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Abstract—An original approach to the solution of the nonlinear  solitons, linearization occurs around an analytical waveform
Schrodinger equation (NLSE) is pursued in this paper, following close to the actual solution, according to the variational prin-
the regular perturbation (RP) method. Such an iterative method .

. ety , . -~ ciple [7], [8].
provides a closed-form approximation of the received field and is ) R
thus appealing for devising nonlinear equalization/compensation ~ Linearization is used because the NLSE generally does not
techniques for optical transmission systems operating in the non- admit an analytical solution when both the nonlinear term and

linear regime. It is shown that, when the nonlinearity is due to the  -hromatic dispersion are taken into account. Notable excep-

Kerr effect alone, the ordern RP solution coincides with the order .. . . )
2n + 1 Volterra series solution proposed by Brandt-Pearce and tions include the search of the eigenfunctions of the NLSE, for

co-workers. The RP method thus provides a computationally ef- Which the exact solution is obtained by the inverse scattering
ficient way of evaluating the Volterra kernels, with a complexity method in the form of classical solitons [1], and the treatment
comparable to that of the split-step Fourier method (SSFM). Nu- - of nonreturn-to-zero (NRZ) pulses when the chromatic disper-

merical results on 10 Gb/s single-channel terrestrial transmission _. . . Lo .
systems employing common dispersion maps show that the sim-S1ON 1S extremely small, for which a solution is obtained by the

plest third-order Volterra series solution is applicable only in the dam-breaking approximation [9]. Other studies that go beyond
weakly nonlinear propagation regime, for peak transmitted power  linearization include the application of perturbation theory to
Wetl'l be'%W 5 dBm. Howe}aeratge ;ESI%]ItD in tft‘ﬁ gonllneartpropa- the search of the eigenfunctions of the multidimensional NLSE
gation phenomenon provided by the method suggests an en-. : .

hanced regular perturbation (ERP) method, which allows the first- in the field of molecular physics [10).

order ERP solution to be fairly accurate for terrestrial dispersion- Recently, Brandt-Pearce and co-workers have tackled the

mapped systems up to launched peak powers of 10 dBm. NLSE using a Volterra series approach [11], [12], pioneering
Index Terms—Nonlinear systems, optical fiber communication, the introduction in the long-haul optical transmission world of

optical Kerr effect, optical propagation in nonlinear media. a well-established tool in nonlinear system theory and laying

the ground for a possible renewed interest of the traditional
communications community into optical communications. The
value of such pioneering work is that it makes it possible to
M OST OF the research in long-haul terrestrial and submgqapt known communication theory results, such as equaliza-
rine optical communication links today concentrates ooy techniques for nonlinear channels [13], for application to
the design and optimization of the dispersion-mapped optiggk nonlinear optical channel. However, the numerical findings
fiber channel rather than the optimization of the receiver and i?nf[ll] and [12] are quite discouraging when applied to typical
the modulation format. This fact has progressively increased {g@g-haul dispersion-mapped optical links, with large nonlinear
cultural gap between the classical communications commungymylated phase: too many Volterra kernels are needed in the
and the optical communications community. series expansion in order to obtain a good approximation of
The analysis of the long-haul optical channel starts from thge output field for typical power levels in terrestrial systems,
nonlinear Schrodinger equation (NLSE) describing the fielgh that the authors in [12] were forced to use extremely low
propagation in a single-mode optical fiber. Its direct numefransmitted peak power levels. The main concern here is on
ical solution by the split-step Fourier method (SSFM) [1], agomputational complexity: a Volterra kernel of ordeentails a
implemented in most commercially available software packyyltiple integral of order. in the frequency domain, so that the
ages, is the key design tool available to the Communicatiogémputationm complexity of the Volterra expansion quickly
engineer. The guidelines for the design are learned most oft8feeds that of the direct SSF computation.
from simplified versions of the NLSE for which an approx-  tpis paper stems from the thesis work of Paolo Serena [14],
imate analytical solution is available. Linearization around W@ho studied the approximate solution of the NLSE by the reg-
working point is the technique that has most often been syga . nerturbation (RP) method [15]. Such method, summarized

cessfully employed for the study of nonlinear effects, as in thg getion 11 of this paper, provides a recursive closed-form so-

case of the study of parametric gain [2]-[4] and cross-phaggion that provides good insight into the nature of the nonlinear
modulation [3], [6]. Even in the study of dispersion-managegisiortion and a computationally efficient numerical evaluation

method.
Manuscript received May 10, 2001; revised January 31, 2002. During such thesis work, we observed the close similarity of
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such observation, we further verified that such coincidence car- II. RP SoLUTION OF THENLSE
ries over to the fifth-order kernel. Such findings are presented
in Section 1l of the paper. We then found a way to prove b
induction that the ordet RP solution coincides with the order
2n + 1 Volterra series solution, for any integer Appendix I
contains the details of the proof.

In summary, we realized that the RP recursive solution co9€(%; t) Y+ dE(z, t) y Ba PE(2, 1)
incides with the Volterra expansion and is thus a computation- 9z 2 ot 2 o2
ally efficient way of evaluating the Volterra kernels by avoiding + €z HPE(2, £) =0
multiple integrations. The conditions for convergence of the RP (1)
series expansion can also be used to prove convergence of the
\olterra series expansion. . . . .

