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Optical PMD Compensation

Armando Vannucci, Member, IEEE, and Alberto Bononi

Abstract—We present a rigorous investigation on how to opti-
mize the degrees of freedom of optical polarization mode disper-
sion (PMD) compensators composed of differential group delay
sections and polarization controllers, up to two stages. The analyt-
ical treatment relies on the extracted Jones matrices of the trans-
mission and compensation fibers. The analysis of a single-stage
compensator with two degrees of freedom (fixed DGD) is based on
the maximization of the eye opening, as provided by the general-
ized Chen formula. The outage probability is quantified through
a fast semi-analytical technique. It is shown how the benefits of
single-stage compensation are strongly reduced and can lead to
outage events, when certain critical input states of polarization are
launched into transmission fibers with strong eigenmodes depolar-
ization (i.e., strong higher order PMD). Focusing on such trans-
mission fibers and input configurations, a novel algorithm is intro-
duced for controlling a double-stage compensator with five degrees
of freedom. The algorithm is based on an ideal equalization of the
transmission fiber at half the bit-rate, realized resorting to spher-
ical geometry. To this aim, we show that the first compensator stage
must be a PMF fiber with very large DGD, equal to the bit period,
in order to compensate the most critical configurations associated
with outage events.

Index Terms—Extracted Jones matrices, polarization mode dis-
persion (PMD), PMD compensation.

I. INTRODUCTION

P OLARIZATION mode disperison (PMD) in the last 15
years has deserved a great deal of attention, both from in-

dustrial and academic research communities. The intellectual
challenge and the strategic importance of this topic have in-
creased along with the increasing Sonet/SDH hierarchy levels
under consideration, evetually becoming the limiting factor for
the deployment of 40-Gb/s systems on installed fibers. The ups
and downs of the photonics market have influenced to a large ex-
tent the efforts devoted to this strategic problem. Looking at the
scientific literature today, it luckily seems that most of such ef-
forts are behind our shoulders. Polarization in fiber optics poses
a number of questions, among which: modeling, statistical anal-
ysis, interactions with group velocity dispersion, Kerr nonlin-
earities, optical amplification, and polarization dependent loss.
From a systems engineer’s perspective, PMD compensation is
the principal challenge.
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Different methods are envisaged for contrasting PMD,
ranging from passive methods, employing forward error cor-
rection codes and robust modulation formats [1] or posing the
rules for fabricating future fibers with minimal PMD impact
[2], to active methods for compensating the distorted signal in
the electrical domain (see, e.g., [3] and citations therein) or in
the optical domain, thus avoiding the complication of including
the square-law photodetector in the system model. Optical
PMD compensators (OPMDC) can be realized by cascading
a number of stages, each made by a polarization control part
followed by a first-order PMD section [4]. Practical realizations
can equivalently resort to discrete elements, as polarization
controllers/rotators, polarization maintaining fiber (PMF) sec-
tions, and variable differential group delay (DGD) elements, or
to planar lightwave circuits (PLC). In particular, confining the
attention to single and double-stage OPMDC, a comprehensive
analysis of system architectures is provided in [5], where the
different solutions and their related performance are associated
with the number of degrees of freedom, which quantifies the
complexity (and stability) of demanded control algorithms.

The curse of PMD is its stochastic nature; hence, the perfor-
mance of systems limited by PMD should always be quantified
in terms of outage probability (OP), where an outage event is
defined as the penalty (eye-closure or sensitivity) exceeding a
few dBs. The performance of the different compensator archi-
tectures, in terms of tolerable average DGD for a given OP, along
with their limits are well assessed in the literature. On the other
hand, we believe that a deeper focus on what are the key features
of system configurations that make a compensator fail deserve
further investigation. Understanding the circumstances that de-
termine outage events provides the rationale for improving the
compensator structure and/or controls.

The focus in this paper is thus on the optimization criterion
of a single-stage compensator and the analysis of outage events
where the compensator fails. This procedure shows the path for
a rational extension of the compensator, with minimal increase
in complexity, and its related control strategy. Although it is be-
yond the scope of this paper to analyze the practical solutions
that make the control algorithms work effectively, we just men-
tion that tracking of the polarization state of the transmission
fiber is necessary in a time-varying scenario and, hence, proper
devices for monitoring the system state and feed control signals
back to the compensator stages are demanded. Recent solutions
using silica planar waveguides [6] have been proposed for mon-
itoring the state of polarization (SOP) as a function of frequency
across a modulated signal spectrum, with high speed and reso-
lution. Such devices, complemented by a proper control logic,
can be flexibly adapted to the estimation of channel parameters
needed by the compensators that we shall discuss.
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Fig. 1. Principle of operation for: (a) single-stage fixed-DGD optical compensator; (b) double-stage compensator with 5 degrees of freedom. �� is the Jones input
SOP; � ��� and � ��� the transmission and compensation fiber Jones matrices. PC = Polarization Controller; OR = Optical Rotator; PD = Photodiode.

