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ABSTRACT

We consider the advanced modulation and coding schemes used in CCSDS (Consultative Committee for Space Data
Systems) standards for deep space telemetry and telecommand. They are based on a powerful turbo or low-density
parity check (LDPC) outer code and binary modulation formats that, for those schemes foreseen to be employed at the
lowest baud rates, may contain an unsuppressed carrier to help synchronization. In this paper, we face the problem of
carrier phase synchronization for these modulation and coding schemes.

I. INTRODUCTION

The need for turbo or iterative detection/synchronization and decoding is mainly due to the fact that, for the pecu-
liar decoding process and typical operative signal-to-noise ratio of turbo and low-density parity-check (LDPC) codes,
classical phase-tracking schemes may deliver, especially in the presence of a time-varying channel phase, a highly un-
reliable phase estimate or require a systematic use of pilot symbols to avoid tracking losses (see [1]–[8] and references
therein). These algorithms for iterative detection/synchronization and decoding can be classified according to the way
detection/synchronization is obtained.

A first family of algorithms can be applied to turbo codes and serially-concatenated convolutional codes but not
to LDPC codes (unless an LDPC code is used as outer code in a serial concatenation). These algorithms modify the
component decoders so that they can also compute an implicit (e.g., see [1], [2], [4], [9]) or explicit (e.g., see [7]–[9])
phase estimate. We have, in this case, joint detection/synchronization and decoding. These algorithms usually require
to work on an expanded trellis and the adoption of techniques for complexity reduction becomes mandatory. A differ-
ent approach, able to effectively reduce the computational complexity when the component encoders are rotationally
invariant, is adopted in [7]. This latter approach can be also extended to continuous phase modulations (CPMs) [8]
provided that the implicit rotational invariance of CPMs is not removed through a proper precoding [10], [11].

A second family is composed of algorithms that, on the contrary, leave the decoder unmodified and complement
it with a separate detector/synchronizer whose aim is to estimate and compensate for the carrier phase and frequency
uncertainties prior to decoding (e.g., see [5], [6], [12], [13]). Hence, they can be used for LDPC codes also. This
separate detector/synchronizer operates in soft-decision-directed (SDD) mode in the sense that it employs the soft
information provided by the decoder to refine the estimates at each iteration, using, to a larger extent, symbols with
highest reliability. In other words, a SDD estimator is a sort of hybrid non-data-aided/data-aided (NDA/DA) estimator
that starts in NDA mode and becomes DA as the iterations go ahead and the decoder provides reliable decisions.
Within this family, the algorithms exhibiting the best trade-off between performance and complexity are those described
in [5]. They are based on the factor graphs/sum-product algorithm (FG/SPA) [14] framework and employ a Bayesian
approach, i.e., the channel parameters are modeled as stochastic processes with known statistics. In [5] a FG is built that
includes both code constraints and channel statistics and in which channel parameters are explicitly represented. The
SPA is then used to implement the MAP symbol detection strategy. Since the channel parameters, which are continuous
random variables, are explicitly represented in the graph, the application of the SPA becomes impractical. To solve
this problem, the method of canonical distributions [15] is adopted. By specializing the approach of [15] to particular
channel phase statistics and canonical distributions, several algorithms for detection of LDPC or turbo codes in the
presence of a Wiener phase noise have been proposed in [5] and extended to the case of presence of an uncompensated
frequency offset in [12]. In particular, the algorithm with the lowest complexity describes the messages in the graph as
Tikhonov (also known as Von mises) probability density functions and is the best candidate for the implementation in
the receivers for DVB-S2 systems.

We consider here modulation and coding schemes used in the CCSDS (Consultative Committee for Space Data
Systems) standards for deep space telemetry and telecommand [10], [11]. Since we are looking for algorithms that
can be adopted for both turbo and LDPC codes, we consider algorithms from the second family. In particular, we
consider the application/extension of the algorithm in [5] based on the Tikhonov canonical distribution to this scenario.
A first modification will allow the algorithm to work in the presence of an unsuppressed carrier. We will then consider
the modulation and coding formats with suppressed carrier. The algorithm in [5] has been conceived to work in the
presence of distributed pilot symbols which allow to trigger the iterative detection/decoding process. These distributed
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pilot symbols, foreseen in many communication standards, are one of the possible techniques to be employed to solve
the phase ambiguity problems related to the angle of symmetry of the employed constellation. As mentioned, another
possible solution for these ambiguity problems is represented by the adoption of a rotationally invariant encoder.