We must emphasize that the RP method does provide a g\g{ﬁer.e we adopt the electrical engin(.aers sign convention for the
in computational efficiency compared with the direct VoIterrgour'e_r transformianq whe¢[m _] is the power e_lttenuatlon
kernels evaluation, but not compared with the SSFM, which sti" unitlength/3; = (d'3/dw’)..—., is theith coefficient of the
provides the most computationally efficient approach. Howevdfeduency expansion of the propagation constét) atw =
the RP method and the SSFM have comparable complexitiesvasandy [W~*m~'] is the nonlinear coefficient. Equation (1)
discussed in Section IV of this paper. considers only Kerr nonlinearity and group velocity dispersion

Section IV tackles the issue of whether there exists a finiteVD). The Raman effect is neglected here, as well as higher
lumped-element block-diagram description of the nonline@fder chromatic dispersion terms, although the analysis and the
fiber, starting from its finite-order \Volterra solution. Unfortu-results can be extended to cope with such terms as well.
nately, a negative answer is obtained from known theoremsWWe now apply the RP method, described in Appendix |, to
on nonlinear system theory. However, the recursive naturetbf above equation. It is easy to recognize in (1) the structure
the RP solution bears a similarity with the SSFM, and wef (36), whereN[E(z, t)] = jv|E(z, t)|*E(, t) is the only
found a simple connection between the two methods, whiglenlinear term of the NLSE antl[£(z, t)] = 0 the propagation
provides a good understanding of the approximations entaileguation in the linear regime, whose solution is well known.
by the RP expansion up to a given order, as well as an dpror to introducing the RP series expansion for the optical field
proximate block-diagram description of the nonlinear fibegnvelope, the NLSE can be further simplified, as customary, by
and an efficient computational algorithm for the terms of thiatroducing a normalized fieldi(z, T') referred to the retarded
RP solution. time frameTl’ =t — (z/v,), being that, = 1/4, is the group

In Section V of this paper, we apply the RP method to elocity of the field.A and€ differ by an attenuation factor that
typical 10 Gb/s single-channel dispersion-mapped 500 km depends on the lengthof the fiber, as follows:
terrestrial system and quantify the approximation error, ex-
pressed as the normalized mean-squared difference, over the
whole transmission period, with respect to the “true” split-step
Fourier (SSF) solution. We find that a first-order RP expansion
(i.e., a third-order \olterra expansion) provides an acceptalifae simplified NLSE then reads
level of accuracy up to peak transmitted powers of a few dBm,
the accuracy being worse for maps whose transmission fiber
has lower dispersion. In other words, the method cannot be
used with typical values of peak transmitted power around 9
dBm. Switching to a second-order RP solution, i.e., fifth-order
\olterra solution, improves accuracy, but the fifth-order kernel
is too cumbersome to treat for any analytical computation of Let us now express the fieLél(z7 T) in a power series of
practical use.

Fortunately, there is a simple trick that allows a first-order o0
RP solution to hold up to power levels of interest in terrestrial Az, T) =Y A Ax(2, T) (4)
systems. We call this the enhanced regular perturbation (ERP) E—0
method, presented in Section VI of this paper. The idea is bor-
rowed from the variational principle: because itis known that thend insert the latter in (3): for a reg|
phase of the received field will swing around the average cumu-
lated nonlinear phase, a change of variable is made to eliminate,, N 00 N
such average nonlinear phase before applying the RP metho o 9Ar(z, T) = Z 7R B2 w

The propagation of the optical field complex enveldjie, ¢)
E/\/ W] in a single-mode optical fiber is described by the NLSE
[1] as follows:

E(z,T) 2 Az, T)e (/= )

0A(z,T) . B2 *A(z, T)
0= 2 17
— Az, T)PA(z, T)e™ = ®3)

The results show that such a first-order ERP method gives an ac;—, 9z b—0 2 o1?
curate output field description for the most common dispersion 0 © oo
maps up to peak powers of about 10 dBm, the accuracy varying —Jv Z Z Z yrrH
according to the in-line residual dispersion. i=0 =0

n=0
Finally, Section VII of this paper contains the conclusions. Ai(z, TYAX (2, T)A(z, T)e™**. (5)
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Equating the terms that multiply equal powers~obn both where the integrals extend from~ to ~. For k = 2, the
sides, we get a system of recursive linear differential equatioesjuation is

the ktAh being 9Aa(z, T) B 82 As(z, T)
Odr(z. T) . By 0*Ax(z 9. Y2 ar
Oz =I5 2 8T2 Z Z Z N 2 . ~o R
i+ okt : 2A0(z,T)‘ A2, T) + A2(2,T)A (=, T)
- Ai(z, T) AL (2, T) Ay(z, T)e™* (6)

where, consistently with (38), the last term includes the contri-
butionsA;(z, T) to the field withi < k, which are known from
previous iterations.

In order to get an analytical approximation of the optical field, (B * 15 (B /)% —at
in most cases of practical interest it is sufficient to solve such (z,w) =c ( J)/O ¢ ¢
iterative equations only fok = 0, 1, 2. If the input field is i N N

<2//A0 5,0.)1 AS 5,0.)2)

i

e (10)

which, expressed in the frequency domain and integrated with
respect tor, yields the solution

A(0, T), the initial condition fork = 0is Ay(0, T) = A(0, T),
while the higher order contributions to the field have zero initial

values:A;(0, T) = Ay(0,T) = 0. Fork = 0, the linear AL w = wr o+ ws) dw ds

solution in the frequency domain is // Ao (€, wy Al £ wr)
Aoz, w) = A(0, w)e‘j('az/Q)‘“'z". )
. Ao(g, w—wi + CUQ) dwl dLUQ> dS (11)

For k = 1, the only contribution to the triple summation in
(6) comes from = n = [ = 0, and the equation to solve is It is now necessary to insert the expressionigfz, w) into

8A1(z T) By aQAl(z T) (9) in order to get an explicit dependence/m‘(;v w) on the

T = s input field; this must be done also fﬁr2(7 w), inserting (7) and

0z 2 oT?

A 2 ) (9) into (11). After some algebra, we get (12) and (13) shown at
— ‘AO(Zv T)‘ Ao(z, T)e™**. (8) the bottom of the page. The second-order RP approximation to

. . . . . h li ical field is th
Taking Fourier transforms and integrating with respect,tove the output normalized optical field is then

get the solution Az, w) & Aoz, w) + vAL(z, w) + 72 As2(z, W) (14)
Ar(z, w) =e i0/D9%2(_j) /Z (B2 /w76 o and we note that the GVD termr?(%/2="= appears in all
’ 0 terms. The great value of (7), (12), and (13) is that they provide

) i iy i B a closed-form approximation of the output field. Such equations
// Ao(&, w)A5(&, w2) AolE, w —wrtwa) L ated to the Volterra series solution of the NLSE in the
- dwy dwo d€ (9) next section of this paper.

