of the fiber Jones matrix and its frequency derivativesl/ = e~ #4#/2B-71 = ¢og <—> oo — isin <—> [b *}
highlighting its relationship to the PMD vector description. 1)

In order to describe the Jones transfer matrix in a compagterep — [b1; ba; bs] is the Stokes unit vector associated with
form, we will resort to its decomposition over the basis of Paule “siow” eigenvector of7, A¢ is theretardation angleand
matrices. Our first objective is to derive dynamical equations fgr— [, . o,; 4] is the so callegpin vectorwhose components
the space evolution of the Pauli coordinates, in a similar way e the Pauli matrices 1, 2, 3, as defined in [7], so that the scalar

productl?-c? is shorthand foEf;l b;o;, and represents a matrix.
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where thePauli coordinates vectéry = [uo; ] is a (column) _There are several models adopted in the literature for
vector inR*. Since from (2)|x|?> = 1, the coordinates,;, are W (z, w), and the choice of each model has nontrivial implica-

confined on the surface of a sphere with unit radiuRfnthat tions. For analytical simplicity, we choose the model adopted
we will indicate withS*. by Gisinet al. [2] for analyzing “long” fibers, which assumes
The Miiller matrix associated with (1) is [6] W(z,w) = wupii(z), whereii(z) is a three-dimensional
Gaussian process with independent and identically distributed
components, each being a scalar white Gaussian process with
= I +sin(Ag) [gx} + (1 — cos(Ag)) [@X} [gx} (3) Zeromean and unit variance. The scalar parametefluences
the birefringence variance. A discussion of this choice is
where[bx] is the skew-symmetric matrix corresponding to therovided in Appendix A.
vector cross product operation. When (3) is applied to a Stokeg/Vith such model, we must be careful to interpret the sto-
vector, it causes a counterclockwise rotation of such vect@hastic differential equation (SDE) system (8) in the proper way:
about theb axis by an angleA¢, thus giving a geometrical Since an unbounded white noise term appears, all the products
meaning to the eigenmodes and the retardation 3ng|e_ invoIving ﬁ(z) must be interpreted as Stratonovich products
Our main motivation for the study of the Pauli coordinatekl], [5]. Denoting with di’(z) = 7i(z) dz the differential of
comes from the fact that an exact closed-form expression exigtgndard three-dimensional Brownian motion and applying the
of the photodetected field intensity in an optical communicatioptratonovich rules for the evaluation of produtise recast the
system. It is proven in [8] that the received intensity can be eflynamical system (8) in itio form
pressed as 3w?p?

M= oAb

. . dug = -— 3 uodz—i—%a’-d[}
I(t) = No(t) + N(t) -y (4) - (9)
i =~ g gar— g ap
wherej is the input Stokes SOP, amél(¢), N (t) are calculated wo= g wdET oty U X M
using the Pauli coordinates as or, equivalently, in theanonical form[5]
No®) = Jut®) @ Bo(t)] B o e ) + V(Wi (10)
LA — . — . z
N = 2§R{(“°(t) @ E,(1)) (i(t) @ o (1)) } where thedrift ¢ is a 4x 1 vector, and theliffusionV [5] is a
- — * 4 x 3 matrix, defined as follows:
— i (@(t) ® Eo(1)) x (i(t) © Eo(1)) ()
, : N _wp [ —a”
where® denotes convolutiori?{-} the real part} is complex c=— u VE (11)
. . ) . ! 8 2 | uol +ux
conjugate, andv, is the scalar input field, filtered by common
mode chromatic dispersion. We now apply the Fokker—Planck equation (FPE) [5] to the
Ito system (10). This powerful mathematical tool is used to de-
IIl. THE PauLI COORDINATES DISTRIBUTION rive the distribution of a vector process, given the SDE gov-

erning its evolution, by solving a partial differential equation. It

has been used, e.g., in [1] to obtain the distribution of the PMD
vector, and is briefly discussed in Appendix Ain [1]. In our case,
©) the FPE describes the evolution alongf the joint probability

The local birefringence vectdf/(z, w) governs the spatial
evolution of the unitary Jones matrix (see, e.g., [7, eq. (6.4)])

4 Uz, w) = —% [Vf/(z, w) -5’} Uz, w)

dz density function (pdfp(uo, u1, us, us, z) of the processes,
whereU(z, w) = uo(z, w)og + iz, w) - & is completely rep- 3
resented by its Pauli vectal(z, w) = [uo(z, w); Uz, w)], as Ipl, 2) _ Z Ien(wp(y, 2)
per (2). From the properties of Pauli matrices, it can be shown 9z b—0
that the Pauli coordinates of the product of matritgsandl/, a“ p(u, 2))
with coordinates:; andu» are + ZO 0w 8u1 (12)

[woruo — Uy - s [uo1ts + vo2tly — U X Wa]].  (7) "
where the elements of the drift arg = —(3w?p?/8)us, and

Applying such result to (6), we get the dynamical equations go

T
erning the evolution of; \f'ne matrix A = {a“} = VV* in our case becomed =

(W /)(|ulT — uu®).

dug - lg, 174 As for any partial differential equation, there is no standard
dz 2 (8) method for solving the FPE. However, we next prove that a pdf
di 1 wel — Lo i p(u, z) = p(z) which does not depend ancan be a solution
dz 2 " 2 ' of (12). Such a pdf corresponds to a uniform distribution for
IFor brevity, we will refer tou as thePauli vectorand to its elements, as ¥ ON its domain of definitionS*. For the proof, the FPE can
the Pauli coordinates be evaluated using the drift coefficiec(tu) and the matrixA,

2Note that one might be tempted to deal with the ve@@At Agb, by analogy
with the PMD vector), = A7q. Indeed it is possible to derive a dynamical 3For a discussion of the Ito—Stratonovich duality in the context of PMD, see
equation fory similar to (8), which however involves nonlinear functions of its[1, Appendix A], [3, Appendix], and [2, Appendix D], reporting the rule for
elements, making such equation readily intractable. Stratonovich products.
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whose diagonal elementg; do not depend om; and whose A. Pauli Coordinates Incorrelation and Evolution in Length
off-diagonal terms are simply;; = —(w?u?/4)u;u,;. Equation . . _
(12) thus reduces tp(z) /8= = 0, whose solution is a constant The Cartesian coordinates are not independent. None;he—
pdf alongz, and does not depend an It is then proved that €SS, we can prove that they are gncorrelated resorting to
the uniform distributionp(w) = (1/2x2), w € S* and zero the Dynkin form.ula [5, Ch. 7]. This important _mathematl_cal
elsewhere, is the FPE solution giving the joint pdf of the padpol of stochastic calculus allows the evaluation of a given
coordinates:, since2x? is the hyper-surface &4, as shown in moment E[f(u(z))] of the vector process(z), without
Appendix B. knowledge of the related pdf, by solving the differential

