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Abstract—In this paper, we propose a technique to reduce the
number of trellis states in BCJR-type algorithms, i.e., algorithms
with a structure similar to that of the well-known algorithm by
Bahl, Cocke, Jelinek, and Raviv (BCJR). This work is inspired by
reduced-state sequence detection (RSSD). The key idea is the con-
struction, during one of the recursions in the reduced-state trellis,
of a “survivor map” to be used in the other recursion. In a more
general setting, two distinct survivor maps could be determined in
the two recursions and used jointly to approximate thea posteriori
probabilities. Three examples of application to iterative decoding
are shown: 1) coherent detection for intersymbol interference (ISI)
channels; 2) noncoherent detection based on an algorithm recently
proposed by the authors; and 3) detection based on linear predic-
tion for Rayleigh fading channels. As in classical RSSD, the pro-
posed algorithm allows significant state-complexity reduction with
limited performance degradation.

Index Terms—Error correcting codes, iterative decoding, soft-
input soft-output, turbo codes.

I. INTRODUCTION

I N CURRENT digital communication systems based on it-
erative detection/decoding, it is necessary to determine the

likelihood that a particular symbol has been transmitted. Soft-
output algorithms [1]–[6] have been considered with renewed
interest, the recent most famous application of them being the it-
erative decoding of interleaved concatenated codes [7], [8]. The
Bahl, Cocke, Jelinek, and Raviv (BCJR) algorithm [2] is based
on a symbol-wise maximuma posterioriprobability (MAP) cri-
terion and proves to be optimal for estimating the states or out-
puts of a Markov chain observed in white noise. This algorithm
is rather complex to implement because of the following

1) Problems of numerical representation of very low proba-
bility values;

2) Use of nonlinear functions;
3) Numerous mixed multiplications and additions

In order to reduce these problems, realizations of this algorithm
in the logarithmic domain have been proposed, which result in
useful simplifications [9]–[11].

Whenever the overall transmission system can be considered
as finite memory, the receiver has to take into account the overall
memory in a trellis diagram. For example, this is the case for a
convolutional code in an additive white Gaussian noise (AWGN)
channel and/or a finite intersymbol interference (ISI) channel.
A frequency nonselective fading channel is not rigorously finite
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memory [12] but it is generally assumed as being so [13]. Once
the overall system memory has been identified, a relevant trellis
diagram can be defined and soft-output algorithms, such as the
BCJR algorithm, can be employed. If the overall memory is
large, the complexity of a BCJR algorithm, even with the cited
logarithmic simplifications, may be unacceptable because of
the trellis size. Various solutions have appeared in the literature
to reduce the complexity of the decoder trellis diagram. The
so-called T-algorithm and M-algorithm reduce the number of
paths which are searched in the trellis diagram [14]. Trellis
splicing based on a confidence criterion may be used to detect
reliable information symbols early on during decoding [15].
When the channel memory is not finite, as for a “noncoherent
channel” [16], it is possible to utilize soft-output algorithms
with a structure similar to that of the BCJR algorithm, which
try to partially take into account this memory by means of an
augmented trellis [6]. This approach can be generalized to other
channels with infinite memory by means of suitable algorithms
which will be referred to asBCJR-type.

In this paper, we propose an extension of reduced-state se-
quence detection (RSSD) [17]–[19] to a general BCJR-type al-
gorithm. Further generalizations toward the application of per-
survivor processing (PSP) techniques [20] in order to dynam-
ically estimate unknown channel parameters are also possible,
as for example in [21]–[23].

The application of the principle of RSSD to the complexity
reduction of soft-input soft-output (SISO) algorithms was previ-
ouslyaddressed.Asanexample,RSSDmaybestraightforwardly
applied to a soft-output Viterbi algorithm as in [24] (see also [6]
for a recent application). Other applications were brought to the
authors’ attention during the review process [25]–[29]. Most of
the algorithms proposed in these papers deal with ISI channels
and none considers iterative decoding. Reference [25], mentions
the useof RSSDtosimplify the forwardand backward recursions
of a BCJR algorithm employed as a soft-output equalizer in a
frequency-selective channel. In [26], a soft-output equalizer with
soft-decision feedback is derived from a modified version of
the Lee algorithm [30] for a minimum-phase channel impulse
response. It is also shown that the algorithm there proposed may
be given an equivalent formulation by introducing a backward
recursion, making it similar to the BCJR algorithm. In [27], a
family of Bayesian conditional decision feedback estimators are
proposed, the T-algorithm is applied to reduce the complexity,
and the possibility of applying RSSD techniques is mentioned.
This idea is further developed in [28], where reduced-complexity
versions of the fixed-lag soft-output algorithm introduced in [5]
are proposed based on the application of the T-algorithm and
RSSD, although an explicit introduction of the concept of
survivor is not given. A similar detection strategy is used in
[29] to detect continuous phase modulations.
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A reduced-state BCJR algorithm similar to that here pre-
sented and its application to iterative decoding was proposed
independently in [31] at the same time of the first presentation
of this work [32].