The paper is organized as follows. In Section II-A, we discuss
the optimization of a single-stage OPMDC with two degrees of
freedom, which maximizes the eye opening. To this aim, we first
review the formalism of extracted matrices, the Pauli vectors
chain rule and the Generalized Chen Formula, as basic notions
needed to cast the problem. The performance of the single-stage
compensator driven by the described algorithm is quantified and
discussed in Sections II-B and II-C, highlighting the physical
limits of such compensator in relation with critical configura-
tions of the transmission fiber and input SOP. In Section III-A,
we describe a control algorithm for a double-stage OPMDC,
with five degrees of freedom, able to overcome the limits dis-
cussed above. The optimization criterion will be the ideal equal-
ization of the transmission matrix at two opposite frequencies.
Such a goal is achieved resorting to spherical geometry, which
shows that the DGD of the first stage should be as large as the bit
period . In Section III-B, the benefits of the double-stage com-
pensator are quantified, showing how inverting the Jones matrix
at two edge frequencies effectively equalizes the transmission
fiber on the whole signal bandwidth. In both Sections II-B and
III-B, the OP is quantified through a semi-analytical technique
based on the Sensitivity Penalty obtained by simulating trans-
mission on a pool of fiber samples emulated with the Random
Waveplate Model (RWM) with 100 plates. Such fibers were se-
lected by running a Multicanonical Monte Carlo algorithm [7]
so as to find samples whose first- and second-order PMD vec-
tors magnitude cover configurations with probability
down to .

The following notation is adopted throughout the paper: Jones
and Müller matrices are denoted by capital letters, as well as (2

1) complex Jones vector, while (3 1) real Stokes vectors
are denoted by lower-case letters. All vectors are denoted by
an arrow and unit magnitude vectors by an hat, except for 4-D
Pauli vectors, which are underlined. A column vector with ele-
ments , , is expressed as . The symbols and denote
vector scalar and cross product, deontes matrix transpose and

the adjoint matrix, i.e., transpose-conjugate. The zero-th Pauli
matrix is the (2 2) identity matrix while is the (3 3)
identity matrix.

II. SINGLE-STAGE COMPENSATOR WITH FIXED DGD

A. Theory

Consider the transmission system depicted in Fig. 1(a). A
totally polarized input field, represented by the Jones vector

, with complex envelope and unit
magnitude Stokes SOP , is launched into a transmission fiber
with Jones matrix . The OPMDC consists of a polariza-
tion controller (PC) followed by a PMF; after photodetection,
the output current is . Nelecting all common-mode distor-
sions, such as group velocity dispersion (GVD) or attenuation,
which have an impact only on the scalar input field , the
fiber Jones matrix has unit determinant and can be expressed
as [8]

(1)

where is the value at the carrier frequency, while
the exponential matrix is what we call the right-extracted
Jones matrix of the fiber [9], with retardation and unit
magnitude eigenmode ; finally, is the spin vector, i.e., a
tensor whose three entries are the unitary Pauli matrices
[8]. As is well known, such exponential matrix causes a rotation
of the input SOP (ISOP), in Stokes space, around the eigenmode
by a counterclockwise angle equal to the retardation, for every
frequency. Since by definition, as far as the ex-
tracted matrix is concerned, a null retardation is applied to a
sinusoidal input signal at the carrier frequency and its SOP is
left unchanged at the output.

Now, call the frequency-independent Jones matrix of the
PC and the unitary Jones matrix of the compensating
fiber. Since such fiber is a PMF, with constant DGD and
eigenmode (in the laboratory frame of reference), the elec-
trical field being photodetected is

(2)

where is the PMF eigenmode as seen by
the input signal, i.e., rotated by the inverse of the Müller ma-
trix of the polarization controller and of the fiber
at . Since the PC provides two degrees of freedom,
can be brought anywhere on the Poincaré sphere, by controlling
the PC in the search for the optimal compensator position. The
output photodetected intensity , obtained by
inverse-transforming (2), does not depend on the frequency-in-
dependent matrix but only on the overall right-extracted
Jones matrix of the link

(3)
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where
is the Jones matrix of the compensating PMF subject to the sim-
ilarity transformation that rotates its eigenmode to .

Extracted matrices have been introduced in [9] as an alterna-
tive approach to model PMD (of any order). Knowing the retar-
dation and the eigenmode makes the output field
in (2) ready to calculate, without solving the so-called inverse
PMD problem [10], i.e., the need for finding suitable expression
for the Jones matrix once the PMD vector and some of its deriva-
tives are given. This approach is linked to the classical represen-
tation in terms of the PMD vector , where

is the DGD and the input principal state of polarization
(PSP), by several equalities [9]. At the reference frequency, the
frequency derivative of the retardation equals
the DGD; the second derivative equals the
polarization-dependent chromatic dispersion (PCD); the eigen-
mode is aligned with the input PSP, but its depo-
larization, i.e., the motion in frequency, hap-
pens in the same direction at half the speed at which the PSPs
depolarize. This fact, for which simulation evidence is provided
in [9], implies that the extracted eigenmodes, and its or-
thogonal, provide a more stable frame of reference for repre-
senting PMD than the PSPs, in a neighborhood of the carrier
frequency.