Note that the solution does not depend:omeaning that, €duation(GE[f(u(z))l/9z) = E[G{ f(u(z))}]. Here,G{-} is
reaches its steady state uniform distribution immediately affdrsécond-order differential operator called ke generator
the fiber input. From a mathematical standpoint, this is due @gfined on the dynamical system (10), that depends on the drift
the unbounded white noise term that models the local birefrig2nd on the matrixi defined below (12). The Dynkin formula
gence (see Appendix A for a discussion). This model is also tifebriefly introduced in [1, Appendix A] with the alternative
cause of the discontinuity in the distributionuefz, w) atz =0 Nname of MDE, along with the Ito generator, in order to evalua_te
(recall thatu(0, w) is deterministic and equal fa; 0; 0; 0]). A SOme moments of the PMD vector. Reference [3, Appendix]
transient behavior in would appear if the birefringence wered!S0 discusses the related concept of Stratonovich generator,
a colored bounded-variance stochastic process, similarly to #@ich is applied to SDEs in the alternatigtratonovich
transients for the PMD vector studied in [2, Appendix C]. Howform [3, eq. (18)]. In our case, defining(v) = wuu;, with
ever, we are interested fong single mode fibers, i.e., hun-¢ # J. the application of the Ito generator tv) yields
dreds of imes longer than the correlation length. On such lendtiii} = —w?p?uiu; and the Dynkin formula gives
scales, the variations of the birefringencezian be suitably (9E[wiu;1/02) = —w?u?Elu;u;], whose solution is zero:
modeled as white noise, as the good match between theory &f#i(#, w)u;(z, w)] = e ™ # “Eu;(0, w)u,; (0, w)] = 0
simulations will show. for any (z, w) because for a zero length fibery(0, w) =

As shown in Appendix B, the spherical coordinated: ux(0, w) = 0(k = 1, 2, 3), thus showing the incorrelation
(6, e, Ap) of u are found to be independent randon®fthe Pauli coordinates;.
variables (RVs). Thus, at fixed and w, the eigenmode A further important result is that the dynamical equations (10)
b = [cos(26) cos(2¢); sin(26) cos(2¢); sin(2¢)] is independent imply a Brownian motion on the unit sphee* for the evolu-

of A¢(z, w). The marginal densities of the azimuthand the tion alongz of the fiber coordinatesy(z, w). Itis possible to
ellipticity ¢ are show that the normalized Brownian motionditt coincides in

1 . . law with (i.e., has the same finite-dimensional distributions as
p(f) = — (|9| < —) p(e) = cos(2e) (|5| < —) (13) [5]) the process(~) of our interest, by applying [5, Th. 8.4.3],
T 2 ) 4 which requires the comparison of the drift and diffusion coeffi-
which give a uniform distribution of on the Poincaré sphere, acients of the processes. The expressiorgwfandV (w) in (11)
result already given in [9] without proof. Moreover, we also gedatisfy the conditions of such theorem, after a suitable change

the pdf of the fiber retardation anglk¢ of thez scale which depends on thus proving that the process
1 — cos(A¢) u(z, w), for every frequency, coincides in law with a four di-
pAg)=———— O0<Ap<2r (14)  mensional Brownian motion on the unit sphere and that the mo-
tion evolves at different rates, along for different frequency

which is symmetric around the mean vallifA¢] = . We can
then state that, “in the average,” a long fiber operatessation
around a completely random axis on any input SOP. Since the

components.

Euclidean coordinatesy, £ = 0, ..., 3, are a transformation B, Check by Simulation
ofthe RVs(f, ¢, A¢), they are found to have identical marginal
pdf A set pf 10000 fibers was simulated and the paramaeters
9 A¢ andb were measured at the reference frequency. For fiber
plug) = = /1 —ud (-1 < <1) (15) simulation we used the standard retarder plate model (see,
7r e.g., [11]), where each fiber realization consistshof= 100
and henceE[ui(z, w)] = 0, E[ui(z, w)] = 1/4, for every independent polarization maintaining fiber (PMF) plates, each
z > 0, which also impliesZ[U] = 0, i.e., a zero average valuecharacterized by local eigenmodes that are uniformly dis-
for the Jones matrix. tributed on the equator of the Poincaré sphere. The retardation

Toquotejustone possible application of the obtained resultsangle of eachth plate isA¢,(w) = Adno + Appiw, Where
[10, Sec. V]the authors discussthe coarse step method for solvikg,,o is a RV uniform on[0, 2x] and the local birefringence
the Coupled Nonlinear Schrodinger equation, which requires sitengthér = A¢,; was chosen in order to have the desired
a certain step of the method, a uniform scattering of the field ooot mean square (rms) differential group delay (DGD) for
the Poincaré sphere. The concatenation of several simulated Jahesglobal fiber:\/E[A72] = +/Nér [12], whose value we
matrices[10, Egs. (34) and (35)]issuggestedto produce aunifarhose equal to 10.5 ps for the set of simulated fibers. Possible
mixingof the field. Our results suggest instead that such goalfiequency periodicities for the global Jones matrix resulting
achievedbysimulatingasingle Jones matrixwiththedistributiof®m a fixed localé7 [11] are not an issue when performing
of 8, eandA¢ givenin (13) and (14). first order statistics. For frequency-distributed measurements,
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blrad] is different from that obtained in [1], due to the different bire-
(b) fringence models. Equation (16) can be expressed in the canon-
i T . 50 T o - T ] ical form (10): the drift and diffusion coefficients in this case
P © 7R 0 g0 G = —o?20, andVe = [ul — wpl tively. Wi
Op e} 5% aredp = —w?n”Q, andVy = [l —wpsl, x], respectively. We
T o™ %% can check that the pgf(z, §2,) of the PMD vector that solves
S057 e Qog 1  the associated FPE is the well-known trivariate Gaussian dis-
Opo‘a % tribution with zero mean and covariance matrix equakiel.
0 : ' . : . ' . Due to the white Gaussian model of birefringence, which is in-
06 04 -02 0 02 04 06 . ; e - :
¢ [rad] herently suitable for “long” fibers only, there is no transient be-

