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Abstract—We consider continuous phase modulations %((:PMS completion to produce the a posteriori probabilities of the
and their transmission over a typical satellite channel affected information symbols. Then, by using the canonical distribution

hase noise. By modeling the phase noise as a Wiener procesgnproach [13] we develop a couple of practical schemes to

byé)
and adopting a simplified representation of anM-ary CPM signal . . :
based on the principal pulses of its Laurent decomposition, we implement the forward-backward estimator. The resulting al-

derive the MAP symbol detection strategy. Since it is not possible gorithms obviously work in a joint demodulation/phase track-
to derive the exact detection rule by means of a probabilistic ing fashion, do not require the insertion of pilot symbols, and

reasoning, the framework of factor graﬁhs (FGs) and the sum- may be used as SISO blocks for iterative detection/decoding
product algorithm is used. By pursuing the principal approach to in concatenated schemes.

manage continuous random variable in a FG, i.e., the canonical . . . .
distribution approach, two algorithms are derived which do not . 1he remainder of this paper is organized as follows. In

require the presence of known (pilot) symbols, thanks to the Section Il we provide the signal model and briefly review the
intrinsic differential encoder embedded in the CPM modulator.  Laurent decomposition. By means of the FG/SPA framework,

the exact MAP symbol detection strategy is derived in Sec-
. INTRODUCTION tion Ill. The practical implementation of this exact strategy is
Continuous phase modulations (CPMs) form a class dfscussed in Section IV, and a couple of algorithms proposed.
signaling formats that are efficient in power and bandwidth [1The relevant performance, is assessed in Section V and finally,
Moreover, the recursive nature of the CPM modulator makesme conclusions are drawn in Section VI.
ittheerg][i\%tl;a([:%v%? serially concatenated schemes to be decodeql_ SIGNAL MODEL AND LAURENT DECOMPOSITION
Several decomposition approaches for CPM signals werelThe complex envelope of a CPM signal has the form [1]
presented in the literature. One of the most appealing, from

A . . A iy N-—1
a detection point of view, is the Laurent decomposition [4], 2Fg .
[5] in which a CPM signal is expanded as a sum of linearly ~ 5(t; @) =1/ = exp{j2mh > ang(t—nT)} (1)
modulated components. This decomposition has been used n=0

in [6] to simplify the receiver front-end and the numbefy which Eg is the energy per information symbal} is

of trellis states in maximum a posteriori (MARjequence the symbol interval,h = r/p is the modulation indexr(

detection based on the Viterbi algorithm [6]. More recentlyng ) are relatively prime integers), the information symbols

by using factor graphs (FGs) and the sum-product algorithia, 1 are assumed independent and take on values inhe

(SPA) [7], this result has been also extended to M##bol 5 alphabet{+1,+3,..., +(M — 1)}, a = {a,} denotes

detection schemes suitable to be used in coherent iteratmé information ’Seq(Jenée, and finaﬂ?y is the number of

detection/decoding [8]. __transmitted information symbols. The functiayit) is the
Although several soft-input soft-output (SISO) detectioghase-smoothing responsad its derivative is thérequency

algorithms suitable for iterative detection/decoding have begpse assumed of duratiof 7.

recently designed for linear modulations transmitted over gased on Laurent representation, the complex envelope of

channels affected by a time-varying phase (see for examgleopm siagnal may be exactly expressed as [5
[9]-[11] and references therein), less attention has been de- g y y &xp 5]

voted to CPM signals. An exception is represented by [12] Qlos2 M(M—1)-1

where, based on the approach in [10], joint detection and phase ¢ - t—nT 2
synchronization is performed by working on the trellis of the s(t,a) Z Zak’"pk( nT) @
CPM signal or on an expanded trellis and usingltiple phase ) ) o
estimators in a per-survivor fashion. in which M is assumed to be a power of two to simplify the

In this paper, we adopt a Bayesian approach, i.e., thgtation, 2 9L-1 and the expressions of pulsésy, ()}
channel phase is modeled as a stochastic process with kngyg symbols{ay .} as a function of the information symbol
statistics. In particular, we model the phase noise as a W'e%%huence{an} may be found in [5] (see this reference for the
process. By using the FG/SPA framework, we derive theneral case aif non-power of two). By truncating the sum-
exact MAP sym?ol detection sltrategy unfd(re]r the S|m;|)In‘|eI ation in (2) considering only the firgt’ < Q'2 M (A1 — 1)
representation of a CPM signal as sum of the principal pu : e :
of its Laurent decompositiohWe analyze the properties Ofﬁ?ms, we obtain an approximation eff, cv):

k=0 n

this detection strategy finding that it can be implemented K-1
by using asingle forward-backward estimator of the phase s(t,a) ~ Z Zak nPr(t —nT). 3)
probability density function, followed by a symbol-by-symbol Pardal