Unfortunately, the CCSDS standards foresee neither the use of distributed pilot symbols nor the use of rotationally
invariant encoders but only the presence of a known preamble which, as mentioned, is insufficient to make the algorithm
in [5] work. We thus here propose a novel approach which entails only a minor complexity increase with respect to the
algorithm in [5].

The paper is organized as follows. In the next section we review the detection algorithm described in [5]. Its exten-
sions to the modulation formats in the CCSDS standards is addressed in Section III. Numerical results are presented in
Section IV whereas conclusions are drawn in Section V.

II. REVIEW OF THE ALGORITHM BASED ON THE TIKHONOV CANONICAL DISTRIBUTION

We consider a transmission system in which a sequence of M-ary code symbols c = {ck}
K−1
k=0 is transmitted from

epoch 0 to epoch K − 1. These code symbols are obtained from the encoding, by means of a code C, of a sequence
of information symbols a = {ak}. The encoding function mapping information sequences a into the codewords c will
be denoted by ηC. This function will also include possible pilot symbols inserted in the sequence c to avoid phase
ambiguity problems.

The sequence of code symbols is then linearly modulated and transmitted over the channel. Assuming Nyquist
transmitted pulses, matched filtering, phase variations slow enough so as no intersymbol interference arises, the
discrete-time baseband received signal is given by

rk = cke θk + wk (1)

where θk is an unknown stochastic and possibly time-varying phase and wk is a discrete-time complex additive white
Gaussian noise (AWGN) sample with each component of variance σ2 = N0. We will denote by r = {rk} the discrete-
time received sequence.

A common model for the phase noise process θ = {θk} is the random-walk (Wiener) model described by1

θk = θk−1 + ∆k (2)

where {∆k} is a real discrete-time white Gaussian process with mean zero and variance σ2
∆

, and θ0 is uniformly dis-
tributed in the interval [0, 2π). Hence, it follows that

p(θk |θk−1, θk−2, . . . , θ0) = p(θk |θk−1) = p∆(θk − θk−1) (3)

where we define p∆(ϕ) as the probability density function (pdf) of the increment ∆k mod 2π. The sequence of phase
increments {∆k} is supposed unknown to both transmitter and receiver and statistically independent of c and w = {wk}.

The derivation of the detection algorithms described in [5] starts from the joint distribution of symbols and unknown
parameters p(a, c, θ|r),2 and the corresponding FG. The SPA is then applied to this FG to compute the marginal pmfs
P(ak |r) which are required for the implementation of the MAP symbol detection algorithm

The joint probability distribution function of symbols and channel parameters can be expressed as

p(a, c, θ|r) ∝ P(a)P(c|a)p(θ)p(r|θ, c) = P(a)χ[c = ηC(a)]p(θ)p(r|θ, c)

= P(a)χ[c = ηC(a)]p(θ0)
K−1∏
k=0

p(rk |ck, θk)p(θk |θk−1)

∝ P(a)χ[c = ηC(a)]p(θ0)
K−1∏
k=0

fk(ck, θk)p(θk |θk−1) (4)

having defined

fk(ck, θk) = exp
{

1
σ2<[rkc∗ke− θk ] −

|ck |
2

2σ2

}
∝ exp

{
−

1
2σ2 |rk − cke− θk |2

}
(5)

whose corresponding FG is shown in Fig. 1.
The application of the SPA to this FG allows the exact (in the absence of cycles in the graph) or approximate (if

cycles are present) computation of the marginal a posteriori probabilities P(ak |r) [14]. Since the channel parameters,

1This model will be employed in the design of the algorithms. As shown in [5], the resulting algorithms will work well also in the presence of a
channel phase following different models.