havior in z for p(z, §2,) and the PMD vector reaches immedi-

C
© ately its steady state Gaussian distribution. Hence, the rms DGD

g:,g(cl) eigggﬁﬁaﬂIelnelIﬂggsilgif'lgﬁ)eﬁ?(ﬂljz)uggda(nl%ﬁiigtgsflsgi(;;]l;?ei)t%iz:z::?:gltgs.\/E[|ﬁo|2] = /3u2z, grows as the square root of the fiber
length, as typical of “long” birefringent fibers [2].
We are now ready to prove the following.
Theorem: The PMD vectorﬁo(z, w1) and the Pauli vector
wo) are independent RVs for arfy, wo).
Proof: Letus consider the values taken by the PMD vector
d by the Pauli vector at any two (possibly equal) frequencies,
(2, w1) andu(z, w2), at the same positionalong the fiber.
he joint stochastic differential system obtained from (9), at
w2, and (16), atv = w1, can be associated to a FPE whose
on is the joint pd(z, Q,(w1), u(ws)). It is straightfor-
%rd to show that the solutlon to such FPE can be factorized

performed in Section VII-A, the artifact of frequency pe-
riodicities is overcome if the number of fiber plates obeys
AB\/E[A7?] < v/N, whereAB is the measurement band-“ iz,
width, so that measurements are confined in one period onlx
[13]. Such condition was always satisfied in our measureme

In Fig. 1, the theoretical pdfs (14) of the retardation ang’—%
(top), and (13) of the eigenmode azimuth (center) and ellipticity
(bottom) are plotted and compared to simulation results, whi Gqu
represent histograms computed over the fiber realizations at

reference frequency = 0, and a good agreement is found. |
all the presented figures, lines represent theory and symbols qé}%?;ﬁ igtr;?;f;gfrtehsepr;;r\%ngpﬁé s, if ;ﬁld))()i?; ﬁ(z’ ufws)),

resent simulation. The marginal densities of the cartesian Pa
coordinates:; are plotted in Fig. 2, using different symbols for =
k =0, 1, 2, 3, and compared to the expression (15) obtaine : [a’”l( (wi), (wQ)) (z Qo(w1)>p(z’g(w2))}
from theory. et 90wy
Note that the good agreement between theory and simulation =0 (17)
is obtained despite the remarkable differences between the as-
sumptions made in the retarder plate model used for simulatiqnﬁereAm(ﬁo (w1), w(ws)) EN Valwr, ﬁo)vf(% ) is the ma-
and the white Gaussian theoretical model of birefringence. trix accounting for the statistical cross-interaction in the joint
FPE.
We show next that (17) is always verified for the joint system
(9) and (16). Given the structure &f, below (16), andV,
in (11), an explicit evaluation ofi, shows that each of its
The white Gaussian model adopted for the local birefringenetementsz,.;; (€2, (w1 ), u(w2)) does not depend of?,; nor on
can be inserted in Poole’s dynamical equation [1]. The SDE, and hence, can be taken out of the derivative in (17). As
so obtained governs the evolution of the output PMD vectarsecond step toward the verification of (17), we _call on the
Q,(z, w) alongz: translated in Ito form its expression spherical uniformity of the marginal distributiopéz, G, (w1 ))
and p(z, u(wz)) obtained above. Their_derivatives can then
A, = —w?12Q, dz — wp, x di + pd7 (16) be expressed a@p(Q,)/0Q,;) = (9p(9,)/0|0,[2) - 290;

IV. ON THE INDEPENDENCEBETWEEN PMD VECTOR
AND PAULI VECTOR
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and (9p(w)/0w;) = (9p(w)/0|ul?) - 21, and the verifica- of w,,, i.e., the orientation of its hyperplane of definitionfit,
tion of (17) ieduces to proving that the double summatidsut not its distribution.
377 1o it Ro(wr), w(ws))  Qoi(wi)w(ws) is zero. Such

double summation is a quadratic form VI. DISTRIBUTION OF THE DERIVATIVE OF THE JONES MATRIX

= 2 From the previous results, the directionof is uniformly

G7 () A (sz ) Fr esults, T ol !
o (W) da (Sowr), ulws) ) ulw2) distributed onS* and its magnitude, amounting tr /2, is

Maxwellian and independent of its direction. Hence, the statis-
tics of the polar coordinate$u .|, ¢1, ¢2, ¢3) of u,, are com-
pletely characterized, since, from geometrical results on the uni-
E)ém distributions inR* reported in Appendix B(¢1, ¢2, ¢3)

are independent RVs with marginal pdf's

= [ﬁoT(wl)VQ (wb ﬁo):| [u" (w2) Ve (wa, u)]T =0
which is zero since:!'V,, = 0, for any(z, w). This last prop-
erty has a simple geometrical explanation. Since (8) can
written as(du/dz) = ((1/wp)V,)W for any W, and since
u(z) and(du(z)/dz) are orthogonal because(z)| = 1, then 1 COS ¢ 2 cos? 3
0 = uT(du/dz) = (WTV,)(W Jwp) for any W, which implies p(d) =5 pldr)=——=, plos)=—
u'V, = 0. _ O with —7 < ¢ < 7 and—(7/2) < ¢a, ¢3 < (/2).

_ As aconsequence of the aforementioned theorem, expanding,, 4yeraging the conditional covariance matrixuof W.r.t.
Qo(w) = 3, Q<(>z)(“’0)((“’ — wp)" /i) in Taxlqr series, such ,, the cartesian coordinatesof, are found to be uncorrelated
independence implies that the derivative$’ () of any zero mean RVs, each with variance equakavr2]/16. They

ith order of the PMD vector are independent @z, wo). all have the same pdf, which is obtained from a transformation
In the next section, we will use such independence, fef the polar coordinates as
i = 0, to statistically characterize the derivative of the Pauli

vector in terms ofQ,. The same procedure can be iterated plua;) = 4 //_iﬁuiie_,aujT <§> N <g’ 2;/3713-71) 1)
i3

(20)

to characterize higher order derivative$ (w,) in terms of 2
3 S0 G(n—1)
(Qo(wo), 257 (wo) -+~ 2o (wo))- where 3 = 6/E[A7?], ['(z) is the Gamma function and
Y(«, v; 2) is the confluent hypergeometric function of second
V. THE PMD VECTOR FROM A NEW PERSPECTIVE kind [14, eq. (9.211.4)].
THE DERIVATIVE OF THE PAULI VECTOR We are now interested in evaluating the distributions of the