1As shown in [8], a coherent receiver designed according to this simplifidd0St Of the signal power is concentrated in the fikgt— 1
representation entails only a minor performance degradation. components, i.e., those associated with the pylsge&)} with



0 <k < M — 2, which are denoted ggrincipal components

[5]. As a consequence, a value &f = M — 1 may be used

in (3) to attain a very good tradeoff between approximation P P
quality and number of signal components and in fact, in [6] U(Q"W ¢ (an)
and [8] it was shown that MARequencer symboldetection

receivers only based on principal pulses practically attain the Pfn(pn) Pon+1(Hn+1)
performance of the corresponding optimal detector. A nice — -
feature of the principal components is that their symbols =~ 7\ #» L] Hn+ T

{ar.n )1, may be expressed as a function of the information
symbola,, and of symboky ,_;. As an example, symbal ,,
can be recursively computed asq5] Fig. 1. Factor graph for the considered problem.

p(ﬂnJrl ‘Nny an)Gn(an: /1/71)

_ Jjmhany
@0n = G0,n-1€ ' ™) We now derive the MARsymboldetection strategy. To this

Symbols {ag,,} take onp values [5]. They belong to the purpose we first compute the joint distributtop(cx, a, 8|x)
alphabetA, = {e/2™"™ m =0,1,...,p—1} whenn is odd, wherex = {x,}, with x,, = {xkyn}ﬁiff, a = {a,}, with
or to the alphabefd, = {e/™e/*™™ m = 0,1,....,p =1} a, = {a.,}}2 and@ = {6,}. Its expression is
whenn is even®
[1l. MAP SymBoL DETECTION p(a,a, 0|x) x P(a)P(ala)p() HGn(Ozn,ao,n_l,@n)

We now consider the transmission of a CPM signal over a n
typical satellite channel affected by phase noise plus the ad- (8)
ditive white Gaussian noise (AWGN). The complex envelop&nere [6], [8F
of the received signal can be modeled as

M—2
r(t) = s(t, )’ + w(t) (5) Gulan,a0m-1,0,) =exp {;Re e 0n Z xk’na};’nl
0

wherew(t) is a complex-valued white Gaussian noise process k=0 9)
with independent components, each with two-sided power ~ /
spectral densityN,, and 6(t) is the phase noise introduced@Nd Symboloc has been used to denote an approximate
by the channel. We model the phase nofge) as a time- proportionality relationship. The approximation here is related
continuous Wiener process with incremental variance overt%llthe fact th?t v;/]e a%re conﬁldermg the principal c%mponents
signaling interval equal te2 . The assumption on the phas@Nly: Ve can further factor the teri(a), P(alex), andp(6)

noise model will be relaxed in the numerical results. We aldg (8) @s
assume that the channel ph#&ge) is slowly varying such that

. . . N-1
it can be considered constant over the duration of the pulses
{pr(t)}. In other words we assume that Pa) = [] P(aw) (10)
n=0
“+o00
Hpr(t —nT)e 0 gt N
[m T( )pk( " )6 P(a\a) = P(ao’,l) H I(ao,n,ao,n,l,an) (11)
) +oo ) n=0
= e J0n / r(t)pr(t — nT)ej[‘g"’g(t)] dt N-1
s | p8) = po) [ p(Onl0n-1) (12)
~ ¢ 0 / r(t)pr(t —nT)dt = e %2, (6) n=1

) ] whereI(ag,n, ao,n—1, ) IS an indicator function, equal to 1
having defined),, = 0(nT) and ., = r(t) @ pr(—t)|i=n7, if ov,, and the pseudo-symbais ,,—1 anda,,, respect the con-
where® denotes “convolution”. Hence, under this hypothesisgraint (4), and to zero otherwise, ap@,,|0,,_,) is a Gaussian
the output, sampled at the symbol rate, of a bank of filtefgt in 9, with meand,,; and variancer . In the following,
matched to the pulse;,(t)} is a set of sufficient statistics f_orWF will denote a Gaussian pdf in the variahle with mean
this detection problem (see also [6]). Since most of the signaking variance?, asg(n, p%; z). Substituting (10), (11), and
power is concentrated in the principal components, we us 1) into (8), clustering [7] the variable, and ag 1, i.€.,
simplified set represented by the output of a bank of filte fining tn, = (ao.n_1,0y), we obtain the FG in Fig. 1, where

matched to the corresponding pulss: (t)};7,*. From (6), we definedp(jun 4+ itn, atn) = p(0n11/0n) (a0, G0 01, tn)-
only the samples of(t) at discrete-timen7" are significant. Since this FG does not contain cycles, the application fo it of
These samples satisfy the discrete-time Wiener model:  the SPA with anon-iterativeforward-backward schedule pro-
_ duces the exact a posteriori probabilit®&x,, |x) necessary to
Oni1 = 0n + Ay 7 ° ' .