2We use the term probability distribution function to denote a continuous pdf with some discrete probability masses. For a probability distribution
function we still use the symbol p(.).
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Fig. 1: Portion of the FG corresponding to (4).

which are continuous random variables, are explicitly represented in the graph, the application of the SPA becomes
impractical since it involves integral computations. A solution for this problem is suggested in [15] and consists of
the use of canonical distributions, i.e., the pdfs computed by the SPA are constrained to be in a certain “canonical”
family, that admits a compact parametric representation. This representation can be exact or, more often, can involve
some approximations. Hence, the SPA reduces to propagating and updating the parameters of the pdf rather than
the pdf itself. Beyond this general idea, several different algorithms can be obtained depending of the choice of the
canonical distribution family. These approximations of the SPA, albeit all derived from the same standard approach,
offer different complexity and performance. Therefore, finding good canonical distribution parameterizations suited to
the problem at hand is the key step in the algorithm design.

In the following, we concentrate on the message computation and exchange in the lower part of the graph since the
SPA applied to the FG in the upper box, corresponding to the code constraints, consists of the decoding algorithm whose
efficient implementation depends on the structure of the code and needs no details here. We stress that the messages
the decoder exchanges with the detector are represented by an estimate of the code symbol a posteriori probabilities
only. In other words, the detector operates without taking the code constraints into consideration. Omitting, for the
sake of notational simplicity, the explicit reference to the current iteration, we will denote by Pd(ck) the message from
variable node ck to factor node fk, and by Pu(ck) the message in the opposite direction (see Fig. 1).

With reference to the messages in Fig. 1, one obtains that the message pd(θk) from factor node fk to variable node
θk can be expressed as

pd(θk) ∝
∑

ck

Pd(ck) fk(ck, θk) . (6)

We also assume that in the lower part of the FG, a forward-backward node activation schedule is adopted. Therefore,
the messages p f (θk), from factor node p(θk |θk−1) to variable node θk, and pb(θk), from factor node p(θk+1|θk) to variable
node θk, can be recursively computed as follows:

p f (θk) ∝

∫ 2π

0
pd(θk−1)p f (θk−1)p(θk |θk−1) dθk−1 (7)

pb(θk) ∝

∫ 2π

0
pd(θk+1)pb(θk+1)p(θk+1|θk) dθk+1 (8)

with uniform pdfs as initial conditions. Finally, the message Pu(ck) from fk to ck is given by

Pu(ck) ∝
∫ 2π

0
p f (θk)pb(θk) fk(ck, θk) dθk . (9)

Different canonical distributions can now be adopted to approximately compute the messages in (7), (8), and (9),
leading to algorithms with different performance and complexity. The first one is based on a discretization of the
channel phase. This case corresponds to letting the canonical distribution be a weighted sum of impulses. The channel
phase θk is assumed to take on the following L values: {0, 2π/L, . . . , 2π(L− 1)/L}. In [1], the authors found that for M-
PSK signals, L = 8M values are sufficient to have no performance loss. Obviously, this approach becomes “optimal”
(in the sense that it approaches the performance of the exact SPA) for a sufficiently large number of discretization levels,
at the expense of an increasing computational complexity and will be considered here as an unfeasible performance
benchmark. In the numerical results, it will be denoted to as discretized-phase algorithm.
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The second canonical distribution we consider is a Tikhonov pdf [5]. Let us consider (6). If the messages Pd(ck)
were the exact probabilities of the code symbols, it would be

pd(θk) ∝
∑

ck

Pd(ck) fk(ck, θk) ∝ p(rk |θk) . (10)

We approximate p(rk |θk) which, as a function of rk is a Gaussian mixture, by the nearest Gaussian pdf in the sense
of Kullbach-Leibler (KL) divergence [5]. This yields the Gaussian pdf with mean E[rk |θk] and variance var(rk |θk) [5].
Hence, letting αk and βk be the first and second-order moments of ck, given by

αk =
∑

ck

ckPd(ck) , βk =
∑

ck

|ck |
2Pd(ck) (11)

we obtain3

p̃d(θk) '
1

π(2σ2 + βk − |αk |
2)

exp
{
−
|rk − αke θk |2

2σ2 + βk − |αk |
2

}
∝ exp

2
Re[rkα

∗
ke− θk ]