The output PMD vectof}, is defined by the analogue of (6),r§ta5dation angle derivativA¢,, and the ei_genmod'es derivaj
where the derivative is taken with respect to (w.tt,JandWw tive b... These two parameters have a precise physical meaning:
is replaced by, [7, eq. 5.11]. From such an equation, a linea®¢.. is the differential delay introduced by the Jones matrix for
differential system governing the evolution in frequency of th@ach spectral component of the signal, witileis the depo-

Pauli vector is obtained as in (8) larization vector associated with the eigenmodes: if it is zero,
. the fiber is a PMF, i.e., we are in the “first-order PMD” case.

w,=—1 [ e } 3, (18) Otherwise, thalepolarization ratgb,,| will cause higher order
upd + X pulse distortions. Expressing the derivative of the Pauli coor-

dinates in terms of the fiber retardation angle and eigenmodes,

from (2) and (18) we hav&\¢,, = b - €2, = At cos o, where

« is the angle between two independent unit magnitude vec-

tors, uniformly distributed on the Poincaré sphere, with pdf:

pla) = (sina/2)(0 < o < 7). SinceAr is independent of,

The Pauli vector: has unit magnitude, hence its derivativg Ad,, can b(; easily sr_lown to be Gaussian dlstnbu_mde;. ~

is always orthogonal to it ifit4, and consequently, givan the “V(0: E[A7°]/3) and independent ak. From the discussion
atthe end of Section V, it can be shown that the directidn,a$

probabilistic space in which , is distributed is only 3-D, the ; ) . ; .
fourth dimension being determined by the orthogonality condiPherically uniform in Stokes space, and, taking the magnitude

tion. Operating a rotation of the reference systeriinby the Of Poth sides of (18), we gab..| = (A7 sin«/2sin(A¢/2)),
4 x 4 unitary rotation matrix with A7, a and A¢ independent RVs. The pdf of the depolar-

ization rate is then
o @t (19) 7 4 st pld 1 1 =2
- UOI—JX p(|bw|) = ;/3|bw|e el B 57 5 o 57 3; /3|bu.| (22)
u is rotated onto theth canonical axigl; 0; 0; 0]. By applying  whereB(z, ) is the Beta function an@(«, v; z) is the con-

the same transformation to (18).. is transformed into the flyent hypergeometric function of first kind [14, eq. (9.211.1)].
vector[0; —(£2,/2)]. This shows a fundamental resifte PMD |t is also possible to show thain(A¢/2)|b.,| is Rayleigh dis-
vector can be viewed as2 times the last three components ofributed and independent df¢...

4., once this is recast in a reference system wheosincides

¢ 3 ) : 4 . . . ) . .
with [1; 0: 0; 0], or equivalently, once we identify the hyper- The only exception to this statement is when the fl_ber under conS|de_rat|9n
[ > ] q y fy yp is made up of a PMF concatenated with a frequency independent polarization

R ;
plane ortr_u_)go_nal tas in R as the ordinary 3'D_St0kes SPACE controller: in this case the propagating pulse only suffers the DGD effect (pulse
The conditioning on: only influences the domain of definition splitting) and|b..| is not zero [8].

where subscript denotes derivative w.r.t. optical frequency.
Givenw, by the independence 6t, andx, (18) is a linear
transformation of a Gaussian random vector, henges con-
ditionally Gaussian, with conditional medu .|u] = 0 and
covariance matride[u .u L |u] = (p?2/4)[|u)?I — wut].
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LY (a) Probability density of: depolarization re}aﬁg|. (b) Depolarization
such indicator.

vector azimuthd,, (c) Ellipticity ¢,,. Theory (22) and approximation (23)
(a): lines; simulations: circles.

A. Check by Simulation The theoretical analysis performed in Section VI predicts
The same set of fibers as in Section IlI-B, simulated witB uniform orientation of the direction d@f, in Stokes space.
the retarder plate model, was used for computing the numeri€#fining its azimuthf,, and ellipticity ¢, similarly to those
distributions ofw.,, A¢,, andb,.. of b in Section IlI, their pdfs are the same as in (13): such
Starting from the polar coordinates®f,, Fig. 3(a) compares result is confirmed by the simulation results plotted in Fig. 5
the Maxwellian distribution obtained for the magnitude,|, (center and bottom plots). As for the depolarization fat,
which corresponds to half the DGD, with the simulation result¥e plot in Fig. 5(a) the theoretical pdf (22) together with the
which were computed from the Jones matrix frequency deriv@pproximating Rayleigh density
tive by extractin_g its Pauli vectar ._Thg est?mated p_dfs of.the » (|gw|) ~ 33 l7w|e_(3 /4)815. |2 (23)
spherical coordinatess, ¢, ¢2, which identify the orientation 2
of u,, in ®*, are also reported in Fig. 3, and compared to theoghown in solid line, with mean value /4+/3) E[A]. Equation
(20). (23) is based on the analytical approximation of the confluent
The distribution of the derivativA ¢, of the retardation angle hypergeometric functio®(1/2, 3; z) ~ ¢/ which, though

A¢(w) is reported in Fig. 4, well matching with the zero meawmvell fitted to the exact solution, tends to underestimate the tail
GaussianV(0, (E[A72]/3)). of p(|b.]).
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T »ﬁ‘g& P Using the Dynkin formula it is also possible to prove the fol-
r > simulation: u, k IOWIng result:
0.14] O simuiation: u, ]
= = :r::slzga:grsox 1 Elui(z, w)ui(z, w)] = % o (BIAT?]A?/8) 5. (26)
55 0.1 —~ - _exact theol v J ’ 4 Y
a
where é;; is the Kronecker symbol. Equation (26) extends
006} the incorrelation result of Section IlI-A and shows that
each of the four Pauli coordinates gives an equal contribu-
002 tion to the ACF in (25). In the derivation of (26), we used
olrpwe i -0
S0 -8 6 -4 -2

0 > 4 o the asymptotic stationarity of the proces$z, w), and let
UgilPs] w1, we — oo While keepingAw = w, — w; finite, according