The probability distributions and statistical properties of the
eigenmodes and retardation of the un-extracted Jones matrix of
long single mode fibers have been extensively characterized in
[11], along with the statistics of the fiber Pauli vector

(4)

which provides a compact way of representing a given Jones
matrix , expanded on the basis
of Pauli matrices , at any given frequency. Pauli vectors
provide a convenient tool when two or more Jones matrices are
cascaded: in our case, the algebraic chain rule for obtaining the
Pauli vector of in (3) is [9], [11]

(5)

where

and

are the Pauli vectors of and . The result in (5)
recasts in our terminology a well known property in the
algebra of quaternions [12], [13].

Based on the Pauli vector of any given fiber link, we have de-
rived in [9] analytic expressions for the ouput intensity where
the dependence of on the ISOP is made explicit. Such
an approach has general validity and can include other polar-
ization-dependent system impairments.1 For our purposes, the
main value of an explicit expression for is that we obtain
an analytic expression for the eye opening (EO) of the signal

1In [14], a similar expression for ���� was applied to determine the output RF
spectrum of a system with both PMD and PDL.

received after photodetection and electrical filtering (the elec-
trical filter is not reported in Fig. 1) [9]

(6)

where , being the bit period. The two
terms and

are real and depend on the eigen-
mode and retardation of the extracted
Jones matrix of the whole link (transmission fiber
plus compensator). The expression in (6) is called Generalized
Chen’s formula (GCF) and is derived under the assumption that
the eye-closing sequence is 101010 , i.e., that an alternation
of marks and zeros is the most critical bit pattern yielding the
smallest EO. In order to gain further insight into (6), it can
be proven [9] that is the magnitude of the small-signal
baseband transfer function , linking the input and output
intensity of an amplitude-modulated carrier with modulation
frequency , as derived in [4]. The argument in (6) iden-
tifies the fundamental frequency of a signal modulated by
the 101010 pattern, hence its value . The
accuracy of the GCF is quantified in [9], Sec.5.4, showing that
(6) deviates from the actual EO when the eye closure penalty
becomes significant. Nonetheless, the compensation strategy
pursued here relies only on the gradient of the EO, as seen in
the Appendix and further discussed in Section II-C based on
numerical results.

It is interesting to note that some PMD compensator control
algorithms, namely those based on the spectral lines [15], mon-
itor the RF spectrum after photodetection at (plus possibly
other frequencies). In addition, two common compensation
strategies devised for first-order PMD can be interpreted in the
light of (6) as follows. From (6), we see that equals
one if either , i.e., is the iden-
tity matrix, at half the modulation frequency, or if the following
three conditions are met: i) ,
i.e., the global retardation is an odd function at ; ii)

, i.e., there is no depolarization of the global
eigenmode at ; and iii) is aligned with such a global
eigenmode. A sufficient condition for the above conditions
to be met is that the global link can be modeled as a PMF,
on the signal bandwidth, which imples a linear retardation

and frequency independent eigenmode
coinciding with the input PSP, hence satisfying

conditions i) and ii). Condition iii) then corresponds to the
well known PSP lauch condition [16], which avoids PMD by
controlling the ISOP at the transmitter. As a second example,
let us now evaluate in the limit for : since

is the retardation of the global extracted Jones matrix,
tends to zero and tends to one,

while, exploiting the relationships between eigenmode/retar-
dation and the input PMD vector given above, one can easily
demonstrate that . Hence, to maximize

, the optimal compensator position is the one that brings
the global input PMD vector of the line plus compensator
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parallel to the ISOP : a compensation strategy that is well
known in the literature [17].

Our objective is here to maximize the eye opening, as pro-
vided by the GCF, by acting on the PC so as to control the com-
pensator eigenmode , as seen at the input. Given
and the compensator DGD , we first make the dependence
of the GCF (6) on the unknown explicit. Using the the Pauli
vectors chain rule (5), and exploiting the even/odd symmetries
of and , we get

(7)

where we introduced the symbols

(8)

based on the following definitions:

(9)

of the even and odd parts (superscripts are associated to plus/
minus sign) of and at frequency .

Now, given the ISOP , we have to find the maximum of
with respect to the two degrees of freedom given by .

This mathematical issue is solved in the Appendix by maxi-
mizing (hence, ) through the method of Lagrange
multipliers. The general solution for the compensator orienta-
tion is

(10)
where is given in (22) and is determined imposing
unit magnitude for , as discussed in the Appendix. The corre-
sponding Eye Opening is

(11)

where denotes the Euclidean norm. Special cases for the
compensator orientation and related EO are also discussed
in the Appendix.

We note that the algorithm described above requires the
knowledge of the Jones matrix of the transmission
fiber, evaluated at the frequencies . These
three measurements, along with the ISOP, provide all the
parameters necessary for the maximization of (6), which, in
general, yields the optimum condition (10) employed in all the
simulations with OPMDC described in the following section.

B. Results

The principal benchmark to test the validity of the compen-
sation algorithm described in the previous section is the evalu-

Fig. 2. Outage probability (OP) versus system average DGD: single-stage com-
pensator with fixed DGD�� and double-stage compensator (described in Sec-
tion III-A); uncompensated system performance is reported for comparison.

ation of the outage probability versus the average DGD
of transmission fibers. We report in Fig. 2 the simulation results
obtained for various values of the fixed compensator DGD .
OP is defined as the probability that the Sensitivity Penalty (SP),
evaluated at , exceeds 3 dB with respect to the
back-to-back configuration. As to the transmission system, the
preamplified receiver specifications are: optical and electrical
filter bandwidths equal to and , respectively, noise
figure of 6 dB, and optical input SNR equal to 40 dB, resulting
in a back-to-back sensitivity of 33.2 dBm. As to the OMPDC,
its orientation is set so as to maximize (6), as described in the
previous section, for every transmission fiber and ISOP config-
uration used to obtain SP values.