2σ2 + βk − |αk |
2

 . (12)

Substituting (12) in the forward recursion (7), we have

p̃ f (θk) '
∫ 2π

0
exp

2
Re[rk−1α

∗
k−1e− θk−1 ]

2σ2 + βk−1 − |αk−1|
2

 p̃ f (θk−1)p(θk |θk−1) dθk−1 . (13)

When the channel phase is slowly-varying, i.e., for σ∆ → 0, we have p(θk |θk−1) = δ(θk − θk−1). In this case, the
solution of the recursion given by (13) with uniform pdfs as initial conditions is a sequence of Tikhonov pdfs, i.e.,

p̃ f (θk) = t(a f ,k; θk) (14)

where

t (z; θ) =
e<[ze− θ]

2πI0(|z|)
(15)

is the Tikhonov pdf with complex parameter z, and I0(·) is the zero-th order modified Bessel function of the first kind.
Parameter a f ,k can be recursively computed as

a f ,k = a f ,k−1 + 2
rk−1α

∗
k−1

2σ2 + βk−1 − |αk−1|
2 (16)

with the initial condition a f ,0 = 0. Similarly, the solution of the backward recursion (8) under the above approximations
is the sequence of Tikhonov pdfs

p̃b(θk) = t(ab,k; θk) (17)

where ab,k can be recursively computed as

ab,k = ab,k+1 + 2
rk+1α

∗
k+1

2σ2 + βk+1 − |αk+1|
2 (18)

with the initial condition ab,K−1 = 0. From (14), (17) and (9), we finally obtain

P̃u(ck) ∝ exp
{
−
|ck |

2

2σ2

}
I0

(∣∣∣∣∣∣a f ,k + ab,k +
rkc∗k
σ2

∣∣∣∣∣∣
)
. (19)

When the phase varies more rapidly, so that the approximation p(θk |θk−1) ' δ(θk − θk−1) is no longer valid, it is
shown in [5] that the distributions p f (θk) and pb(θk) are still approximately given in the form (14) and (17), where now
the coefficients a f ,k and ab,k are updated by properly modified forward and backward recursions [5].

This algorithm, can be summarized as follows. Given the code symbol a posteriori probabilities provided by the
decoder, the first and second-order moments of symbols {ck} are first computed using (11). Two complex coefficients,
one for each recursion, are then updated and used to compute the code symbol a posteriori probabilities to be passed to
the decoder.

This algorithm, based on the Tikhonov canonical distribution and denoted to as Tikhonov algorithm in the numerical
results, cannot work in the absence of distributed pilot symbols. This is due to the fact that, in the absence of a priori
information on (some) code symbols, the detection algorithm, which does not exploit the code constraints, cannot
bootstrap since it would result αk = 0, for all k. In other words, approximating pd(θk) with p̃d(θk) in (12) makes the
algorithm unable to work in the absence of distributed pilots.

3In the following, we will denote by p̃d(θk), p̃ f (θk), p̃b(θk), and P̃u(ck) the new messages (6), (7), (8), (9) resulting from the adopted approxima-
tions. Note that p̃d(θk), seen as a function of θk and properly normalized, is a Tikhonov pdf.
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III. APPLICATION TO THE CCSDS SCENARIO

A. Modulation formats with unsuppressed carrier

Without loss of generality, we consider two cases of binary modulations with an unsuppressed carrier. In the first case,
a binary phase-shift keying (BPSK) with rectangular pulse of duration T , where T is the symbol time, is transmitted
along with an unsuppressed carrier in quadrature. In the second case, a BPSK with Manchester encoding is transmitted
along with an unsuppressed carrier in phase. In both case, we will denote by γ the ratio between the amplitude of the
unsuppressed carrier and the amplitude of the information-bearing signal. In the first case, symbol-time samples after
matched filtering can be expressed as

rk = (ck + γ)e θk + wk . (20)