2pi 2pi

Aierw) =espl-i(aa/2=5) [

| e
0

- A(0, w1 )A*(0, w2)A(0, w — wy + wa) dwy dws (12)

Aaerw) =espl-ita/2% [ [

[—2/0 exp [ =t 2 (WP - w? 4wk — (@ wy wn))]E

—a+j(B2/2)(w* — Wi 4w — (w— wy +wo)?)]EdE

2

9
</ eXp({ oc—l—J%((w—wl—i—wg)Q—wg—i—wi—(w—w1+w2—w3+w4)2)}u)du) d¢
0

Fon([o (ot

</0 exp<[— %( %—w§+wi—(wz—ws+w4)2)}u)du>d€

- A(0,w1)A™(0,w2) A(0, w3) A™(0, wa ) A0, w — w1 + w2 — w3 + wa)
- dwl dCUQ dw;g d(U4. (13)
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[ll. RELATION TO THE VOLTERRA SERIESAPPROACH the form of (16) will never be an exact solution of the NLSE.
An approximate analytical solution to the NLSE has alrea ore precisely, one can show that a polynomial equation such

been studied in the literature through the use of Volterra ser %.(15) W|II.n_ever admit an exact solut!o_n expressed, through the
[11]. To briefly summarize the results of this method, the NLSIJ__:nUaI conditions, as a polynomial of finite order. Nevertheless,

(1) must be rewritten in the frequency domain, using the ril the as;umption of a sufficiently small input field, we can
tarded and att tedtical field A(z. T) 2 £(» ¢t — B neglect higher order terms and equate the terms of first, third
:srfgllojvr;' attenuateaptical field A(z, 1) = £(z, t — A1) 51 fifth order, and then get a set of differential equations for

the Volterra kernels [11, egs. (7)—(9)] that must be solved with
8A(7 w) initial conditions H; (w, 0) = 1, Hz(w;, w2, w3, 0) = 0 and
92 = Gi(w)A(z, w) // Ga(wr, w2, w —wr +w2) Hs(wy, w, w3, wy, ws, 0) = 0[11], as per (16). The general
Az, wl)A (2, w2)A(z, w — w1 + wy) dwy dw, (15) Solution for the first-order kernel [11, eq. (10)] can be applied
to our case through the definitions 6f andG3 as follows:
where we setGi(w) 2 —(a/2) — j(/2)w® and
Ga(wy, wae, ws) 2 —7v. One then postulates a solution

in the form of a truncated Volterra series. The fifth-order
solution reads which coincides with the linear fiber frequency response. For the

third-order kernel, the general solution [11, eq. (11)] specializes
to this case as follows:
Az, w)

Hl(w, Z) — eGl(w)z _ 6—(@/2)z6—j(,82/2)w2z (17)

= H)(w, 2)A(0, w) +/ Hz(wy,we,w —wy + wa, 2) Hi(wi, wa, w —wi +ws, 2) = 6_(a/2)ze_j(’82/Q)wzz(—ﬂ)
] — elmami(Ba /(s heon) =~ 4]z

a+j(Ba/2)[(w—wi + w2)?— (WP —w? + wj)]

A0, w1)A™(0,w2) A0, w — w1 + w2) dwy dwo

/// H wl,CUQ,(Ug,(U4,(U—(U1+UJ2—U.13+UJ4, )

A(0,w1) A (0, w2) A0, w3) A*(0, wy) Note that for large fiber length, the exponential term in the
numerator in (18) can be neglected with respect to 1. Also, for

large GVD fibers, one could be tempted to drop théerm in

the denominator, as done, e.g., in [16] in the analysis of the

where H;,(-, z) are the Volterra kernels. Even order terms ) P
2ffi ciency of four-wave mixing. However, dealing with signals
of the series must be identically zero due to the absence o

ith a continuous spectruna; cannot in general be neglected

second-order nonlinearities in the NLSE. Plugging (16) in bofrér all significant frequency bands of the signal.
sides of (15), terms of first, third and fifth order appear on botfy The general solution for the fifth-order kernel, reported in [11,

sides, while terms of seventh and ninth order appear only on the

s. (12) and (13)], specializes to this case, as shown in (19) at
right-hand side (RHS). It is then apparent that an expressio thﬂe bottom of the page. Instead of directly applying [11, eqs. (12)

IHere the notation of [11] is kept for the purpose of comparison. and (13)] to this case, the following changes of ¢hevariables

(18)

. A(O, w—wy +wy — w3+ wy) dwy dws dwz dwy  (16)

Hj(wy, wa, w3, Wy, ws, 2)

. [—2045 (82 /2) (w1 —weFws —waFws)” —w? el —wi+wi —wD]z _ |
= (/D23 (B2 /D21 2) ©

[—204—}—]’%2(@)1—w2+w3—w4+w5)2—wf—i—w%—w%—i—wi—wg)}

) n +1
[—OéJrj’%z (w3 —wa +ws)? — w3 +uwj —wg)} [—OéJrj’%z (w3 — w3 +wi — (w2 —w3+w4)2)}
(-2)
[~ 3% (s — wu+ ws)?2 — wf o+ wf = wB)]
el=oti (82 /2) (01 —wa dws —watws ) —wf +ef —(ws —watws)?)]z _

|:—Oé +J% (w1 —wr w3 —ws +ws)?2 —w? +wi — (wg — wa —|—w5)2)}
+D)
[—a —i—j%z (w3 —wl+w?—(wr—ws+ w4)2)}