The OP curves in Fig. 2 were obtained through a semi-an-
alytical technique described hereafter. In a first step, we ran
the multivariate Multicanonical Monte Carlo (MMC) algorithm
that we recently proposed in [7], which generates fiber samples,
using the standard random waveplate model (RWM) with 100
plates, according to the known joint probability density func-
tion (pdf) , where
are the normalized first- and second-order PMD vector mag-
nitudes.2 Such algorithm extends the enhanced MMC approach
[19] to the multivariate case, driving the many free parameters of
the RWM so as to produce rare fiber samples with an increased
efficiency, with respect to the standard multivariate MMC algo-
rithm [20], [21]. For a given average DGD , we let the al-
gorithm explore the plane in an interval ([0;7] [0;14])
divided in 30 30 bins: emulated fibers covered 489 out of the
900 bins, as seen in Fig. 5 (lower left), and reproduced
with good accuracy down to [7]. During the process, in
each of the finely spaced bins, we saved only the first RWM
model encountered during the random walk in the MMC algo-

2A complete second-order description of PMD would require a third param-
eter � , i.e., the angle between �� and �� . We do not consider � here, since,
to our knowledge, an accurate expression for the joint pdf of the three param-
eters ������ ��� �� � � is not known in the general case, while the bivariate pdf
������� ��� �� can be efficiently evaluated as described in [18].
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Fig. 3. Sensitivity penalty distributions for increasing average DGD of transmission fibers, for (left) an uncompensated and (right) compensated system ��� �
���� �.

rithm, and thus got a pool of 489 representative RWM fiber sam-
ples.3 In the second step, we simulated NRZ transmission of a
32-bit PRBS on each fiber sample of the pool, repeating the sim-
ulation for 62 signal ISOPs uniformly tiling the Poincaré sphere.
We thus obtained SP values from which we
evaluated (in discrete form) the pdf

(12)

where is the pdf of the ISOP azimuth and ellipticity,
and is an indicator function, equal to 1
iff a model with given PMD values has produced a Penalty in the
range around the value for the given ISOP. The joint
pdf of the first- and second-order PMD can be numerically eval-
uated as described in [18]. In the last step, we just vary ,
which warps the weight attributed to each fiber sample,
and recalculate (12) accordingly, then integrate the SP distribu-
tion to get . As an example, we report
in Fig. 3 the SP distribution for an uncompensated and compen-
sated system with , for various values of . The
advantage of this technique is that the computational burden re-
lies mainly on the first step; once the representative RWM fiber
samples are available, the evaluation of each OP curve in Fig. 2
takes about 4 h on an old 800-MHz processor.

Assuming a target (corresponding to 5 min./year
outage), the OP curve for an uncompensated system, reported
for comparison in Fig. 2, shows that the maximum tolerable
average DGD is around , a figure which is increased to
about by the use of a single-stage OPMDC with

. These figures are consistent with the common wisdom on
optical PMD compensation. Similar figures are found in the vast
technical literature (see, e.g., [5]), despite different approaches
and different definitions of Outage.

A method employing MMC to estimate the OP of an
OPMDC system, for fibers with a given , was first adopted
by Lu et al. in [23]. The work of Secondini and Forestieri [24],
though employing similar statistical techniques for generating
fiber samples, aims at a direct estimation of OP, circumventing

3The value of � is thus totally random, in each representative sample. We
verified that its a posteriori distribution is symmetric around a peak value of
90 , indicating that the perpendicular component �� , related to PSP depo-
larization, is statistically dominant over the parallel component �� , related to
PCD [22].

Fig. 4. Average sensitivity penalty (SP) versus ISOP: (unweighted) average
evaluated over fiber samples causing outage ��� � ���� �, at least for one
ISOP.

the need for a probabilistic description of PMD parameters.
Despite this clear advantage, RWM fibers are dynamically
generated in [24]; hence, it is not possible to perform an
a posteriori analysis of simulation results to show how per-
formance depends on the channel configuration, which is our
next task. In fact, to understand the intrinsic limitations of
single-stage OPMDC, it is important to investigate what are
the joint configurations of transmission fiber and ISOP that
yield large SP. While it is quite obvious that larger first- and
second-order PMD values increase the penalty, it is not trivial
to assess the vulnerability of different launch conditions (ISOP)
in a system with higher order PMD. Fig. 4 reports the average
SP of fibers versus ISOP, conditioned on outage. Precisely, for
each ISOP, SP values obtained from simulations are averaged
over those fiber samples for which outage occured for
at least one ISOP. Average is intended here as the occurrence
ratio ; fiber samples are not weighted
with their probability , otherwise the contribution
of samples with larger PMD and lower pdf would be masked
in a statistical average. In Fig. 5 (lower left), the bins of the
489 simulated fiber samples are marked with dots, while the

samples that cause outage, with , are
highlighted with circles. The SP versus ISOP plots for each
sample, of which Fig. 4 is an average, are, in general, different.
Among these, three meaningful cases are reported in Fig. 5:
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Fig. 5. (Lower left) Bins on the PMD plane ���� � including (dots) simulated fiber samples: circles highlight samples causing Outage after OPMDC with �� �
���� . (Others) Plots of SP versus ISOP for outage cases with different amounts of first- and second-order PMD.