In the second case, after a bank of two filters, the first one matched to the shaping pulse of the BPSK signal and the
second one matched to a rectangular pulse of duration T , we obtain the following samples

r(1)
k = cke θk + w(1)

k (21)

r(2)
k = γe θk + w(2)

k (22)

where {w(1)
k } and {w(2)

k } are independent discrete-time complex AWGN processes.
The extension of the Tikhonov algorithm to these two unsuppressed-carrier modulation formats is trivial. In fact, in

the case of the received samples (20), it is sufficient to make the following substitutions: (i) in (16), substitute rk−1α
∗
k−1

with rk−1(αk−1 − γ), (ii) in (18), substitute rk+1α
∗
k+1 with rk+1(αk+1 − γ), and finally (iii) in (19) substitute rkc∗k with

rk(ck − γ). Obviously, similar substitutions have to be made in the properly modified forward and backward recursions
to be adopted in case of time-varying phase noise [5].

In the case of the received samples (21) and (22), (16), (18), and (19) become

a f ,k = a f ,k−1 + 2
r(1)

k−1αk−1

2σ2 + βk−1 − α
2
k−1

+
r(2)

k−1γ

σ2 (23)

ab,k = ab,k+1 + 2
r(1)

k+1αk+1

2σ2 + βk+1 − αk+1
+

r(2)
k+1γ

σ2 (24)

P̃u(ck) ∝ exp
{
−
|ck |

2

2σ2

}
I0


∣∣∣∣∣∣∣a f ,k + ab,k +

r(1)
k ck

σ2 +
r(2)

k γ

σ2

∣∣∣∣∣∣∣
 . (25)

B. Modulation formats with suppressed carrier

As mentioned, we approximated pd(θk) in (6) with p̃d(θk) which is a Tikhonov pdf. This aproximation makes the
Tikhonov algorithm unable to work in the absence of distributed pilots. We will now address a possible technique to
solve this problem with reference to the case of a BPSK modulation. The system model is thus that described by (1)
and (2), where symbols {ck} are binary and belong to the alphabet {±1}. The extension to other modulation formats
of the standard, such as the offset quaternary phase-shift keying (OQPSK) or the Gaussian minimum-shift keying is
straightforward. In this latter case, the use of the Laurent decomposition allows to approximate the GMSK signal as a
linearly modulated signal [8].

The actual message pd(θk) in (6), is a mixture of Tikhonov pdfs due the phase ambiguity of the constellation. As
an example, in this case of a binary modulation, we have a mixture of two Tikhonov pdfs. For this reason, with the aim
of improving the Tikhonov algorithm, Shayovitz and Raphaeli in [16] avoided any approximation on pd(θk), whereas
for messages p̃ f (θk) and p̃b(θk) they adopted a canonical distribution made of a mixture of a given number of Tikhonov
pdfs. Substituting in (7) and (8), at each step of the forward and the backward recursion a double (in this binary case)
number of Tikhonov pdfs is obtained. This number is then reduced to keep a reasonable complexity by selecting and
melting the mixture components more similar (in the sense of the KL divergence) to each other.

We adopt here a different approach based on expectation propagation (EP) [17], [18]. Let us consider the lower
part of the graph in Fig. 1, i.e., without considering the code constraints, but assuming that the probabilities {Pd(ck)}
are still available as a-priori information. This part of the graph does not contain cycles. When deriving the Tikhonov
algorithm, the only introduced approximation is that of pdf pd(θk) in (6) with a Tikhonov pdf. After this approximation,
no further approximation is required, at least when σ∆ → 0, and all remaining messages in the graph result to belong
to the same family of Tikhonov pdfs. In addition, a natural forward-backward schedule results and, being the graph
without cycles, the SPA has a natural termination. However, the introduced approximation is ad hoc, and no optimality,
in any sense, can be claimed from this approach.