elmati(B82/2) (w1 —wz+ws —watws)? —wi+(wz—wstws)?—wi)]z _ |

: (19)
[—04 +j%2 (w1 —wo + w3 — wa +w3)? —w? + (wo — w3 + wa)? —wg)}
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have been introduced in deriving (19): in the last term of botlecognizabldunction. However, we will provide below an infi-
cited equationsy- is swapped withw,, and a circular left shift nite block diagram schematic of the nonlinear fiber by working
is applied to the sequende, w3, ws). Such changes do noton the RP solution.
affect the overall result of the quadruple integral in (16). The first advantage of the RP solution with respect to the
One can now directly check that the fifth-order Volterra sovolterra solution is its computational simplicity. In fact, the eval-
lution (16) coincides with the second-order RP solution of thgation of the optical field through the truncated Volterra series is
last section. In fact, one can verify that the integral in the squaggtremely computationally expensive, the third- and fifth-order
brackets of (12) coincides with the term in square brackets kdrnels requiring the evaluation of double and quadruple inte-
(18), and that the double integrals in the square brackets of (fBals in the frequency domain, respectively. We wish to now
coincide with the expression in the large square brackets of (18how that the RP method has the complexity of a single integra-
The actual output optical field found through the RP method difion in the spatial coordinate. Let us rewrite the equations in
fers from the expression (14) by an attenuation terrif/2#,  (7), (9) and (11) reintroducing the attenuation terms, thus using
by whichfl(z, w) must be multiplied, according to (2). Thus, itattenuated optical fieldd;(z, «) instead offli(z, w) and sub-
is easily seen that the linear terms (attenuation and GVD) astituting the convolutions inv with the Fourier transform of
the terms iny appearing in (17)—(19) are also present in the Rfroducts in the time domain, shown in (20)—(22) at the bottom
solution and that the two solutions coincide. of the page wher& denotes the Fourier transform. The above
In Appendix Il it is proven by induction that the two methodserms can be computed by a simple algorithm: a cycle that scans
yield the same solution to any order. Such coincidence is nothe fiber in finite steps fron§ = 0 to £ = », storing and up-
worthy, because the RP method seeks a solution in the formdatting the result of the integrals in (21) and (22) in two scalar
a power series of, whereas the Volterra series is a generalizedhriables. At each step, the linear contributidg(£, w) is com-
Taylor power series of the input field. Such coincidence is renpputed from (20) and the integral in (21) is updated, using direct
niscent of the coincidence of the RP method with the functionahd inverse Fourier transforms to switch between time and fre-
iteration method cited in [15, note 5, p. 531]. Once the coimuency domains, to yield an updatéd(¢, w). Similarly, using
cidence of the two solutions is established, the convergence®2), A»>(¢, w) also can be updated at the same step.
the infinite Volterra series to the exact solution of the NLSE is The algorithm just described bears a strong resemblance with
equivalent to the convergence of the infinite RP series: knowime SSFM, both because it scans the fiber along its length and
convergence conditions for one method can be used to prderause of its intensive use of Fourier transforms. Despite such

convergence for the other. similarity, the present algorithm does not aim at directly solving
the NLSE, but only at computing the RP solution of second
IV. RELATION TO THE SPLIT-STEP FOURIER METHOD: A order, and it can in principle be extended to higher orders. Thus,
PARALLEL FIBER MODEL to establish the accuracy of the solution, bothgtep sizeised

to scan the fiber length, as in the SSFM, and the order of the RP
"Yethod are important parameters.

et He (w) = e=(@/D+i(5:/D+")¢ pe the transfer function

% I|near fiber of lengtlf. Equation (21) can be written as

The Volterra series approach is a powerful tool for modelin
nonlinear systems. For a lumped-elements system, the \olter
kernels can be derived from its block diagram, as has been do
for nonlinear radio links [17], [18], where a memoryless non

linear amplifier is sandwiched between linear filters. The re-
verse problem is nontrivial: given the Volterra kernels of the A1(z,w) / H._¢(w)F [|Ao(&,T)|? Ao(¢,T)] de
previous section, is there a finite lumped-elements system de- (23)

scribed by those kernels, i.e., having the same input—output re-

lationship? In order to answer this question, we resorted to nomhere a linear filtering with a fiber of length — ¢ is applied
linear systemeealization theoryBased on the results illustratedin the integrand, and the terms appearing in the Fourier trans-
in [19], it is possible to prove that the kernels derived for thiarm are, according to (204o(¢, w) = He(w)A(0, w), i.e
nonlinear fiber are not suitable for modelindpifinear system, the result of filtering the input field with a linear fiber of length
i.e., one with a finite block diagram, because, for instance, tjecomplementary te — £. A discretization of the integral in
denominator of the third-order kernel in (18) is not factorizablg3), with stepA, suggests that the resulting fiell z, w) =

in the product of three functions, each depending on a single(z, w) + vA1(z, w) can be thought of as the output of the
variablew;, and thus, in the terminology of [19H3(-) is nota block diagram depicted in Fig. 1.

Ag(z, w) =e~(/DHB2/2%)2 4(q ) (20)

Ay (2, w) =e~(/DFi(B=/D)=(_j) / o H((@/2)+i(B2/2)”)e 7 [| Ao, T)| Aol T)} de 1)
0

Ay(z, w) =¢~ (VG202 / HOHEDDEE (2] A0(¢. DI A€, T) + 43 DATE )] ¢ (22)
0
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Fig. 1. A parallel fiber model derived from the first-order RP method.

AQ.0) LAGHA®)  A(z,w)
NAGTAD.

N

D

I_IA (my C ......... HA ((o
> >

- YA i YA

Fig. 2. A serial fiber model derived from the SSFM.