_ . _ , _ to the Appendix A. From such result we also get the ACF
Fig. 6. Probability density of the cartesian coordinateg of Theory: exact fU foll = h d f la (7). the Pauli
pdf (21) in dashed line and Gaussian approximation in solid line; simulatiorfd! (w) as follows. From the product formula (7), the Pauli
symbols. coordinates ofU*(w;)U(w2) are [ug(wy)uo(ws) + #(wy) -

i(wa); [wo{w)i(wa) —ug(we)t(wr ) + (w1 ) X @(ws)]]. Using

We can provide a simple analytical approximation als@6)we see that only the zero-th component_has nonzero mean,

for the marginal distributions of the cartesian coordinates 8p thatE[UT(w1)U(w2)] = Ru(Aw)ao, extending to the Jones

u... Approximating the confluent hypergeometric functiofnatrix a result already known for the Mdller matrix [15], [16].
W((3/2), 2; z) ~ (1/2)e~*/® we get a normal distribution The importance of the autocorrelation function for the Pauli

N(0, (E[A72]/16)) for p(u.,). Such approximation is shown vector—and for the PMD vector—lies in its interpretation in

in solid line in Fig. 6 and compared to the exact solution (24§rms of mutual statistical dependence between the value taken
in dashed line and to simulation. by the vector(z, w), and hence by the Jones matrix, at a certain

reference frequency and the valye, w+ Aw) it takes at a dif-

VIl. A UTOCORRELATIONFUNCTION OF THEPAULI VECcTOr  ferent frequency. The ACF give; an indication of hpw quickly,
on average, the vector moves in frequency w.r.t. its reference

_Considering the Ito dynamical system (16) expressed for t@quency value, but does not give information on the shape of
different frequency values, we can establish a differential equfiz trajectories the vectors are likely to follow. Nevertheless,
tion for the evolution along of the frequency autogorrelatlonwe can compute eorrelation bandwidtrfor 50(27 w) and for
function (ACF) of the PMD vectofis(w; , ws) 2 B[, (w1) - u(z, w), based on (24) and (25), respectively, which gives a
Q,(w2)]. Since the differential of the PMD vector involves themeasure of the frequency span over which the vectors can be
unbounded quantityi’, we must treaf,(w1) - Q,(w2) as a regarded as “nearly constant” (this condition is practically ver-
Stratonovich product. We obtain the following differential equafied only for a fraction of the correlation bandwidth). Defining

tion for the ACF: the correlation bandwidthhwe, for a stochastic processw)
d with ACF R,(w) asAwe, = [ R, (w)dw/R,(0), we find
dz Aweq = (4v/2/E[AT]), consistently with [15], [16], and
whereAw = ws — w; is the frequency deviation, and the initiaIAwC_“' - (8/\/$E[AT])’ which is /2/3 ~ 0.8 times the cor-
e - . ) relation bandwidth of the PMD vector. Hence, we conclude that
condition isRg (w1, w2) = 0 atz = 0 (a zero length fiber has he PMD i< ch ed b iahily | bil
a zero PMD vector), with solution the vector is characterized by a slightly larger stability
in the frequency domain, i.e., it undergoes smaller changes
1 — e—Ae?u’z in magnitude/orientation, over given frequency bandwidth, as
Rg(Aw) = 3T (24)  compared to the Pauli vector of the Jones matrix. For signal
bandwidths comparable with the correlation bandwitth ,,
the PMD vector is no longer sufficient to accurately describe
s _ ] '~ the output field, and the so-called higher order PMD must
(24) coincides with the ACF obtained by Karlsson/Shédiél.  pe taken into account. We defer the discussion of the Jones
[15] and [16] following different agproaches. matrix eigenmodes ACF to the next section, dealing first with
Similarly, the ACF Ry (w1, w2) = Elu(w) - u(w2)] of the  numerical results.
Pauli vectoru(z, w) can be obtained starting from the dynam-
ical system (.9) consic_iered for tvx_/o different frequency valuei._ Check by Simulation
The differential equation so obtained is

Rg(wr, w2) = —AwQ/fRﬁ(wl, wa) + 3u°

and peak valudim, .o Rg(w) = E[A7?] equal to the mean
square DGD. As noted in Section I¥[A7?] = 3,2z, hence

) o The same set of 10000 fibers as in Section IlI-B, was
4 Ry (w1, ws) = _3AwTp Ry (w1, ws) used to validate the results _obtained fo_r the A_CIF@(Aw)
dz = 8 - and R, (Aw) through numerical simulations, with the only

with the initial conditionE[w(0, wy) - u(0, w)] = 1 (a fiber difference that an rms DGD of 10 ps was imposed in the

of length zero has the Pauli vectof0, w) = [1; 0; 0; 0] of the Simulation (instead of the value 10.5 ps used in Section III-B).
identity matrix), with solution B Measurements were performed on a two-sided bandwidth of

. o AB = 250 GHz, whereAB\/E[A7?] < /N obeys the
R, (Aw) = e~ B 172/8) — o=(E[AT]ALT/8) (25) condition stated in Section I1I-B [13]. However, suckhB
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Fig. 7. ACF of the Pauli vector and of its coordinates. Theory (25), (26): lin&ig- 8. ACF of the eigenmodes, plotted versus the theoretical ACF of
simulations: symbols. u. Factorized ACFR.(wy, w2) + R.(wy, wz)R;(wy, w2) showing the

incorrelation ofb(z, w,) andsin(Ae(z, ws)/2).

includes any bandwidth of practical interest for transmission o~

fibers with the chosen rms DGD. e 99g9%
Since in the dynamical equations (9) the optical frequency Hr do O\Q
always appears multiplied by the birefringence standard devi 10} o ©Q
tion 4, all the dynamical properties of Pauli coordinates in thi& 1 ¢ ?o
frequency domain are expected to scale witland hence, with g o‘" o
E[A7], as confirmed by (25). Thus, the ACF afand of its & [ o' "o Fay SURTGN ]'9
four components is plotted in Fig. 7 versus the normalized fre 102f o? * ENQ]; %/13_;3-2 990 ]
quency deviatiom\w /E[A72], as done in [17] foR 5 (Aw). 1ok QoQQOO e hhald \\\OQOOO
We note the excellent match of simulations with the theoret . ”“QQQQ - ) . ‘ ‘ ) - ‘f’oo"“
cally predicted Gaussian ACFs (25), (26). -6 -4 -2 0 2 4 6
Information on the ACF of the retardation angla¢ AoVE[AT?]

and the eigenmodé is buried in the ACF ofu, and we _ . , .