lower right is the typical case where first-order PMD dominates
performance ( is a circular polarization in this case); upper
right is a case where both first- and second-order PMD are
large; upper left is a case where, given the line DGD, it is
higher-order PMD that brings the ISOPs around to outage.
To get meaningful plots, the signal ISOP is measured relative
to a frame of reference where and lie on a plane
parallel to the plane in Stokes space, and the vector
is aligned with . Fig. 4 shows that is the most critical
ISOP, on average. We discuss the peculiarities of such ISOP in
the following section, with particular reference to the case of
large second-order PMD, as in Fig. 5 (upper left).

C. Discussion

We wish now to interpret the peculiarity of the worst ISOP
in terms of the quantities defined in Section II-A, shedding

some light on their physical meaning and pointing out what fiber
samples are the most vulnerable.

Consider the case of a transmission fiber with only first-order
PMD [i.e., similar to the case of Fig. 5 (lowe right)]:

and is frequency independent. Hence,
, , and ,

result from (9). It is then obvious that [the circle ,
in the frame of Fig. 5 (lower right), including ] are
the most critical ISOPs, corresponding to a 50% power splitting
on the PSPs. To analyze the case of higher-order PMD, let us
assume that .4 Thus, (9) implies that

are orthogonal

4Note that the retardation�� ��� � ������ � 	���� ���� 		
�
� � � is well approximated, on the signal bandwidth, by a few terms of the Taylor
series expansion, at least for DGDs being a fraction of the bit-time. If a
third-order expansion holds for �� ��� and the PCD �� is negligible, then
�� ��� is an odd function.

vectors: points in the average eigenmode direction, which
plays the role played by the input PSP for first-order PMD, while

is related to the eigenmodes depolarization, and quantifies
higher order PMD on the signal bandwidth.

Let us now evaluate the compensator behavior when the ISOP
is aligned with the eigenmodes depolarization, i.e., (

, in Figs. 4 and 5): and result from (8),
and the values of the Lagrange multiplier yielding a unit norm
solution are and . For the first
two values, the standard solution (10) applies, which reduces to

, yielding in (11). Hence, two extreme
values for the EO appear when is co- or counter-aligned with
the average eigenmode direction. Recalling the definitions of
and , it is easily seen that the best EO is

(13)

with equality holding if and only if the eigenmode values
coincide. This latter case corresponds to a null

eigenmodes depolarization, where compensation reduces to
contrasting a quasi-first-order PMD fiber by a counter-aligned
PMF. For the other two solutions , ,
(25) holds and we are in the special case discussed in the
Appendix. Hence, solution (26) applies and, after calculating

, the EO (27) is . This
becomes the best solution when the eigenmodes depolarization
increases, since decreases and so does (13). In the unlucky
case that are opposite on the Poincaré
sphere (a case that we will refer to as maximum depolarization)

and the best EO reduces to

(14)
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Fig. 6. EO as a function of compensator orientation, for a fiber sample with
�� � �� (�� , in figure): (top) simulation results; (bottom) analytical plot of the
GCF (6). Circles identify �� positions associated to extreme EO values and are
computed with the described algorithm.

which is the value obtained for an uncompensated transmission
fiber, meaning that compensation is totally ineffective for this
channel-ISOP configuration. In fact, the special solution (26)
reduces to in this case, i.e., the compensator
gets aligned to the ISOP so as to produce “minimum damage.”

The case of maximum depolarization deserves a special dis-
cussion. It is characterized by , which greatly sim-
plifies the analysis since it implies , , making

in (6), from which are clearly
the best compensator orientations. The associated maximum EO

basically depends on the angle between
and the eigenmodes depolarization , which determines the
magnitude of in (8). The best ISOPs are , while the
two worst ISOPs ( , in the frame of Figs. 4 and 5)
yield as in (14), making compensation totally
ineffective.

A demonstration of these assertions can be seen in Fig. 6,
where the EO is obtained by simulation (top) and analyti-
cally from the GCF (bottom), on a specific fiber sample, versus
the compensator azimuth and ellipticity , using the same
frame of reference as in Fig. 4, and a compensator DGD

. The fiber sample under test is the same as Fig. 5 (upper
left), characterized by strong second-order PMD ( ,

) and eigenmodes depolarization ( is twice
as large as ). Although depolarization is not maximum in
this example ( form an angle of 125 ), the analytical re-
sults derived above can still be applied. In fact, in the simulation
we chose the worst ISOP , which gives
in Fig. 5, corresponding to the best EO in Fig. 6
(top), obtained from the compensator position (
in the chosen frame of reference). The value is slightly
larger than the analytical result predicted by the
GCF approximation (14). Since in real cases the signal is not
a sinusoid at as assumed in (6), some benefit can in gen-
eral be expected from compensation. However, in this partic-
ular example, we checked by simulation that a slightly better
EO value is obtained by removing the compensator.
The four circles in Fig. 6 identify the analytical solutions calcu-
lated off-line and show the ability of the described algorithm to
spot out the global maxima as well as a local minimum and a
saddle point at .