The paper is organized as follows. In Section II, we give a
general definition of BCJR-type algorithms. In Section III, we
propose a reduced-state BCJR-type algorithm in general terms.
In Section IV, we consider examples of application of the pro-
posed technique for ISI channels, noncoherent channels, and
Rayleigh flat-fading channels. Numerical results are presented
in Section V. Conclusions are drawn in Section VI.

II. BCJR-TYPE ALGORITHMS

An information source emits a sequence of independent and
identically distributed information symbols which is possibly
encoded and transmitted through a channel. We assume that a
soft-output algorithm can be devised to compute thea posteriori
probabilities of the transmitted information symbols or good ap-
proximations of them as in [6]. The calculation of these prob-
abilities is generally based on the observation of a suitable se-
quence of samples at the input of the receiver. We denote this se-
quence by , where is the transmission length
and vector is the observation at theth signaling interval.
This vector notation accounts for possible multiple observations
at the th signaling interval.

Let be the number of properly defined receiver trellis states,
which dependson the modulation format, the presence of coding,
the channel model and possible approximations. Letdenote
the trellis state at epoch. For simplicity, we assume that a single
information symbol is associated with a transition from state

to state and there are no parallel transitions. The exten-
sion to more general cases, such as convolutional codes with rate

and or trellis coded modulations, can be easily ob-
tained by a suitable notation. To simplify the notation, we also as-
sume that , although in general could
belong to any -ary set. Therefore, a trellis section is character-
ized by branches, each of them being uniquely identified
by the couple of states it connects. We denote the branch which
connects to by and the infor-
mation symbol which drives this transition by .

With these definitions, we assume that a good approximation
of thea posterioriprobability of symbol can be determined
on the basis of the considered observations. We denote this value
by and assume that it can be expressed, in analogy
with a generalized version of the BCJR algorithm [2], [6] as1

(1)

The sum in (1) is extended over all transitions of epochassoci-
ated with information symbol . The quantities ,

1As customary, we do not use a specific notation to distinguish between
random quantities and their hypothetical values. Specifically,Pfa g denotes
thea priori probability that the information symbol at thekth epoch takes on
the hypothetical valuea . A consistent notation is used throughout and the
correct interpretation should be clear from the context.

and are proportional to suitable probability density func-
tions. They depend on the particular trellis branch and their ex-
pressions can be specified for the transmission system under
consideration. and represent thea priori
probabilities of information symbol and beginning state of
branch , respectively. If the symbols area priori equiprob-
able, these probabilities reduce to constants. On the contrary,
if the algorithm is used in an iterative decoding process, these
probabilities in general are not constant in successive iterations,
and must be explicitly considered.

A proper normalization of , , and is nec-
essary in order to correctly express thea posterioriprobabilities
in (1). However, an arbitrary normalization of these quantities
would scale the resultinga posterioriprobabilities by a factor
which would not affect the correctness of the algorithms under
consideration. As a consequence, we take the notational liberty
of denoting by a scaled versionof thea posteriori
probabilities and referring to them asa posterioriprobabilities
for simplicity. Similarly, we refer to , and
as probability density functions, although strictly speaking they
may be so except for a normalization constant. If necessary, we
may further relax the terminology by referring to probabilities
and probability density functions and using the relevant notation
even if an approximation may be involved.

Similarly to the BCJR algorithm, we assume that we can
compute the probability density functions and
by means of forward and backward recursions [2], [6], [7].
Defining as the final state of transition we may write

(2)

(3)

where and are suitable, pos-
sibly scaled, probability density functions that, in general,
may depend on two consecutive branches. By we
denote the information symbol “lost” in transition , i.e.,
the oldest symbol in the initial state . The couple

uniquely identifies . In (2), the
sum is extended over all the transitions of epoch that end
in the initial state of branch . The sum in (3), relative to the
trellis section at epoch , may be interpreted similarly.