. . . . Fig.9. ACF of the retardation angle¢( =z, w), compared to a Gaussian shape
did not fmg a way to extract it analytically. However,yii the same variance ... The analytically computable central value and
R.(w1, wo) = Ryo(wy, wa) = (1/4)R£(w17 ws) is the ACF asymptotic value are also reported.
of cos(A¢(z, w)/2). Defining the ACF okin(A¢(z, w)/2) as
R;(w1, w2) and the ACF of the eigenmode &5(w1, w2) =  are comparableXwey, ~ 0.8Awcq) and that if the signal band-
Elb(z, w1) - b(z, w2)], we would be allowed to factorize width is increased, e.g., due to increased transmission rate, and a

E[sin(Ad(z, w1)/2) sin(Ad(z, w2)/2)b(z, w1) - b(z, w2)] =  higher order description is needed, the most appropriate output
(3/4)Ru(wy, w2) @s Rs(wi, w2)Ry(wy, wz) only under the field description uses the eigenmodes, because of their more
incorrelation of sin(A¢(z, w1)/2) and b(z, wy) for any regular circular contours, in frequency, on the Poincaré sphere.
(w1, w2). We only proved independence foi = w,, but not The “all-order” compensator described in [4] is based on this
for wy # ws. principle.

In Fig. 8, we again plot in dashed line the theoretical An exact coincidence oR;(w;, w2) andR, (w1, wz) would
ACF R,(wi,w2), while in circles we plot the func- imply a constantR,(w;, ws) = 3/4. In fact, the peak value
tion R.(wi, w2) + Ri(wi, w2)Ry(wr, w2). Since the two R, (w, w) = E[sin®(A¢(z, w)/2)] = 3/4 and the asymptotic
curves are closely matching, we conclude that, w;) and vaIuehm(w wi)—oo Bs(wi, w2) = Elsin(A¢(z, w)/2)]* =
sin(A¢(z, we)/2) are practically uncorrelated for any choicg64/97?) =~ 0.72, both evaluated analytically from (14),
of wy, wa. In Fig. 8 we also report, in stars, themulated justify that R, (w;, ws) is always close t&/4, as we verified
ACF R; alone and we note thak;(w;, we) = Ryu(wi, w2). numerically.

The S|gn|f|cant implication of th|s simulation result is that the RegardingRa,(w:, w2), we can compute its peak vakue
correlation bandwidth of the e|genmodeequal t0Awcwy, IS Rag(w, w) = E[A¢?(z, w)] = (4/3)n% —2[rad?] and asymp-
\/2/3 that of the PMD vectofl,. Hence, it is confirmed that totic valuelim,, ., )—oo Rag(wi, wo) = E[Ad(z, w)]* =
the PSPs possess a slightly greater stability in frequency thehfrom (14). Numerical simulations, reported in Fig. 9, show a
the eigenmodes, and are then preferable as a frame of referengv?/
e assume wide sense stationarity for the proakesu, w). Under this
for expressing the transmitted field if the signal bandwidth %sumptlon it is true that the central vallg ., (0) is the absolute maximum
small enough. But itis also true that the correlation bandwidths|Ra.(Aw)].
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remarkable feature A ,(Aw) has the same Gaussian shape diber length, i.e., the stochastic procdsy z, w). In the litera-
R, (Aw), with appropriate scaling. A feature for which we didure, mostly two models are adopted forlong fibers. The firstone,
not find an analytical justification. used by Foschini and Poole [1], assurﬁész, w) = wA'§ +
From the simulation results, we conclude that (z), where thes-dependent term is linear in frequency and ori-
AZI A2 ented along the first axis of Stokes spage while the z-de-
Rag(Aw) = (% - 2) o (FIATISS/S  (27) pendent te?m is a three-dimensional \F/)vhite noise process with
Ry(Aw) ~ o= (BIATY] AP /8) (28) independent components, _each with variapée The second
model [2, Appendix D] for fibers much longer than the corre-
can be used with good accuracy for approximating the ACKation length, assuméd’(z, w) = wi(z), with the same white
of the fiber retardation angle and eigenmodes. An intuitiveoise processg(z) as in [1] (indicated by?(z) in[2]).
justification for the Gaussian shape &f\. is found by ex- Both models resort to a white noise process, which is con-
pandinguy = cos(A¢/2) in Taylor series, to the first order, venient for analyzing dynamical equations with the standard
aroundE[A¢] = =, and calculating?,,, = (1/4)R,. We get tools of stochastic calculus, but are physically very different,
Rag(Aw) ~ 7% + R,(Aw), that has the same shape as (27)eading to some difficulties in the length or frequency domains,
though it slightly underestimates the peak valuggf, . respectively. In Poole’s model, fas = 0, the direction of
We again stress that, in all the cases where theoretical 1§+, 0) = i(z) is uniformly distributed on the Poincaré sphere
sults are available, simulation and theory are in good agregrd its magnitude, the birefringence strength, is distributed as
ment, notwithstanding the remarkable differences between th&1axwell random variable. As increases, the birefringence
retarder plate model used for the simulations and the theorgdiorincreases alorsg, and thus, for large, the birefringence
ical model, in which the local birefringence direction has a unjss the fiber sections has a preferential orientatiér) fwhich
form distribution on the Poincaré sphere, the local birefringeni:‘)?events the global PMD vector from having a uniformly dis-
strength has Maxwell distribution, and there is no retardationﬁlibuted direction, unless the fiber is long enough. This problem
the reference frequency. is circumvented in [1, Appendix C] by letting— oc, to obtain
the equilibrium density for the PMD vector, which is uniform
on the sphere. On the other hand, the second model includes
Assuming Gisin’s “white Gaussian” model for the local birefiber segments with a uniformly distributed birefringence direc-
fringence [2, Appendix D], we were able to prove the followingtion, for everyz, but it neglects the birefringence effects at the
i) For any given frequency and fiber length, the eigerreference frequency, sind&(~, 0) = 0 and, consistently with
modes are a random vector uniformly distributed on thbe assumptions in [12], all the fiber segments have an identity
Poincaré sphere and are independent of the retardattemsfer matrix at> = 0. Stated in other words, any global fiber
angle, whose pdf follows a cosine law. descriptor, which is a random process both in thend thew
i) For any given frequency, the uncorrelated Pauli coordifomains, suffers from a stationarity problem since the birefrin-
nates evolve in space like a standard Brownian motigence is anchored to an initial condition (a preferential orienta-
on the unit sphere if*. tion dictated bys;, for = — 0, in the first model, and the null
iii) Forany given frequency and fiber length, the Pauli vectasirefringence strength, fap = 0, in the second model). Such
is independent of the PMD vector and of its derivativegrocesses will nevertheless be asymptotically stationary and the
The frequency derivative of the Pauli vector is a vector iﬂroblem of initial values is circumvented by letting— oc in
R* whose direction is uniformly distributed and whosgne first model (long fibers) as well as by letting— oo in the
magnitude is Maxwellian, being a linear transformatiogeond model (large reference frequencies).
~ ofthe PMD vector. _ ~ As we see in Section VII, the dependence of some moments
iv) The frequency derivative of the retardation angle gt ,, on the absolute frequency referencds thus an artifact
Gaussian, independent of the retardation angle, and {Rgoduced by the stochastic birefringence modélz, w) =
depolarization rate of the eigenmodes, which depengs, ) when regarding the coordinateg(z, w) as stochastic
on the retardation angle but not on the eigenmodes, Ng§ cesses in the frequency domain, stationarity cannot be ex-
a “quasi-Rayleigh” distribution, modified by a confluentyecteq since their value at = 0 is anchored to an initial con-
hypergeometric function. . _ _dition [up(z, 0) = 1 andux(z, 0) = 0, k = 1, 2, 3, for any
v) For fixed fiber length, the Pauli coordinates have ideny pecause of the absence of a random frequency-independent
tical Gaussian frequency autocorrelation function. Thﬁrefringence term irvf/(z, w). Nevertheless, if we regard the