_ ) ) o implement the MAPsymboldetection strategy. In the figure,
where {A, } are real independent and identically distributedie definedP,(c,,) as the extrinsic a posteriori probability
Gaussian random variables with zero mean and standafda,,, i.e., P,(o,) = P(a,|x)/P(ay). With reference to
deviationoa,* and#, is uniformly distributed in[0, 2r). the messages in the figure, the resulting forward—backward

algorithm is characterized by the following recursions and

2Since in the next section the transmission over a channel affected by phase
noise will be considered, we may assume that the initial syralol ; is
unknown to the receiver due to the initial channel phase uncertainty. 5We still use the symbai(.) to denote a continuous pdf with some discrete
SWhenr is even,A, and.A. coincide. probability masses.
4Note that, since the channel phase is defined mofialothe probability ~ 6Due to the above mentioned property of the principal componésis,
density function (pdfip(6,,+-1|0,) can be approximated as Gaussian only ifs a function ofay, ao,n—1, andé, only. We omitted the dependence on
oA K 2. {zk,n} since these samples are known to the receiver.



completion: distributions i.e., the pdfs; ,,(6,,) andpy »(6,,) computed by
the algorithm are constrained to be in a certain “canonical”
- 0= Pla, e AGom_1, 60, family, characterized by some parameterization. Hence, the
Pf+1(00.n bn+1) Z (o )/pf’ (@0.n-1, 0n) forward and backward recursions reduce to propagating and
updating the parameters of the pdf rather than the pdf itself.

an

-G (0, @0,n—1,00)9(0n, 0A; Oni1)dby, (13) " In the next section, two low-complexity algorithms based on
Do (0.1, 0n) = ZP(Om)Gn(Oén, 0.1, 07) this approach will be described.
an IV. Low-COMPLEXITY ALGORITHMS

A. First Algorithm

A very straightforward solution to implement (19) and (20)
5 is obtained by discretizing the channel phase [9], [11]. In
Pu(om) = Z //Pf.,n(ao,n—h9n)pb,n+1(ao,m9n+1) this way, the pdfsi; ., (6,) and py .. (6,) become probability
ao,n " mass functions (pmfs) and the integrals in (19), (20), and (21)
. 2. become summations. When the numterof discretization
Cn(an; 40,01, 00)9(0n 08 On1)d0ndOn 1 (A5) oiac'is large enough, the resulting algorithm becomes optimal
where in (13) and (15)i9,,_1 = agne ™, whereas in (in the sense that its performance approaches that of the exact
(14) & n = ao.n_1¢/™ and with the following initial con- algorithm)” Hence, it may be used to obtain a performance
ditions- pfo(ab 1, 600) _’ 1/(p27) and py n (ao.n—1,0xn) = benchmark and will be denoted to as “discretized-phase algo-

: /pb,7z+1 (ELO,na 0n+1)g(0n7 UQA; 07L+1)d97L+1 (14)

1/(p2m). rithm” (dp-algorithnj.
A pr_oof of the following properties is omitted for a lack ofg. second Algorithm
E’?gggﬁy 1: for eacht = 0,...,p—1 By observing that the Tikhonov distribution ensures a very

interesting performance with a low complexity when used as a

(@0 1672 0,) = prnl(ao n_1,0n + 27hl 16) canonical distribution in detection algorithms for phase noise
Pran(@on—1 jonhe ) = Pin(d0n ) (18) channels [11], pdf$y ,(6,) andp, ,(6,) are constrained to
Pon(@0,n-16"""",05) = pon(aon—1,0n +21he)  (17) have the following expressions