Let us now recall the strategy adopted by the SSFM to solaesingle “descent” to a nonlinear block at coordinate= ¢.
the NLSE. The fiber is split in slices of siz&. The linear fil- Similarly, referring to (22), it can be proven that the second
tering and nonlinear distortion effects are successively applittm of the RP method? A,(z, w) (coinciding with the term
at each step by considering the linear and nonlinear contribneluding the fifth-order Volterra kernel) includes the contri-
tions to the NLSE separately. At positian= £, one can first bution of paths composed of a concatenation of linear blocks,

apply the linear operator to obtain an updated field except for a double “descent” to the nonlinear blocks at two
_ , i generic coordinates along the fiber. The proof follows. Suppose
AL+ A, w) = T@/DERDIA J(¢ ) that at coordinate = ¢ there has been exactly one descent
= HA(w)A(, w) (24) to alower branch, at a previous stage< £. Thus, the field
AL, T) = Ag(&, T) +~vA1(&, T) consists of a linear fieldiy
and then the nonlinear operator to get the output field and of the manyne-stemonlinearly distorted fields that build
5 up A1 (&, w), as per (23). Therefore, at the second descent to a
A€+ A, T) = A(E + A, T)e IACTA DA lower branch, at stage= ¢, the output of the nonlinear branch

) ) ) A ;
~A(E+A,T) [1 iy ‘A(£+A, T)‘ A} In Fig. 21s
(25) —IvAIAE, T)PAE, T)
where the last line includes a first-order expansion of the expo = (=78 Aol T)P Aolé, T)
- - 2/ - 2 2
nential, valid forA — 0. From a system perspective, the suc- + 73(_‘]4) [2|A0(£’T)|2A1(£’T) + Ag(S’T)A (D)
cessive application of (24) and (25) results in the schematic of 7 (i) [2|A1(57T)| Ao(§, T) + AL(§, T)A (S,T)]
Fig. 2. +oH(=iA) A, TP ALE, T). (26)
Referring to Fig. 2, the input field can travel along different
paths to reach the output. At each step, it can be either solely IBy comparison with the Fourier terms in (21) and (22), it can be
early filtered, when passing through the upper branches, or fitalized that the first termin (26) will contribute to (6 +A, T')
tered and nonlinearly distorted, when passing through the lovaerd the second will contribute té,(£ + A, T). The remaining
branches. Thus, the output field consists of the sum of matgrms will contribute tads(-) and A4(-).
contributions, each associated to a unique path through a coneExtending this reasoning, one can see that the application of
catenation of linear and nonlinear blocks. The top branch tife orderd/ RP method results from the SSFM with a lineariza-
Fig. 1 represents the linearly filtered output field(z, w), cor- tion of the exponential self-phase term (25), when the nonlinear
responding to the path of all upper branches of Fig. 2. It is alsi@stortion included in the NLSE is applied &£ blocks only of
easy to see that each remaining branch in Fig. 1 correspotius fiber, and terms in®, with K > M, are neglected. Since
to a path in Fig. 2 composed of all linear blocks, except fod;(£, w) is a term of the third power of the input field, the four
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terms in (26) will also contribute to the \Volterra series terms TABLE |

including kernels of third, fifth, seventh and ninth order, respe PARAMETERS OFINTEREST FOR THEFIBER TYPESEMPLOYED IN THE FOUR
! ! ! QFESTEDDISPERSIONMAPS ATTENUATION o, DISPERSIOND (MEASURED AT

tively. 1550 nm WAVELENGTH,) AND NONLINEAR COEFFICIENT~y

V. SIMULATION RESULTS SMF | DCF | LEAF | NZDSF+ | NZDSF-

To test the accuracy of the computational models illustrati 4 [dB/km)] 019 06| 021 0.2 0.21
above, the optical field output from four different transmissio
systems is evaluated by considering a typica 800 km ter-  © [ps/nm/km] | 17| 100 | 4.4 2.9 -2.6
restrial link, composed of five cascaded spans, each consist ¢ [1/(W-km)] | 1.3| 5.5 1.6 2.2 1.9
of 100 km of transmission fiber (TF), followed by a dual-stage
noiseless amplifier. A compensating fiber (CF) is sandwiched

between the two amplifiers of each dual stage, and its lengie computational complexity of the RP method, the run times
(common to all spans) is allowed to vary so that the residu@r computingAgp are 30% longer than those for computing
dispersion per spa,. can be managed as a free system patsqr\; on the same machine. We must note, however, that
rameter. The gain of the dual-stage amplifier recovers all thgatlab is an interpreted, rather than compiled, language and
span losses, so that the power launched in each TF equalsiHz@ the source code was not optimized.
(peak) transmitted powefrx. The input to the compensating  The NSD can be interpreted as the relative time-averaged
fiber has a fixed peak power level equaH@ dBm, in order o power of the error field associated with the RP method. In
avoid nonlinearity in the CF. The TF and CF are chosen amopgy . 3(a)—(d), we plot the NSD computed for the four dispersion
the fiber types of standasingle-mode fibe(SMF), dispersion  maps described previously, versus both the residual dispersion
compensating fibe(DCF), large effective area fibe(LEAF), per spanD, and the peak transmitted powdétrx. D, is
andnonzero dispersion shifted fibeffdDSF) with positive dis- yaried in the range—(100, 300) [ps/nm/span] (except for the
persion (NDSF+) or negative dispersion (NDS¥), in order NDSF4/DCF dispersion map, where, even with a zero-length
to realize one of the following dispersion maps: i) SMF/DCFéompensation fiberD,. cannot reach the upper limit), while
ij) LEAF/DCF; iii) NDSF+/DCF; iv) NDSF-/SMF. The values p, . lies in the range (5. 17) [dBm]. Using such power levels,
of the parameters of interest, for the different fiber types, are iga can check the validity of the RP approximation in the
ported in Table I. moderately to highly nonlinear propagation regimes, where
The accuracy of the RP approximation with respect to thg,ch approximation eventually fails to predict the output field
“true” solution obtained by the SSFM is evaluated by tiwe-  cqrrectly, as evidenced by the “explosion” of the NSD in Fig. 3

malized square deviatiofNSD) [11], defined as for large powers. From the same figure, it is apparent that a
first-order RP method yields a relative error power below 1%
NSD = </ | Assram(z, T) — Arp(z, T)|? dT) only in the moderately nonlinear regime, whelfex is less
than 5 to 8 [dBm], depending on the dispersion map. As is
. 14 (, TV dT -t 27) well known, nonlinear effects are enhanced—and thus NSD is
SSFMIZ, larger—in low-dispersion transmission fibers, such as NDSF.