ACF of the eigenmodes and retardation angle is al§@er transfer matrix as the concatenation of infinitesimal fiber
practically Gaussian-shaped, with coherence bandwumhtes each has a Miiller transfer mathi, = oW (z,w)x1dz _

equal to/2/3 that of the PMD vector. elwonl@+@pIANR()x]1d2  For oy — oo, the random rotation
introduced by the termop|iz|, when the new frequency vari-

ablew 2 w — wo goes to zero, makes the global fiber Jones
transfer matrix a stationary processdnprovided the phase ro-
tation can be regarded as a uniform variabld@r2=], which

In order to analyze the system of SDE in (8), we need to sui$- consistent with the assumptions of the retarder plate model
ably model the variations of the local birefringence along tH&1], commonly adopted for fiber simulation. Stated in other

VIII. CONCLUSION

APPENDIX A
A CRITICAL COMPARISON OF THEDIFFERENT MODELS
FOR THELOCAL BIREFRINGENCE
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words, the Pauli coordinates.(», w) are asymptotically sta- by an infinitesimal amountf;, the vectorgé (€1 To; -3 2]
tionary random processes in the variabl@nd their moments describes an element of surfa¢g with area
must be evaluated far — oo (keeping the frequency deviation

Aw finite, for second order moments) in order to obtain phys- P (x . ) 2
ically meaningful results from the application of the adopted;4 = Z < AR ] ) dé, ---db,, ;.
birefringence model. P I(01; o, On1)

There is indeed a third model in the literature (the (30)

“first model” proposed in [3, p. 150]) which assumeshe square root term in (30) can be evaluated from the Jacobian
W(z, w) = b(w)[cosB(z); sind(z); 0] with birefringence matrix .J = {0x;/06;} by deleting, forj = 1,2, ..., n, the
strengthb(w) fixed along~ and 6(z) a Wiener process. This jth column from.J, and computing the determinant of the re-
model seems to best reflect our physical understanding of filegnting (n — 1) x (n — 1) matrix. The value of eacith deter-
birefringence, since the birefringence strength, which is mostyinant is defined as thgth element; of a vectorl € ®", and
induced by the ellipticity of the fiber core, can be reasonablB0) can be compactly expressed using the norm of such vector:
assumed to be constant due to the manufacturing process. Jhe— |1|d6 - - - db,,_1. To compute the area &, one can in-
third component of¥ is zero since silica fibers are Imearlytegratqg|d91d92d93 with |6, | < 7 and|fs|, |#s] < 7 /2, where
birefringent. Finally, the rate of change in the orientattoaf |I] = p? cos? B3 cos B, is obtained from (29) as described above.
the linear axes of birefringence is due to local stresses: whiiiegration, withp = 1, yields Area(S*) = 272
such rotational stresses can be regarded as a scalar white noigge are now ready to evaluate the joint probability density of
process, on a suitably long scale, the birefringence orientatige angular coordinatég;; 6s; .. .; 6,—1] for a uniform distri-
is az-continuous Wiener process. bution on the sphere of unit radius®t*. For a uniform distri-
Despite possible criticism regarding the neglect\dfy, we bution, the probabilityr[43] that a point lies in the element of
choose for analytical simplicity the Gisin model. We will sesurfacedX is the ratio between the aréal of dX and the area
that its predictions agree with simulation results, despite the diff the whole sphere. Hence jif6., 62, ..., 6,_1) is the joint
ferences between the theoretical model and the retarder pldé
model employed for fiber simulation. Thus, in this paper, we

assumeV (z, w) = wpuii(z), with 7i(z) defined as a 3-D nor- p(b1, 0a, ..., 0,_1)d6:1db;- --den_lzPr[dE]:ﬁgAn
malized white noise, i.e., with independent components and unit rea(S")
variance per component. and, forn = 4, we get
2
APPENDIX B p(by, 02, b3) = COSH;;(Q)S%
UNIFORM DISTRIBUTIONS ON SPHERES 4
_ i cos B 2 cos® O3
The coordinates of a point lying on a sphere of ragiirs i T\ 2x 2 7r
are =p(61)p(02)p(63). (31)
[€1; x2; 23] = p[cos bz cos b1; cos b sinfy; sin 6] The marginal densitieg(6;) can be obtained by integra-

tion w.r.t. the remaining two variables. The above product
with |6;| < 7 and|f,| < /2. Note that[z;; zo; 3], with form proves that the three anglésare independent random
p = 1, express the coordinatesioff 6, is interpreted as twice variables.
the azimuth and, as twice the ellipticity of the eigenmode.