We may also define reliability values of each symbol, with
respect to a reference symbol , by considering loga-
rithmic likelihood ratios of the following type

(4)
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The second term in (4) represents the generated extrinsic infor-
mation, that is the component of the likelihood values to be fed
back in an iterative decoding process (as an example, see [7],
[8]). Equations (1)–(3) can be reformulated in the logarithmic
domain [9]–[11].

We remark that the algorithm described by (1)–(3) reduces to
the classical BCJR algorithm [2] in the special case of strictly
finite memory. In this case, the probability density functions

and depend on transition through a single state .
Moreover, and depend on a single transition and
reduce to and , respectively.

The proposed formulation of BCJR-type algorithms general-
izes the classical one [2] and may be suitable for specific detec-
tion problems characterized by strictly unlimited memory. As
an example, the noncoherent BCJR-type algorithm proposed in
[6] is obtained by truncating the infinite memory of the consid-
ered channel and falls within the considered formulation. In fact
in [6], the expression of thea posteriori probability involves
a probability density function which depends on a single
transition, the forward and backward recursions involve prob-
ability density functions and which depend on two suc-
cessive transitions, and and depend on a transition (not
on a state). As shown in the Appendix, two alternative formula-
tions of a BCJR-type algorithm may be conceived but none re-
duces exactly to the classical BCJR algorithm. The choice of the
formulation previously described has several motivations. First,
the alternative formulations described in the Appendix involve
augmented trellis diagrams with larger number of states. As this
paper deals with reduced-state algorithms, it would be contra-
dictory to begin with augmented trellis diagrams. Second, the
described formulation is easily reduced to the classical BCJR al-
gorithm when the overall memory is finite, as opposed to the al-
ternative formulations (see the Appendix). Finally, the described
formulation is consistent with that adopted in [6].

III. REDUCED-STATE BCJR-TYPE ALGORITHMS

A BCJR-type algorithm formulated as in Section II requires
the calculation of essentially two kinds of probability density
functions: , which depends on a single transition, andand

, which may depend on two consecutive transitions. Let us
assume that code symbols are generated by a
single information symbol . By using a vector notation, we
denote this sequence of code symbols by
and refer to as the code (vector) symbol at epoch. In
general, a single transition can be related tocode symbols,
that is , where the symbol denotes
a one-to-one correspondence between transitionand the
sequence of code symbols. The parameter is related to
the channel and/or the detection strategy. As an example, for
an AWGN channel, in the case of coherent detection,
whereas is the assumed phase memory for noncoherent
detection based on the algorithm proposed in [6]. A single
branch can be related to information symbols, that is

. The relation between integers(relative to
information symbols) and (relative to code symbols) depends
on the coding structure.2 We assume that the receiver observes,

2If the considered code is recursive, as it is usually for turbo codes, one should
consider some encoder state variables together with the information symbols in
the definition ofS ande [6].

at each epoch, a (vector) sample at
the output of the channel. Generalizations to the case of
oversampling or multiple decoder inputs are straightforward.
Denoting by the length of the discrete-time overall impulse
response, each sample will depend on code symbols

.
We consider a trellis diagram with a reduced number of states

and denote its generic state by. Following the prin-
ciple of RSSD [17]–[19], we define the state reduction by as-
suming that a transition in the reduced trellis
diagram is equivalent to a sequence of in-
formation symbols, with .3 The central point is that,
even with this reduction of states, knowledge of informa-
tion symbols is necessary in order to specify ,
which is required to compute , , and . Hence, for a given
transition , we need to estimate symbols for in
order to compute the metric. According to RSSD, this estimate
could be obtained by tracking the survivor of each state in the
reduced-state trellis. However, how could we define a survivor
in this case?

A “full-state” BCJR-type algorithm runs first a forward re-
cursion to compute for each transition and epochs

. As shown in (1) and (2), is associated with
a transition , instead of a single state as in a classical case.
Hence, a “survivor” associated with a single transition has to
be defined. By considering the algorithm in the logarithmic do-
main, the forward recursion of ((2)) can be expressed as

(5)

where . We can approximate
this recursion by the “max-log” approximation as follows [9]

(6)

In (6), it is intuitive to interpret the term to be maximized as a
“metric” associated with a path ending with transition, as in
a classical Viterbi algorithm.