The analytical plot of (6) versus , reported in Fig. 6 (bottom)
faithfully reproduces the shape of Fig. 6 (top). The maximum
absolute deviation 0.14 happens at the global minimum, where
the eye closure penalty is very large and the GCF looses ac-
curacy. However, as noted in Section II-A, the effectiveness of
the approach described in Section II-A relies on the accuracy
of the GCF (6) in reproducing the shape of the EO surface ob-
tained by simulation, especially around its maxima. In all the
fiber-ISOP configurations that we tested, despite discrepancies
found around the EO minima, the accuracy of the best estimated
EO is within 0.15 and the optimal compensator position is al-
ways correctly found.

III. DOUBLE-STAGE COMPENSATOR

A. Theory

Using a single-stage OPMDC with a given , system
outage is systematically produced whenever a fiber sample with
sufficiently large DGD is at hand, as in the two subplots on the
right side of Fig. 5. On the other hand, when the line DGD is
sufficiently small that it could be effectively contrasted by the
OPMDC, as in the case of Fig. 5 (upper left), we have seen in
Section II-C how the most critical situation to compensate is
the one described by odd retardation and maximum depo-
larization, plus a signal ISOP aligned with either .
Similar channel configurations cannot be effectively equalized
by a single-stage OPMDC and their probability of occurrence
contributes significantly to the system outage probability.

One possible strategy for designing a double-stage OPMDC
that is able to contrast these channel configurations is the one
we proposed in [25]. Its goal is to make the overall extracted
matrix of the transmission line plus compensator

equal to the identity matrix, at the two edge fre-
quencies . If such a condition is met, then in
(6) is thus maximized and should be close to the identity
on the whole bandwidth : how close depends on the
fiber average PMD. The idea behind this double-stage OPMDC,
whose schematic diagram is reported in Fig. 1(b), is that the two
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Fig. 7. (Top) Geometrical triangles showing the principle of operation of the
first compensator-stage: depolarized ������ � are brought on a single point
after first stage. (Bottom) Simulation results: eigenmode trace for a RWM fiber
sample with strong depolarization, before and after application of the first stage.

stages perform conceptually different actions. The task of the
first stage, with DGD and PSP is to bring together the
fiber eigenmodes on a single point of the Poincaré
sphere, hence reducing the fiber plus first-stage to a quasi-first-
order PMD system; the PSP of the second stage will be then
counter aligned to and its DGD will constrast the overall
residual retardation . Choosing a variable implies five
degrees of freedom for the compensator, three being the angles
of the PC placed between transmission fiber and OPMDC and
the fifth being an optical rotator placed between the two OPMDC
stages, which determines the angle between and .

The task performed by the first stage can be visualized on
the Poincaré sphere of Fig. 7 (top). Assume that in (5)
represents the Pauli vector of the first stage, and recall that
the concatenation rule (5) has a simple geometrical inter-
pretation in terms of spherical trigonometry. Based on well
known geometrical theorems [12], [26], it can be shown [9]
that the eigenmode and half-retardation of the product matrix

coin-
cide with the third vertex and angle of the spherical triangle
plotted with solid-line in Fig. 7 (top), whose other two vertices
and angles are the eigenmode and half-retardation of the multi-
plied matrices, with the sign conventions of ([9, Fig.15]). Note
that since the edges of a spherical triangle are portions of great
circles, by rotating the sphere of Fig. 7 (top), there are eight
possible triangles on which such geometrical relations can be
equivalently visualized. Now, assume, as done in Section II-C,
that . Then if we place midway
between and , one geometrical construction
for finding and from the concatenation
rule (5) at frequency is the mirror image of the one just

described for , and thus coincides with the dashed-line
spherical triangle of Fig. 7 (top). The choice we made for
implies that lie on the same great
circle, hence the angles must be 90 degrees, so that

coincide. The resulting settings for the first stage are

(15)

Looking at Fig. 7 (top), it is understood that, as long as
, a different choice from that of (15)

would be possible for the first stage, e.g., by decreasing (in-
creasing) and consequently moving downwards
(upwards) along the great circle linking and .
Anyway, it can be easily seen that the choice (15) of building
right spherical triangles, is the only one ensuring that the
geometrical construction in Fig. 7 (top) still holds when the
transmission fiber eigenmodes approach maximum depolariza-
tion, i.e., when . This is, indeed, the most
critical situation discussed in the previous section, for which
we want the first compensator stage to be effective, hence the
choice of having its DGD equal to one bit-time is mandatory.

The DGD and eigenmode of the second stage are matched
to the overall retardation and eigenmode of
transmission fiber plus first-stage. Their analytical expressions
are obtained by plugging (15) into the chain rule (5)

(16)

from which the Jones matrix of the second stage
equals the inverse

, and
similarly for , thus equalizing the transmission fiber plus
first stage at , as prescribed.