Instead of approximating in advance pd(θk) with a Tikhonov pdf by using an ad-hoc approximation, EP constrains
in advance all messages to belong to an exponential family because it is closed under product [17], [18]. This family
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includes Gaussian and Tikhonov pdfs as special cases and here we obviously adopt the latter pdfs. In particular, we
still assume that p̃ f (θk) = t(a f ,k; θk) and p̃b(θk) = t(ab,k; θk). Let us now see how to approximate, according to EP, the
pdf pd(θk) with a Tikhonov pdf. From Fig. 1, it can be seen that the a-posteriori pdf of θk is given by

p(θk |r) = p f (θk)pd(θk)pb(θk) ' p̃ f (θk)pd(θk) p̃b(θk) . (26)

According to EP, we approximate this a-posteriori pdf to the closest Tikhonov pdf t(vk; θk) in the KL divergence sense,
i.e., with parameter vk given by

vk = argmin
x∈C

KL
(
p̃ f (θk)pd(θk) p̃b(θk)||t(x; θk)

)
(27)

where KL(p(x)||q(x)) is the KL divergence defined as

KL(p||q) =

∫
p(x) log2

p(x)
q(x)

dx .

The product p̃ f (θk)pd(θk) p̃b(θk) is a mixture of two Tikhonov pdfs and reads (after straightforward algebraic manipu-
lations)

p̃ f (θk)pd(θk)p̃b(θk) =
∑

ck∈{±1}

Pd(ck)e−
|ck |

2

2σ2 I0

(∣∣∣∣∣a f ,k + ab,k +
rkck∗

σ2

∣∣∣∣∣) t
(
a f ,k + ab,k +

rkck∗

σ2 ; θk

)
. (28)

It can be easily shown that the KL divergence (27) is minimized when [17], [18]

I1(|vk |)
I0(|vk |)

exp
{
 arg(vk)

}
=

∑
ck

Pd(ck)e−
|ck |

2

2σ2 I1

(∣∣∣∣∣a f ,k + ab,k +
rkck∗

σ2

∣∣∣∣∣) exp
{
 arg(a f ,k + ab,k +

rkck∗

σ2 )
}
, (29)

where I1(·) is the first order modified Bessel function of the first kind. Eqn. (29) cannot be solved in closed form.
However, by adopting the approximation I1(x)/I0(x) ' e−0.5/x (which is good for x � 0 [19]), we have

vk '
−0.5

log(|mk |)
e  arg(mk)

where

mk =
∑

ck

Pd(ck) exp

−|ck |
2

2σ2 −
1

2
∣∣∣a f ,k + ab,k + rkck∗

σ2

∣∣∣
 I0

(∣∣∣∣∣a f ,k + ab,k +
rkck∗

σ2

∣∣∣∣∣) exp
{
 arg(a f ,k + ab,k +

rkck∗

σ2 )
}

(30)

Hence
p̃d(θk) ∝

t(vk; θk)
p̃ f (θk) p̃b(θk)

∝ t(zk; θk)

is the approximation we are looking for, where

zk = vk − a f ,k − ab,k . (31)

This latter equation, provide the best Tikhonov approximation for pd(θk) according to EP. Unfortunately, it involves
a f ,k and ab,k, whereas in the original algorithm, described in Section II, it does not. We will solve this problem
later. Assuming that zk is available, the algorithm then proceeds as in Section II in the sense that a f ,k and ab,k can be
recursively computed as

a f ,k = a f ,k−1 + zk−1 (32)
ab,k = ab,k+1 + zk+1 (33)

and (19) still holds. Similarly, when the assumption σ∆ → 0 is no longer valid, the recursive equations (32) and (33)
have to be properly modified as described in [5].

As mentioned, the adoption of the EP technique introduces a dependence of zk on a f ,k and ab,k. This is equivalent
to have a computation over a FG with cycles. An approximated iterative computation thus results and a proper compu-
tation schedule has to be defined. This is typical of the EP method [17], [18]. We consider the following schedule that
works well in the absence of distributed pilots. Once the turbo or LDPC decoder makes available an updated version
of the probabilities {Pd(ck)}, the following steps are executed:

1. zk, a f ,k, and ab,k are set to zero ∀k = 0, 1, . . . ,K − 1;

2. update zk−1 by using (31) and then a f ,k by using (32), ∀k = 1, 2, . . . ,K − 1;

3. update zk+1 by using (31) and then ab,k by using (32), ∀k = K − 2, . . . , 1, 0;

4. compute P̃u(ck) by using (19), ∀k = 1, 2, . . . ,K − 1 .
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Fig. 2: FER preformance for a NRZ-L modulation
transmitted at 4 Baud over the UHF bandwidth.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4

F
E

R

E
b
/N0 [dB]

Perfect phase sync.
disc. phase, 32 levels
Tikhonov
Tikhonov EP
PLL DA+DD
PLL DA+NDA
Algorithm in [16]

Fig. 3: FER performance for a BPSK modula-
tion with suppressed carrier in the absence of dis-
tributed pilots.