Considering the reduced-state trellis and assuming we know
the survivors of each transition , we now show how the
survivors can be extended to time instantby using the for-
ward recursion. We may define by the sequence
of transitions reaching epoch along the survivor of
transition , i.e., =

. Each transition , for
, in and information symbol

, for , depend on the
transition . Hence, the couple
uniquely identifies the sequence of information symbols

where rep-
resent the information symbols in the path history of transition

3More complex techniques based on set partitioning may also be employed
[17], [19].
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. Similarly, we can extend a couple of transitions
inorder toget informationsymbols.With thesedefinitions,
it is easy to extend the survivors by a step, i.e., to epoch. In
the reduced-state trellis, taking into account paths
associated with transitions at epoch , (6) reduces to

(7)

For each transition , the branch that maximizes (7)
should be stored.

During the forward recursion, a “full-state” BCJR-type algo-
rithm does not necessarily make a selection between the metrics
of the paths terminating with a given transitionas shown in
(6) but rather determines a new metric as an average
of these path metrics as in (5). Similarly, in the reduced-state
trellis equation (7) does not necessarily have to be used to com-
pute but only to determine the survivor associated with
transition .

We note that the concept of survivor associated with a transi-
tion can be reconciled with the classical one by properly defining
an augmented trellis diagram, to be used in the forward and back-
ward recursions, and reformulating the described BCJR-type al-
gorithm. The Appendix describes this possible formulation.

In the reduced-state trellis, it is necessary to keep track of the
survivors associated with each transition, at each epoch, in the
forward recursion of only. In fact, these survivors may be
used in the backward recursion of and in the calculation of
the probability , by evaluating the probability density
function in (1). We will refer to the ensemble of the survivors
generated in the forward recursion as “survivor map.” The basic
structural idea can be further generalized. In fact, it is not nec-
essarily the forward recursion which allows the construction of
a survivor map to be used in the backward recursion. One could
build a survivor map during the backward recursion (run first)
and use it in the forward recursion. Finally, one could build two
distinct survivor maps during the forward and backward recur-
sion, and consider an extendedin the combination (1). In the
rest of this section, we will refer for simplicity to the case of a
survivor map built during the forward recursion but generaliza-
tions of the proposed formulation to the other cases are possible.

Given the above definitions, we can reformulate (1)–(3), ob-
taining

(8)

(9)

(10)

Fig. 1. Forward recursion of the probability density function� (� ) for a
general reduced-state BCJR-type algorithm.

Fig. 2. Backward recursion of the probability density function� (� ) for a
general reduced-state BCJR-type algorithm. The metric� is calculated using
the survivor map previously built in the forward recursion.

where and are the initial and final states of
transitions and , respectively. In Fig. 1, it is shown how
the forward recursion proceeds in the reduced-state trellis ac-
cording to (9). In order to compute , one should consider
the probability density functions such that

and, for each of them, compute the branch
metric by considering the symbols associated with the sur-
vivor of transition . The backward recursion proceeds sim-
ilarly using the survivor map generated during the forward re-
cursion, as shown in Fig. 2.

Two logarithmic simplified versions of a reduced-state
BCJR-type algorithm may be considered. A first one is derived
by applying the max-log approximation [9], [10] to (8)–(10).
By defining and , (9) can be approxi-
mated as follows

(11)

Similar logarithmic extensions hold for (8) and (10), by defining
and . This version of the algorithm

would be motivated, besides complexity reduction, by the fact
that the forward recursion of allows to determine the sur-
vivors without additional operations. In a second logarithmic
simplified version, the max-log approximation for the forward
and backward recursions is maintained but a “full” combina-
tion is considered in order to compute . Hence, we
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may retain (11) for the forward recursion of and the corre-
sponding one for the backward recursion ofin combination
with the use of (8), which in the logarithm domain becomes

(12)

This second method, referred to as “hybrid” method, tries to
fully exploit the reduced information carried by and be-
cause of the approximated recursions and will be considered in
the numerical results.

The computational complexity of the forward and backward
recursions is related to the number of branches in the receiver
trellis, which is proportional to the number of states. Hence,
the complexity of the proposed reduced-state BCJR-type algo-
rithms is approximately times less than that of the full-
state case.

With the introduction of the concept of survivor associated
with a transition, further generalizations to PSP techniques [20],
such as those considered in [21]–[23], [33], are possible with
taking into account that a single step in the recursions of a
BCJR-type algorithm could involve two consecutive transitions.