The control algorithm (15), (16) for the double-stage
OPMDC relies on the same quantities employed to control the
single-stage OPMDC: and . If
are opposite, as assumed above, then, using the quantities
defined in (9), one can set in (15) while
and can be substituted to and

in (16), with either sign yielding the
same result. Although the condition assumed for is
not strictly met by actual transmission fibers, the principle of op-
eration for the first OPMDC stage is still valid: Fig. 7 (bottom)
shows the eigenmode trace, on the bandwidth , for
an emulated RWM fiber sample. The strong depolarization of

(left) is reduced to an almost frequency-independent (i.e.,
quasi-first-order PMD) (right) by the first compensator
stage, although the resulting do not coincide due to
mismatched values of .
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B. Results and Discussion

The procedure for evaluating the Outage Probability with the
double-stage OPMDC described in Section III-A was the same
as that described in Section II-B. We used (15) and (16) to
drive the compensator stages. Note that, for the double-stage
OPMDC, the compensator control algorithm is not dependent
on the ISOP anymore. The resulting OP was the bottommost
curve plotted in Fig. 2 versus the average DGD of transmission
fibers. Results show that for an , the tolerance of the
double-stage compensator is of the order of half bit-time, sig-
nificantly extending the reach of the single-stage compensator
described in Section II. The presence of a second stage with
variable DGD makes the compensator robust to channel config-
urations with small and large DGD . In such situations
of quasi-first-order PMD, an almost constant in (15) yields

counter-aligned with it, hence the line DGD is subtracted
from the DGD of the first stage. At the same time,
the first equation in (16) ensures that ,
where should be regarded as the effective DGD of
the transmission fiber at frequency . Finally, the second equa-
tion in (16) makes the PSP of the second stage
counter-aligned to the first, so that the DGDs ,

and algebraically add together to produce a null
retardation at . Experimental results, in fact, confirm that
the rare cases in which the Sensitivity Penalty exceeds 3 dB
are associated with fiber samples with very large second-order
PMD, where a large implies relevant eigen-
modes depolarization. One reason for the partial failure of the
double-stage OPMDC in these cases can be a large value of the
PCD 5 which makes the retardation
significantly different from , in contrast with the
hypothesis assumed in deriving the control algorithm (15), (16).

The presence in the first stage of a PMF section with a DGD
as large as the bit time, as prescribed by (15), may seem at first
surprising. It is worth noting that other works in the literature
have reached similar conclusions, despite a completely different
approach to compensation. For instance, [27] presents an adap-
tive control criterion for a multistage OPMDC which aims at
minimizing the mean square error of detected symbols after the
optical receiver. The exemplification on a three-stage OPMDC
in [27] shows that the first stage may have a large DGD, in the
order of the bit duration, and the other two stages have a DGD
in the order of half the bit time.

Regarding the approach that we followed, it is clear that an
effective compensation is achieved whenever the frequency-de-
pendent part of the Jones matrix of the transmission fiber is
equalized by the Jones matrix of the compensator on the whole
signal bandwidth. For ease of analysis, and consistently with
the maximization of the EO (6) pursued in Section II-A, we
concentrated on the frequencies , plus , hence real-
izing a discrete frequency-domain equalization strategy. A con-
tinuous frequency-domain equalization strategy is, for instance,
the one adopted in [28], since it aims at maximizing the overall
integrated (and weighted) electrical power spectrum, so as to
equalize the spectral hole due to first-order PMD in the received

5Note that the PCD is still related to second-order PMD, since �� � �
����� � �� ��� � �� ��� � � ��� � (the unit-magnitude PSP �� is
orthogonal to its derivative �� ).

signal, or other linear distortions caused by higher-order PMD;
the approach in [28], however, permits little insight into the
compensator operation. Whether the objective of an OPMDC is
to equalize the channel at some discrete points, as we do, or on
a continuous frequency interval of the transmitted signal spec-
trum, it is, however, important to remark that the compensator
budget, i.e., quantified by the DGD of its stages, should not be
spent on equalizing only at the carrier frequency and its
neighborhood, as would happen in a control criterion based on
the PMD vector and its derivatives.

Regarding our approach of separating the tasks of the
OPMDC stages, we would also like to cite the work of Shtaif
et al. [29], which presents a three-stage OPMDC where the
second stage compensates first-order PMD while the first
and third stages compensate higher-order PMD. In fact, such
OMPDC compensates high-order PMD by ideally inverting
the Jones matrix of the transmission fiber, assuming that it
can be modeled with a linear retardation
and eigenmode rotating at constant speed in a circle
(not necessarily a great-circle). Such a model has been called
rotation model in [9]. Reduced complexity, with only 5 degrees
of freedom for the three stages, is achieved in [29] by exploiting
the symmetries of the compensator Jones matrix.

IV. CONCLUSION

We analyzed single- and double-stage optical PMD compen-
sators, whose performance is already assessed in the literature,
from a novel point of view, relying on a representation of the
transmission fiber in terms of extracted eigenmodes and retar-
dation. As opposed to the classical description in terms of the
PMD vector and its derivatives (to which we anyhow relate the
analytical results, when possible), this approach aims at equal-
izing the transmission fiber Jones matrix on a large signal band-
width. At the same time, the adopted perspective permits a great
deal of analytical insight.