To give the reader a feeling of the meaning of the NSD values
where the integrals extend to the whole transmission periqﬁ,pig_ 3, Fig. 4 reports the received power waveforms at the
and Assry is the field evaluated using the SSFMgp is the  |ink output both with the RP and the SSFMs ;. = 100
field evaluated using therst-order RP methOd'.ARp(z, w) = [ps/nm/span] and’rx = 8 [dBm] such operating points are
Ao(z, w)+vA1(2, w). Ag and4, are calculated from (20) and marked with a filled circle in Fig. 3. The power profiles of
(23), andAgp is updated at each span. Such approximation cQtjg. 4(a)—(d) are plotted in the same 16-b time frame, and the
responds to a third-order Volterra solution, as discussed in Seérresponding NSD is marked in the figure.
tion Il of this paper. The input field is a 10 Gb/s ChirpleSS NRZ The RP method does not entail Systematic errors be-
signal modulated by a pseudorandom bit sequence (PRBSkgfise simulations with a very low transmitted power such
length 64 b, filtered by a Gaussian filter with one-sided bangs 1¢g-10 [W] provide excellent accuracy (NSB= 10~29).
width equal to(6/7) R ~ 20 GHz, whereR is the bit rate. However, we note from Fig. 4 that although the RP method

For evaluating Assrm(z, T'), the commercial software seems to well predict the shape of the output field power, it
BroadNeDBwas used for the simulation of Optical transmiSSiOBverestimates the Output power |eve|S, especia”y on wider
systems; for computinglrp(z, 7'), we developed our own pyises, corresponding to the transmission of consecutive
Matlab code. Such code implements the algorithm describeghrks. Such overestimation is enhanced for low-dispersion
in Section IV of this paper, using a step size = 0.2 km NDSF transmission fibers, notwithstanding the accuracy of the
for performing the integral in (23) and using 1024-pointsredicted output power shape. These results are consistent with
Fourier transforms. A slight modification of such code Waghe observation in [11] that the Volterra series approximation
also used in deriving the results shown in Section VI. As fqg not suitable for modeling fiber nonlinearities for large pulse

2BroadNeD, BNeD Broadband Network Design, Inc., Berlin, Germany, arW'dthS' ar_]d we prowde a. thorough explanation of this fact in
the Massachusetts Institute of Technology, Cambridge. the following section of this paper.
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Fig. 3. Logarithmic plot of NSD versus input peak pow&:rx and is D, = 100 [ps/nm/span]Prx = 8 [dBm].
residual dispersion per spdn.., for a 5 x 100-km dispersion-managed link.

Dispersion maps with dual-stage amplification. (a) SMF/DCF. (b) LEAF/DCE., . . . .
(c) NDSRH/DCF. (d) NDSF-/SMF. This equation can still be solved through the RP method: calcu-

lations similar to those performed in Sections Il and IV of this
paper provide the first three terms for the RP approximation to
Ap

Consider, as a limiting case, the transmission of a field
A(0, T) over a zero-dispersion fiber. Using (20)—(22), the Apo(z, w)

VI. THE ENHANCED RP METHOD

second-order RP method yields the solution _ Cf((a/2)+j(,82/2)w2)zAP(O7 W) (32)
Api(z
Axp(z, T) = /2% [A(0, T) — j7lA(0, T)PA(, T) rils @) . 2
- Lea(2) = 42| A(0, T)[*A(0, )5 L2(2)]  (28) = (/AR5 () / (/DB
- Fl(|Apo(&. T) — Poe™ ) Apo(&. T)]) ¢ (33)

where L.z (7) 2 Jy e7°¢ d¢ is the fiber effective length. We Apa(7, @)
recognize in (28) the Taylor series expansion, to second order” 72"’

in ~, of the exact solution for the output field: — e—((a/2)+j(,82/2)w2)Z(_]~) / (/D (B2 /2)e®)¢
0
Ap(z, T) = =122 A(0, T)e= MA@ Lar ) (29) - F[(21Apo(&, T)? = Poc™) Apy (€, T)

Because nonlinear distortion acts only as a self-phase modu-

lation term in (29), the output power is#|A(0, T)|2; such With Ap(0, w) coinciding with A(0, w), from (30). The

value is overestimated by (28), the relative error growing witBlobal approximation to the output field is found by plugging

the fifth power of the instantaneous field. Ap(z, T) = Apo(z, T) + vApi(z, T) + v*Apa(z, T) in
One way to mitigate this discrepancy is to postulate, as cof®0): we will call such solution thenhanced RRERP) method.

monly done in the perturbative analysis of parametric gain [3], In the casg3; = 0, the second-order ERP method from (30)

a solution of the NLSE of the form and (32)—(34) yields

Alz, T) 2 Ap(z, T)e=iPolen(2) @30y Aere(z 1)
= 6_(a/2)z [A(O’ T) —Jv (|A(O’ T)|2 _PO)A(O’ T)Lﬁff(z)
vyherePo is the peak input power, which factors out the non- _ 72(|A(0,T)|2—P0)2A(0, T)%szf(z)}e*j"/PaLeff(Z)'
linear cumulated phase from the solutioithe NLSE can be
recast for the fieldd p» (including the fiber attenuation) as (35)

9Ap(z, T) ) /3_2 2 Ap(z, T) Comparing (35) with (29), it is easily seen how the ERP ap-

=5 Ap(z, T)+j proximation is close to the exact solution, both in magnitude

Oz 2 aT? : . . .
) s and phase, when the input field magnitude approaches its peak
—Jv (|AP(Z, CT)|2 — P()C ) AP(Z, T) level ,_Po.
(1) Fig. 5 shows, in the same frame of reference of Fig. 3, the

3During the revision of the present paper, we became aware thatan alterna't}l;ép gyaluated by _applying the ER_P method. It is seen that
approach was taken in [20] to address the same problem. a significant reduction of the NSD is obtained for all maps.
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dispersion per spaP,., using the ERP method. Same systems as in Fig. 3.