Before executing step 4 and passing the updated symbol probabilities to the decoder, steps 2 and 3 could be executed
again, although this is not done in our simulation results since, in any case, steps 1-4 are executed again after a few
iterations of the turbo or LDPC code. However, a better performance can be obtained if, each time the probabilities
{Pd(ck)} are made available by the decoder, we execute step 2 and then step 3 or viceversa, alternatively.

IV. NUMERICAL RESULTS

We now consider the application of the described algorithms to the modulation and coding formats of the CCSDS
standards [10], [11]. The employed code is a turbo code with rate 1/6 and codeword length of 21,432 bits [10], [11].
In all cases, a maximum of 5 global iterations are allowed between detector and decoder, each with 10 inner iterations
of the turbo decoder, for a total number of 50 decoder iterations. In the case of classical, non iterative, synchronization
schemes whose performance is also shown for comparison, 50 iterations were performed directly at the decoder.

Fig. 2 shows the frame error ratio (FER) as a function of Eb/N0, being Eb the energy per information bit, for a
non-return-to-zero-level (NRZ-L) modulation transmitted at 4 Baud over the UHF bandwidth (2110–2120 MHz and
2290–2300 MHz) and with carrier suppression of 10 dB. The phase noise mask is that described in [11] . The figure
shows the perfomance of the Tikhonov algorithm (extended to the case of presence of an unsuppressed carrier), of
the discretized-phase algorithm with L = 32, and of a classical syncronization algorithm based on a phase-locked
loop (PLL) whose phase error takes into account the presence of the unsuppressed carrier, possibly improved by also
using the non-data-aided (NDA) Viterbi&Viterbi phase error [20]. The performance with perfect knowledge of the
phase (perfect phase synchronization) is also shown for comparison. It can be seen that the Tikhonov algorithm has a
performance very close to the optimal algorithm and outperforms classical synchronization schemes based on a PLL
with optimized step-size.

Fig. 3 shows the FER for a BPSK modulation with suppressed carrier and with known symbols concentrated in a
preamble and a postamble of 192 symbols each. No distributed pilots are inserted along the frame and the transmission
is at 50 kBaud over the SHF bandwidth (8025 MHz - 8500 MHz ). In Fig. 3, we report the performance of the standard
Tikhonov algorithm in [5] and that of the Tikhonov EP algorithm derived in the previous section. For compararison
the figure also shows the performance of the discretized-phase algorithm, of the algorithm proposed in [16], and of a
classical synchronization scheme based on a PLL operating in DA mode over the preamble, and NDA or decision-direct
(DD) mode over the coded symbols.

It can be seen that the Tikhonov algorithm does not work at all. As already mentioned, this is due to the fact that,
at the first iteration, αk = 0 over coded symbols and therefore these symbols do not help synchronization. Hence, with
the standard Tikhonov algorithm, after the preamble, the reliability of the phase estimation is high. However no further
information is obtained after that, and the reliability decreases till the phase pdfs become flat in [0, 2π), especially
at the middle of the codeword, making the synchronization a hard task. The Tikhonov EP algorithm, instead, has a
performance close to that of the optimal algorithm and outperforms also the algorithm in [16].
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V. CONCLUSIONS

We considered the problem of phase synchronization in the absence of pilot symbols for low signal-to-noise ratio
applications. In particular, we addressed the modulation and coding formats of CCSDS standards. The extension of
the algorithm in [5] to the case of modulation with an unsuppressed carrier has shown to be trivial. On the other
hand, for the modulation formats with suppressed carrier, since pilot symbols are not foreseen in the standard, proper
extensions/modifications have been introduced. The proposed schemes, besides the excellent performance, have a very
low complexity.