Property 2: The extrinsic information in (15) is given by the p—1 o
sum ofp terms (one for each value af ,). All these terms 5e (0 _ (m)y 9 _ T 22
assume the same value, i.e., they do not depend,on for Pfn(0h) Z()qf*" U o (22)
each given,,. ’”_—1
From the first property it follows that it is not neces- _ P (m) o
sary to evaluate and store all pdfs;.,(ao.._1,6,) and Pon(On) = Z Ty | 20300 — —m (23)
Pb,n(G0,n-1,0) for different values ol ,,—1. Defining m=0 p
_ { 1 n odd (18) where, for each time index, {q}":;),m =0,1,...,p— 1}
an = T m ’ .
/™ n even ({qé’n), m=0,1,...,p—1}) andzy, (2,) are, respectively,

p real coefficients and one complex coefficient, ard; 6) is

itis sufficient to evaluatgy () = psn(@on-1 = an-1,0n) 4 @ Tikhonov distribution with complex parameterdefined as

and py ., (0,) = pon(@on—1 = Gn-1,0,). From the secon

property, it follows that only one term in (15) needs to be Re[ze~7°]
evaluated. The MAP symbol detection strategy can therefore t(z;0) = e (24)
be simplified as follows: 27lo(|2])
B B B Io(z) being the zero-th order modified Bessel function of the
Brint1(Oni1) = D Plan) /pfv”(e" = 2mhm) first kind. Note thaty% " ¢ = 1 in order to obtain pdfs.
_ Of;ﬂha 9 Three approximations are now introduced in order to derive
‘G (o, ane ", 0n)9(0n, oA Ot )dbr, (19)  a low complexity detection algorithh:
= _ = i. the convolution of a Tikhonov and a Gaussian pdf is still a
Po.n (0n) ;P(a")G"(a"’an_l’en) Tikhonov pdf, with a modified complex parameter [11], i.e.,
z
'/ﬁb,n+1(9n+1 +27h7,)9(0n, 04 0p41)dbn i1 (20) /t(z; x)g(x, p°sy)de ~ t <1+p2|z|’y> (25)
P, (ay) o //ﬁfﬂ,,(on — 270y P 1 (Ot 1) ii. since, for large argument¥;(z) ~ ¢*, we approximate
: e[ze 79 z
G (s G0 0,) (0, 0% 01 )d0n O 41 (21) Rl o~ amellt(2; 0) (26)
wherey,, = (a,+1)/2, if nis odd, andy, = (a,—1)/2,if n iii. let z be a complex numbefu,,,m = 0,1,...,p — 1}

is even, and with the following initial conditiongi (6,) = & Set of complex numbers, af@,,,m = 0,1,...,p —1} a
1/27 andp, v (f) = 1/27. Hence, we have a singie forward-Set of real numbers such thag , ¢,, = 1, then the following
backward estimator of the phase probability density functigiPProximation holds, especially whe is sufficiently larger
and a final completion. _ _

This exact MAP symbol detection strategy involves inte: ‘As a rule of thumb (confirmed by the results in [9]), the number of
gration and computation of continuous pdfs, and it is ndfSretizaton levels must be at leagt = &p in order to avoid any
suited for direct implementation. A solution for this problem sa jystification of these approximations is represented by the excellent
is suggested in [13] and consists of the usecafonical performance of the resulting algorithm and by its very low complexity.



than each|u,,| or when there is an such that¢gz > whered, represents the Kronecker delta.
Gm, Ym # T Similarly, it is also possible to find the backward recursive
Com Com equations. Due to the lack of space, we report here only the
Z Gt (zeJTm + Uy 9) ~ Z Gt (weJTm; 9) (27) final expressions

) (Chryn) . Zomirty oI B )
g 2T 4 n b,n+1TIn
wherew =z + %, qoue7» ¢ o st = Zp(a")qb,n—:’ly e
In order to illustrate the derivation of the proposed al- o
gorithm, we consider the case of a binary modulation, i.e., o

M = 2, and henceK = 1, although the generalization o (i), Fhoprtyne TP am,
to the non-binary case is straightforward from a conceptual 0™ = “bmn+1 + Yn ZS € ¢33
viewpoint. In this case !

7

@)
K—1 o _ s’
- Z Thnlh ., = Lx ag (28) T PO (34
NO Nk n NO 0,n 0,n
k=0 wherezj ., = ozt — and coefficientss*) have been

and we definey, = % We now derive the reduced-introduced to simpﬁfy the notation (they do not need to be

complexity forward recursion. Substituting (9) in (19), assungtored, since they are not involved in the completion stage).
ing thatp;,,—1(f,_1) has the canonical expression (22), andhe initial values of the backward coefficients are (assuming

using approximation (25), we obtain that V is even)
= dn = 1/p
Pfnt1(Oni1) = %;P(an) mzz:oqﬁﬂn) /Q(Qna02A§9n+1) Zn =0
21t e %) P(aN—l = _1) =0
-t <zf,n; O — —(ryn + m)) eRelyne™ n]dHn. (29) N1~ Plan-1=+1) =p—r
p 0 else
By now changing the first summation index h= m + “,N-1 = YN-1-