TABLE 1l

PRECISIONGAIN NSDrp /NSDgrr ACHIEVED BY THE ERPMETHOD, FOR
D, = 0 AND Prx =5, 8, 11 [dBm]. DSPERSIONMAPS AS INFIGS. 3AND 5

SMF/DCF

LEAF/DCF

NZDSF+/DCF

NZDSF-/SMF

Prx = 5[dBm]
Pry = 8[dBm]
PTX = ll[dBm]

11
52
641

297
182
1762

126
320
10'2

82
151
10°

Despite the fact that for the ERP method there still exists
threshold above which the NSRp “explodes,” a plot of
NSDrp/NSDgrp (not reported here) has the same qualit

tive features of Figs. 5 and 3, showing that suymecision

gain increases withPrx. We report the numerical values of
NSDgp/NSDgrp in Table 1l for all the examined dispersion

maps; we consider the peak transmitted power valigs =

5, 8, 11 [dBm] as significant for the ERP method and disregar

the minor variations along thP,. axis.

It is evident from Fig. 5 that the power threshold for the rel
able application of the RP method is extended, and, as we ca

sually check in Fig. 6, transmitted fields wiffrx = 11 [dBm]

are accurately reproduced at the fiber output, thus proving
applicability of the ERP method at power levels of practical i
terest in terrestrial systems. Comparing Fig. 6 to Fig. 4, we n
how the output power level is correctly forecast, even in the pres-
ence of long sequences of “1” bits, thus avoiding the mismatch

explained in the previous section.

VIl. CONCLUSION

a_
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Fig. 6. Output power obtained from SSF (dashed line) and ERP (solid line)
methods for the dispersion maps of Fig. 5(a)—(d). The point of operation is
100 [ps/nm/span]Prx = 11 [dBm].

approach, we proved the coincidence of the two approximate
solutions. A comparison with the SSFM has proven useful to es-
timate the degree of approximation involved in the RP method
and to devise a new system model for the optical fiber. Such
model is the sum of parallel branches, each branch being a cas-
cade of a filter-polynomial nonlinearity-filter block.

The importance of the RP and Volterra methods is to pro-
vide closed-form approximations of the output field, thus giving
an analytical insight in the nonlinear propagation phenomenon
and paving the way for the development of nonlinear compen-
sation/equalization techniques.

An algorithmic implementation of the RP method has been
discussed, which has a complexity comparable to that of the
widely used SSFM. A numerical comparison between these two
methods shows that the optical field output from & 300-km

t%rrestrial link, with several dispersion-managed maps, is cor-
rectly evaluated by a first-order RP method only at low trans-

i[nitted peak powers below 5 [dBm]. ERP, an enhancement of

the RP method, has been discussed and simulation results eval-

nvi-

uated. The enhancement correctly accounts for the average non-

T_||i~|r1eear cumulated phase, thus providing a good degree of approx-

Imation in the moderately nonlinear propagation regime, with

gjgnsmitted peak powers up to 10 [dBm], for all the examined

ISpersion-managed links.

After the submission of this work, two recent papers by Tang

were published about the capacity of nonlinear dispersion-free
optical channels [21], [22]. Unpublished work by the same au-

thor [22] demonstrates that much higher channel capacity can
be achieved introducing fiber dispersion. However, the author

A new approach to the solution of the NLSE has been pursuedtes that “extension of this work to a multispan dispersive fiber
through the RP method. Based on a power series expansiotingblves extremely complicated calculation of Volterra series
the optical field as a function of the fiber nonlinear coefficierdnd multidimensional integral.” In view of our results, it is then
~, such method iteratively provides a closed-form expressiptausible that the RP method can greatly simplify the numer-
for eachkth term—proportional ta*—which approximates the ical evaluation of the channel capacity in dispersive fiber links,
field at the fiber output. The approximate solution provided byithin given power limits. In addition, as an object of future re-
the RP method has been compared to the Volterra series transéarch, the better accuracy of the ERP method could serve to
function method, and, though the latter is based on a differaaxtend such results to larger transmitted powers.
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APPENDIX | The general orden-RP solution is formally simple to write:
THE RP METHOD (R n
RPn _ k
Suppose we are given a differential equation of the form 4 (2, w) = kZ_O 1" A(z; w)- (41)
Lly(x)] + eN[y(z)] = 0 (36) ' For the evaluation of the last kernel in (3%z,,+1(-), we must

where L[] is a linear functional whileN[] is a general dif- Plug (39) in the NLSE (15) and equate terms of the same order,
ferential operator, linear or not, arda constant parameter. Iti-€. those entailingn-multiple integrals,

often happens that the equatibfy(x)] = 0, including only the / / OHzpy1(wi,wa, ..., wony1, 2) A0, w01)
e . 7(4()1

linear term, has a closed-form solutigg ), whereas the orig- 9z

inal equation (36) does not. Itis intuitive that, if the parameter - A*(0,wa) -+ - A0, oy )dwy dws - - - dway,

is small enough, the solution of (36) will not be much different

fromyo (). Lety(x; €) be the solution of (36), coinciding with = ~~~/G1(w)H2n+1(w1,w2, ceeswant1, 2) A0, wr)
yo(z) for e = 0. Fore # 0, one can always express the solution LA (0, ws) - - A0, wanp1) dewn dws -+ - dasan,

through a power series in

y(x; €) = yo(x) +ey (x) +E2y()+- - = Zﬁkyk(x) (37) +// G3(wi,wa,ws) - Z Z Z
k=0 i g1

whereyy(x), for k > 1, are the unknowns to be found. (i+j+H=n—1)
This approach, known as thesgular perturbation (RP) ./.../H%Jrl(wil Wiz, .o s wW2it1, 2) A0, win)
method (see, e.g., [15]), is suitable when the parameter TR ’ ’

is small, so that the series in (37), under certain regularity - A*(0,w;2) - - - A(0, waiy1) dwiy dwiz - - - dwa;
conditions fory(z; €), converges rapidly to the true solution of X o , X ,
(36). The unknowns can be found by inserting (37) into (36) Hyjr (i, wia, o wajpn, 2)A7(0, 1)

and then equating all terms multiplying the same powers of - A0, wjyo) - - AT(0,wa 41) dwjt dwjo - - - dway
This way, a system of linear differential equations is obtained,
the kth being -/---/H21+1(w11,w12, oo wartt, 2)A(0,wn)
Ly (z)] + Nlyr—1(x), .-, yo(x)] = 0 (38)
where bothyo(z) and the first(k — 1) functions, appearing in - A*(0,wp2) - - A(0,wary1) dwyy dwys - - - dwoy pdwy dwo

the argument ofV[-], are known and we must solve fgr(x)
only. The initial conditions for(x) are applied tay(xz) only,

setting the initial conditions to zero for every tegm(x) with (42)
k> 0. wherews andws,, 1 relate tow aswsy.1 in (40). The same re-
lation holds betweeftva; 41, wajt1, wait1) and(wy, wa, ws),
APPENDIX Il respectively. Switching to the evaluation of thgh term
COINCIDENCE OF THEVOLTERRA AND RP SLUTIONS A, (z, w) of the RP solution, we plug (41) in the NLSE (15)