REFERENCES

[1] M. Peleg, S. Shamai (Shitz), and S. Galán, “Iterative decoding for coded noncoherent MPSK communications
over phase-noisy AWGN channel,” IEE Proc. Commun., vol. 147, pp. 87–95, Apr. 2000.

[2] G. Colavolpe, G. Ferrari, and R. Raheli, “Noncoherent iterative (turbo) decoding,” IEEE Trans. Commun., vol. 48,
pp. 1488–1498, Sept. 2000.

[3] A. Anastasopoulos and K. M. Chugg, “Adaptive iterative detection for phase tracking in turbo coded systems,”
IEEE Trans. Commun., vol. 49, pp. 2135–2144, Dec. 2001.

[4] G. Ferrari, G. Colavolpe, and R. Raheli, Detection Algorithms for Wireless Communications. John Wiley & Sons,
2004.

[5] G. Colavolpe, A. Barbieri, and G. Caire, “Algorithms for iterative decoding in the presence of strong phase noise,”
IEEE J. Select. Areas Commun., vol. 23, pp. 1748–1757, Sept. 2005.

[6] G. Colavolpe, “On LDPC codes over channels with memory,” IEEE Trans. Wireless Commun., vol. 5, pp. 1757–
1766, July 2006.

[7] A. Barbieri and G. Colavolpe, “Soft-output decoding of rotationally invariant codes over channels with phase
noise,” IEEE Trans. Commun., vol. 55, pp. 2125–2133, Nov. 2007.

[8] A. Barbieri and G. Colavolpe, “Simplified soft-output detection of CPM signals over coherent and phase noise
channels,” IEEE Trans. Wireless Commun., vol. 6, pp. 2486–2496, July 2007.

[9] A. Anastasopoulos, K. M. Chugg, G. Colavolpe, G. Ferrari, and R. Raheli, “Iterative detection for channels with
memory,” Proceedings of the IEEE, Special issue on Turbo Techniques: Algorithms & Applications, vol. 95,
pp. 1272–1294, June 2006.

[10] CCSDS 131.0-B-2, TM synchronization and channel coding, Issue 2, August 2011. Available at
http://public.ccsds.org/publications/BlueBooks.aspx.

[11] CCSDS 401.0-B, Radio frequency and modulation systems, Part 1, July 2011. Available at
http://public.ccsds.org/publications/BlueBooks.aspx.

[12] A. Barbieri, G. Colavolpe, and G. Caire, “Joint iterative detection and decoding in the presence of phase noise
and frequency offset,” IEEE Trans. Commun., vol. 55, pp. 171–179, Jan. 2007.

[13] A. Barbieri and G. Colavolpe, “On pilot-symbol-assisted carrier synchronization for DVB-S2 systems,” IEEE
Trans. Broadcast., vol. 53, pp. 685–692, Sept. 2007.

[14] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Trans. In-
form. Theory, vol. 47, pp. 498–519, Feb. 2001.

[15] A. P. Worthen and W. E. Stark, “Unified design of iterative receivers using factor graphs,” IEEE Trans. In-
form. Theory, vol. 47, pp. 843–849, Feb. 2001.

[16] S. Shayovitz and D. Raphaeli, “Multiple hypotheses iterative decoding of LDPC in the presence of strong phase
noise,” in Proc. of the 27th IEEE Convention of Electrical and Electronics Engineers (IEEEI), (Israel), 2012.

[17] T. P. Minka, “Expectation propagation for approximate Bayesian inference,” in Proc. Conf. on Uncertainty in
Artificial Intelligence (UAI), Aug. 2001.

[18] T. P. Minka, “Expectation propagation for approximate Bayesian inference,” tech. rep., Microsoft Research Cam-
bridge, 2005. MSR-TR-2005-173 (2005).

[19] M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions. Dover, 1972.

[20] A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst
digital transmission,” IEEE Trans. Inform. Theory, vol. 29, pp. 543–551, July 1983.