T, UsiNg (25) and (26), discarding irrelevant multiplicative Fingjly, substituting (22) and (23) into (21) and discarding
factors, and neglectingy,,| with respect toz; |, we have  jrrelevant constants, the extrinsic information is evaluated as

B 0 (m)
Drnt1(Ony1) = Z Z P(an)Q%n %)] Pu(an) o ; %:qf,nqb,wrl

¢
i 2m 27
—ide 2 To (|25 + 20, qed 7 M=) 4y 00 T (EHTTR)
fntyne 0P Zpnel P+ 0 (‘ D b,n+1 Yn
e T t(M-e ) (30)

1+ oRlzpnl 7"

) . (35)

In summary, this detection algorithm is based on three
. L . . . steps: a forward recursion in which, for each time epoch
This resulting py.n+1(0n11) is not in the constrained ;, ), rea] and one complex coefficients are evaluated based
form (22). However, by applying the approximation (27), Wgn"(31) and (32), a backward recursion, based on (32) and
obtain the following updating equations for the parameters 3), which proceeds similarly, and finally a completion (35),

the canonical distribution (22) which consists of the sum @f terms? This algorithm entails
o mdyme I a minor complexity increase with respect to the known-phase
qgf) X Z p(an)q](f—r%) o (31) MAP symboldetector [8] and will be denoted to as “algorithm
" - n based on Tikhonov parameterizatiorTikh-algorithn).
Zin A Yn 3, q;'zlrle—j%"m V. NUMERICAL RESULTS
Ffmtl = 1+ 0—2A|ij ol : (32) The performance of the algorithms described in the previous

] o ] section is assessed by computer simulations in terms of bit
It is worth noticing that, before the evaluation of therror rate (BER) versu®, /Ny, E, being the received signal

coefficient z¢ .41, the p real coef'ficientSq(ZzLJrl evaluated energy per information bit. The proposed algorithms are used
through (31) have to be normalized so that their sum is @ SISO blocks for iterative detection/decoding in serially

Since there is no a priori knowledge of the initial phase &oncatenated CPM schemes .
of the initial symbolag__;, the following initial values of the . In Fig. 2 we consider the serial concatenation, through an
recursive coefficients result interleaver, of a convolutional code (CC) and the minimum

shift keying (MSK) modulation (i.e., a binary modulation with

© h = 1/2 and a rectangular frequency pulse of duratiBn
a0 = 1/p The outer code is a 4-state rdtg2 CC with generatorgb, 7)
(octal notation) and the interleaver has sipd8. A maximum
N ) ) ] of 10 iterations is allowed and the phase noise affecting the
In addition, since at the first step of the forward recursion thghannel is modeled as a Wiener process with= 5 degrees.
approximation (27) does not hold, we use the folliwing valugs the figure the performance of the proposed algorithms is
for the recursive coefficients at time= 1: shown along with that of the algorithm proposed in [12]

Zfo0 = 0.

) = &
i1 SWe would like to point out that the coefficienté? and qéﬂ;) can be
= % evaluated and stored in the log-domain which is a convenient representation

1 1+ 0% |yol for practical hardware realizations.



—+H— known phase
""" v dp-agorithm
©- Tikh-algorithm| |

o o
L oo~ L
m m
5 ) :
10 —H8— known phase \ 1 ]
6 [ | N dp-algorithm 10'5 & Qe
10 =@ Tikh-algorithm \g
_7 4— ZKS 5 Y
10 ‘ 10
1 15 2 25 3 4 45 2 25 3 35 4 45 5 55 6
Ey/No Ey/Ng
Fig. 2. Performance for the MSK system. Figh 3. P;erformance for the system employing a binary 2-RC modulation
with h = 1/4.

and based on per-survivor processing (curve labeled ZKS). ) o )
D = 16 discretization levels have been used for itijg- based on the phase discretization and becomes optimal for
algorithmand no performance improvement has been obsen@darge enough number of discretization levels. To reduce
for larger values ofD. The ideal curve related to the perfecthe computational complexity, some approximations have been
knowledge of the channel phase is also shown for comparis@ittroduced in order to derive a new algorithm which exhibits
It can be observed that, at a BER 06—, the loss of the a very good performance and a very low complexity.
optimal dp-algorithmwith respect to the known-phase case is
approximately 0.25 dB, while the loss of the low complexity ) ] ACKNOWLEDGMENT
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