In this Appendix, we prove by induction that the RP an@nd equate the corresponding terms, i.e., those multiplying
Volterra series solutions of the NLSE (15) coincide to any ord®oWw, if G is proportional toy and G, is not, as in our case,
if G5 is proportional toy and@; is not, as in the present caseW€ get
This is also true when the Raman effect is included, in whichdy™A,,(z, w)

case we hav&ds(wy, w2, w — w1 + w2) = —jv(l — ar + 9z
arg(w; —ws)), whereg(-) is a normalized third-order response n
function, andar = 0.3 sets the relative strengths of the Kerr Gulwh"Anlz, @) + [ [ Gs(wn, wa, ws)
and Raman interactions [23]. Such property does not hold, e.g., ) oy J A g
after the change of variable in the NLSE that leads to the ERP z; EJ: zl: 1 iz, w0y Az w2y Az, ws) )
method, in which casé’; contains a term proportional ta (itj+i=n—1)
Consider the NLSE expressed in the form (15). The general - dwy dws. (43)

expression of the Volterra series solution, truncated to the orr]i

er. . : : .
21 + 1, which includes odd-order kernels only, is n Section Il of this paper, we analytically checked the coinci-

dence of the first three terms of the Volterra and RP solutions.

A, _ //H ‘ L Now, assume t.hatthe corresponding terms of the solutions (39)
(2 w) kz_o 2 (@1, w2, Wakt, 7) and (41) coincide up to the order— 1, i.e., that

. A(O, wl)A* (0, CUQ) e A(O, w2k+1) ’ymAm (Z, w)
. dwl du)Q . dw2k (39) — / - / H27n,+1 (wm1, Wm2, « 5 Wom+1, Z)

. A(07 wrnl)A* (07 wrn?) e A(07 w27n+1)
Wok41 =W — W1 + w2 — -+ Wag. (40) - dwmy dwma -+ dwam, (44)

where
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for allm < n — 1. Then, because the double integrals including[16] M. Eiselt, “Limits on WDM systems due to four-wave mixing: A sta-
Gg(') in the RHS of (42) and (43) involve only indicésy, gzté%al approach,J. Lightwave Technalvol. 17, pp. 2261-2267, Nov.
not e)_(ceEd'ngl -1, they cq|nC|de by virtue of (44)- TWO ex- [17] S. Benedetto, E. Biglieri, and R. Daffara, “Modeling and performance
pressions for such double integrals can then be obtained from evaluation of nonlinear satellite links—A Volterra series approach,”

(42) and (43) and equated to give IEEE Trans. Aerosp. Electron. Systol. AES-15, pp. 494-507, July
1979.
Gl [18] A.Vannucciand R. Raheli, “Optimal sequence detection based on over-
(FGu«)2) // sampling for bandlimited nonlinear channels,” fmoc. IEEE Intern.
Conf. Commun. (ICC '98Atlanta, GA, June 1998, pp. 417-421.
O (H. W1 Woe e W 2) - e(—G1(w)=) [19] W. J. Rugh, Nonlinear System Theory: The Volterra/Wiener Ap-
. ( 2n+1(W1, w2, ;3 2041, ) ) proach Baltimore, MD: The Johns Hopkins Univ. Press, 1981, p.
z 148.
- A(0,w)A*(0,w2) - - A(0, wapt1) dwy dws - - - dway, [20] B.Xuand M. Brandt-Pearce, “Modified Volterra series transfer function
g (~"A (—G1(w)z) method,”IEEE Photon. Technol. Leftvol. 14, pp. 47-49, Jan. 2002.
— (FG1(w)z) ('V n(z, ‘U) "¢ ) (45) [21] J. Tang, “The Shannon channel capacity of dispersion-free nonlinear op-
- Oz ' tical fiber transmission,J. Lightwave Technqlvol. 19, pp. 1104-1109,
Aug. 2001.
Dividing both sides byz("'G1 (@)=) # 0, we can integrate the [22] —, “The multispan effects of Kerr nonlinearity and amplifier noises
; ; ; ; on Shannon channel capacity of a dispersion-free nonlinear optical
differential equation (45) to obtain fiber,” J. Lightwave Technalvol. 19, pp. 1110-1115, Aug. 2001.
Cilw)e [23] K.J.Blow and D.Wood, “Theoretical description of transient stimulated
c(_ 1)) . / s /H2n+1(wl,CU2, cee, Wonad, z) Raman scattering in optical fiberd BEE J. Quantum Electronvol. 25,
pp. 2665—-2673, Dec. 1989.
. A(O, wl)A* (0, CUQ) et A(O, CUQn+1) dwl dLUQ et dCUQn
=TGWA A (2, w) (46) _ _ _
Armando Vannucci (S'95-M’01) was born in Frosi-
since, as the initial condition at = 0, both functions under none, ltaly, in 1968. He rlecglv?d thehdegree In_elec{
derivative are equal to zero, far> 0. A further division of (46) ggrr‘r']f‘..ﬁg%'gfférzgﬁ’lglfgnz o eDUd”é‘éng'% o
by e{=G1(«)2) £ ( proves that (44) holds fon = » as well. formation engineering from the Universita di Parma,
Parma, Italy in 1993 and 1998, respectively.
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