First, we derived a control algorithm for a single-stage optical
PMD compensator with fixed DGD, based on the maximiza-
tion of the Eye Opening, as provided by the generalized Chen
formula. The analytic solutions thus found correctly reproduce
simulation results and the control algorithm drives the compen-
sator to yield the expected Outage Probability. We justify ana-
lytically the experimental evidence that for certain critical trans-
mission fibers (i.e., those with maximum depolarization) and
States of Polarization of the input signal (i.e., those aligned with
the eigenmodes depolarization), a single-stage compensator is
totally ineffective and produces the same Eye Opening as in an
uncompensated system.

To overcome these limitations, we analyzed a double-stage
compensator with five degrees of freedom. Consistently with
the target of the single-stage, the compensation strategy aims
at equalizing the system matrix at three discrete frequencies, at
the center and edges of the signal bandwidth. The control algo-
rithm is based on a simple interpretation in terms of spherical
geometry. We showed how the tasks of the two stages are con-
ceptually distinct: the first stage aims at eliminating eigenmodes
depolarization while the second compensates the residual PMD,
which is quasi-first-order. Somehow surprisingly, we showed
that the fixed DGD of the first stage must be as large as the bit
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period. For the same target outage, the double-stage compen-
sator enhances the system margin of tolerable average PMD as
expected.

In both cases, the outage probability was quantified through a
fast semi-analytical technique, based on a pool of representative
fiber samples obtained using a novel multivariate Multicanon-
ical Monte Carlo technique.

APPENDIX

OPTIMIZATION OF THE EYE OPENING FOR THE

SINGLE-STAGE COMPENSATOR

The problem here is to maximize a non-negative scalar func-
tion , or equivalently maximize , with respect to the
unknown , subject to the constraint . The math-
ematical tool for such constrained maximization is the method
of Lagrange multipliers. We build the function

(17)

and look for its unconstrained extrema by solving the gradient
equation

(18)

Once a solution is obtained, the Lagrange multiplier
is found by imposing that such solution satisfies the constraint

. Recalling (6) and (7), the solution of (18) is

(19)

where the argument is omitted for brevity. Plugging (19) into
(7) in place of , we get the following system of two equations:

(20)

and being the magnitude of vectors and , both , whose
solution is

(21)

where

(22)

is the determinant of the real and symmetric system matrix in
(20). Substituting (21) in (19) yields the unconstrained solution

(23)
clearly showing that the optimal compensator position always
lies in the plane spanned by 6

(24)

The Lagrange multiplier is determined by imposing that
has unit norm, hence by equating , where

is the squared magnitude of the numerator in (23).
Both and are second-order polynomials in ,

6As an alternative procedure, we could have plugged � and ��� � ��� from (7)
into (19), with the unknown �� in place of �� , to get (24), that can be solved by
inverting the 3 � 3 matrix (see, e.g., [30, p. 130]), obtaining the same solution
(23).

with positive coefficients. Geometrically, they define upward
concave parabolae with vertices and

, respectively. There can be up to four
intersection points, whose abscissae (of which at least
two are negative), are the solutions of the fourth-order equation

. These correspond to stationary points for the
function , which can be either maxima, minima or
saddle points. The corresponding values for the eye opening
(6) are simply the Euclidean norm of the vector in (21). The
compensator control algorithm tests the four roots and selects
the yielding the largest EO , as reported in (11).7

Hence, in standard cases, in (10) is the sought
compensator orientation.

The only case in which the standard solution (10) does not
hold is when the determinant is null. Since it must be

at the same time (geometrically, the vertex of
intersects at two coinciding points on the axis), the vector
in the numerator of (23) is null. If is not parallel to , then it
must be

(25)

from which the sought is found. A necessary and sufficient
condition for (25) is , which
we use in our software to discriminate the special cases before
calculating . Equation (25) implies that the system (20) is
undetermined. Nonetheless, the solution in the limit

, obtained by
applying de L’Hospital’s rule to the general solution (23), is seen
to satisfy (24), hence to solve (18). Such solution has not unit
norm, but, under condition , the system matrix in (24)
also has null determinant and its null-space is proportional to
the vector . Hence, iff , a term can
be added to , with so as to make

(26)

a unit-magnitude solution of (24). Note that the two terms in (26)
are orthogonal, since (25) implies that their inner product is null.
Hence, solutions (26) always occur in pairs, with opposite
values. Substituting (26) in (7) and then in (6), the corresponding
Eye Opening is

(27)

that for coincides with the of the standard
expression in (11). In the subcase where
and (including cases where one of the two vectors is
null), ((26), (27)) still hold, but are further simplified since it
can be shown that , hence reduces to the second
(null-space) term only in (26) while the fraction term in (27)
reduces to 1, since is the only nonzero solution.

Note that the EO can be always expressed as
, where are the coordinates of

7In all the cases we tried, we always found that the most negative solution
� � � is the one associated with the optimal compensator behavior. We have
not found a mathematical explanation for this, although the solution � with
largest modulus clearly maximizes the term ��� in � .
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with respect to the (nonorthogonal, in general) frame
of reference ; such expression embraces both (11) with
the standard solution (10), and (27) in the special case (26).
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