Extending to the spadi*, the coordinates of a point lying on a ACKNOWLEDGMENT
hypersphere of radiys are The authors would like to thank the anonymous reviewers,
0 P 0 particularly for suggesting possible applications of the results
o1 CO8P3 CO8 b2 COSTL e in (13) and (14).
T2 | p cosfzcosbysint | | uo (29)
r3 | cosf3sind T lu
3 3eTT2 3 REFERENCES
T4 sin f5 U
[1] G. J. Foschini and C. D. Poole, “Statistical theory of polarization
with |91| <, |92| < 7r/2, and|93| < 7r/2. Assumingp = 1, clifggrslfggn’\lsc;\rl]gllzgrgode fibers)J. Lightwave Technalvol. 9, pp.
the last equality in (29) relates the coordinatgsto the Pauli [2] P. Ciprut, B Gisin, N. Gisin, R. Passy, J. P. Von der Weid, F. Prieto,
coordinates:, providedds is interpreted aér/2)— (A¢/2). In and C. W. Zimmer, “Second-order polarization mode dispersion: Impact
particular, givem = 4, (29) is a set ofi parametric equations. (7’27""”75‘7'29 l\j’;‘;’ ‘i‘ggg’ transmission” Lightwave Technalvol. 16, pp.
When the set of — 1 parameter§fs; 62; -~ -; 6,—1] variesina [3] P.K.A. Wai and C. R. Menyuk, “Polarization mode dispersion, decor-
domainT € ®*1, (29) defines a region with — 1 degrees of relation, and diffusion in optical fibers with randomly varying birefrin-
freedom, i.e., alypersurfacé: € R™ in the Euclidean coordi- genceJ. Lightwave Technalvol. 14, pp. 148-157, Feb. 1996.

Iti basi It of ltidi . | caleul [4] M. Shtaif, A. Mecozzi, M. Tur, and J. A. Nagel, “A compensator for
nateSTj' tis a basic result ot multidimensional calculus (See' the effects of high-order polarization mode dispersion in optical fibers,”

e.g., [18, Sec. 6.1.8]) that, if the parametérsare each varied IEEE Photon. Technol. Leftvol. 12, pp. 434-436, Apr. 2000.



VANNUCCI AND BONONI: STATISTICAL CHARACTERIZATION OF THE JONES MATRIX 821

(5]
(6]
(71

(8]
[9]

[10]

[11]

[12]
[13]
[14]

[15]

[16]

(17]

(18]

B. @ksendal Stochastic Differential Equation&ifth ed. New York: Armando Vannucci (S'95-M'02) was born in
Springer-Verlag, 1998. Frosinone, Italy, in 1968. He received the degree
M. Karlsson, “Polarization mode dispersion-induced pulse broadenir in electronics engineeringcm laud¢ from the

in optical fibers,”Opt. Lett, vol. 23, pp. 688—-690, May 1998. University of Roma “La Sapienza,” Italy, and the
J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mod Ph.D. degree in information engineering from
dispersion in optical fibers,” iRroc. National Academy Science (PNAS) the University of Parma, Italy, in 1993 and 1998,
vol. 97, Apr. 2000, pp. 4541-4550. respectively. ]

A. Bononi and A. Vannucci, “Is there life beyond the principal states Until 1995, he was with the INFO-COM De-
polarization?,” Optical Fiber Technol., 2001, submitted for publicatio partment, University of Roma, Italy, doing research
M. O. van Deventer, “Probability density functions of optical polariza: activity in the field of acoustic phonetics. Since 1995,

: . ot . he has been with the Dipartimento di Ingegneria
tzlciz?siaétfg.ngz?:rylzgc‘ilappl|cat|on§, Lightwave Technalvol. 12, pp. dell'Informazione, University of Parma, Italy, where his research activity has

. L been in the field of nonlinear radio channels from 1995 to 1998. Since 1999,
D. Marcuse, C. R.‘ Menyuk, a_\nd P. K.' A. Wai, Appll_cathn of t_he M.an'his research interests have been in the field of optical transmission and optical
akov-PMD equation to studies of signal propagation in optical fibe|

I . .
with randomly varying birefringenceJ. Lightwave Technglvol. 15, Communication systems.
pp. 1735-1745, Sept. 1997.
A. O. Dal Forno, A. Paradisi, R. Passy, and J. P. von der Weid, “Ex-
perimental and theoretical modeling of polarization-mode dispersion in

single-mode fibers,IEEE Photon. Technol. Leftvol. 12, pp. 296—298, Alberto Bononi received the Laurea degree in elec-
Mar. 2000. tronics engineering from the University of Pisa, Italy,
N. Gisin and J. P. Pelleaux, “Polarization mode dispersion: Time vers and the M.A. and Ph.D degrees in electrical engi-
frequency domains,Opt. Commun.vol. 89, pp. 316-323, 1992. neering from Princeton Un|vers_|ty, Princeton, NJ, in
A. Vannucci and A. Bononi, “Extracting PMD statistics from single em- “ 1988, 1992, and 1994, respectively.

Currently, he is an Associate Professor of
Telecommunications at the School of Engineering,
)' % the Universita’ di Parma, Italy. He teaches courses

%5 in Probability Theory and Stochastic Processes,
l-';l\;; Telecommunications Networks, and Optical Com-

' munications. In 1990, he worked at GEC-Marconi

ulated fiber sample,Electron. Lett, vol. 37, pp. 884-886, 2001.

I. S. Gradshteyn and I. M. RyzhiKable of Integrals, Series, and Prod-
ucts Fifth ed: Academic, 1994. J
M. Karlsson and J. Brentel, “Autocorrelation function of the polariza__« &
tion-mode dispersion vectorOpt. Lett, vol. 24, pp. 939-941, July &8

1999. . . B . irst Research Centre, Wembley, U.K., on a Marconi S.p.A. project on
M. Shtaif, A. Mecozzi, and J. A. Nagel, “Mean-square magnitude of allgherent optical systems. From 1994 to 1996, he was an Assistant Professor in
orders of polarization mode dispersion and the relation with the banghe Electrical and Computer Engineering Department at the State University of
width of the principal statesfEEE Photon. Technol. Leftvol. 12, pp.  New York (SUNY), Buffalo, teaching courses in Electric Circuits and Optical
53-55, Jan. 2000. Networks. In the summers of 1997 and 1999, he was a Visiting Faculty at
M. Shtaif and A. Mecozzi, “Study of the frequency autocorrelation ofhe Departement de Genie Electrique, Universite’ Laval, QC, Canada, doing
the differential group delay in fibers with polarization mode dispersionfesearch on fiber amplifiers. His present research interests include system
Opt. Lett, vol. 25, pp. 707-709, May 2000. design and performance analysis of high-speed all-optical networks, nonlinear
C. D. Pagani and S. Salsanalisi Matematica Milano, Italy: Masson fiber transmission for WDM systems, linear and nonlinear polarization mode
Ed., 1993, vol. 2. dispersion, and transient gain dynamics in doped-fiber and Raman amplifiers.




	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