IV. EXAMPLES OF APPLICATIONS

As examples of application of the above reduced-state
BCJR-type algorithms, we consider the case of coherent
detection for ISI channels (assuming perfect knowledge of the
ISI channel coefficients), noncoherent detection as proposed
in [6], and detection based on linear prediction for Rayleigh
flat-fading channels.

A. ISI Channels

In the case of an ISI channel, we assume uncoded transmis-
sion; hence, reduces to . The observation samples at the
output of a whitened matched filter, can be written as

[34]. The noise samples are real
independent Gaussian random variables, with zero mean and
variance . The distortion on the elementary shaping pulse
makes the samples dependent on information symbols,
each weighted by a different coefficient. By defining the
state as , it is easy to show that
the classical BCJR algorithm can be directly applied with

[2]. Hence, the probability density
functions which appear in (1)–(3) reduce to

(13)

(14)

(15)

(16)

Fig. 3. Forward recursion of the probability density function� (s ) for
the reduced-state BCJR algorithm in the case of coherent detection over ISI
channels.

(17)

(18)

where symbol denotes proportionality. The general formula-
tion (1)–(3) can be specialized to this case by letting and

(that is, the receiver observes a single sampleat each
epoch).

If the impulse response of the equivalent time-discrete channel
has minimum phase [17]–[19], [34], an efficient re-

duced-state trellis diagram is obtained by defining a state
, with , and, consequently, a transi-

tion . Hence, searching
in the path history associated with state , we may
determine = andobtain

(19)

(20)

In Fig. 3, it is shown how the forward recursion proceeds in
the reduced-state trellis in the case of coherent detection over
an ISI channel. Since depends on a single state and not
on a transition , each forward step involves a single transi-
tion. In this case, we associate with each statea state ,
chosen among the beginning states of thebranches ending
in . The backward recursion proceeds similarly, by using the
survivors selected during the forward recursion. As one can see
from Fig. 3 in this case, the concept of survivor coincides with
the usual one. With the definition given for stateand transi-
tion , in (11) reduces to . The expression (11)
for the forward recursion reduces to

(21)
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Fig. 4. Backward recursion of the probability density function� (s ) for
the reduced-state BCJR algorithm in the case of coherent detection over ISI
channels. The survivor map is built during this recursion.

and (12) reduces to

(22)

If the overall impulse response is maximum phase,4

efficient definitions of trellis state and transition may be
and

, respectively. As mentioned in Section III, a new ver-
sion of a reduced-state BCJR-type algorithm can be conceived,
which starts with the backward recursion, builds a “survivor
map” compatible with the new reduced state, and runs the
forward recursion. Related reverse-time processing structures,
suited to impulse responses with energy concentrated toward the
end, are considered in [37], [38]. In this “specular” version of the
previously introduced algorithm, during the backward recursion
the information symbol is relative to the transition from
state to state and symbol is discarded. The
formulation is a straightforward extension of that previously
introduced, the only modification being a termination of the
reduced-state trellis necessary to better initialize the backward
recursion. Fig. 4 schematically shows how the survivor map can
be built during the backward recursion. The survivor may be
denoted by = , where

indicates the final state of transition .
This example leads to a more general conclusion on the pos-

sible applications of the proposed technique. Survivor maps can
be built during both the forward and backward recursions, de-
pending on the overall channel impulse response and, conse-
quently, on the structure of the received signal samples. As an
example, a proper use of survivor maps built during both recur-
sions may prove useful if the overall impulse response is “mixed
phase.” A specific investigation of this case was not performed

4For example, if a causal whitening filter is selected.

because beyond the scope of the paper. Related aspects are dis-
cussed in [22].

B. Noncoherent Channels

In the case of noncoherent decoding, we refer to the BCJR-
type algorithm proposed in [6]. We may express this algorithm
in terms of the general formulation given above with

and (hence, the receiver considers a “window” of
consecutive samples at each epoch). Denoting bythe en-
coder state, the “decoder state” is defined by

[6]; hence, . In this
case, the probability density functions, and appearing
in (1)–(3) specialize as follows

I (23)

I

I

(24)

I

I

(25)

where is the transpose conjugate operator.
By defining a reduced state as

, with , a transition in the reduced-state trellis
becomes . Hence, the probability den-
sity function can be expressed as

I (26)



854 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 5, MAY 2001

and (8) specializes as follows

(27)

The survivor map is built during the forward recursion and
employed in the backward recursion and to evaluatein (26).
Referring to the original formulation proposed in [6], the exten-
sion of the previously introduced general recursions is not im-
mediate. Noting that , the forward recursion
on can be expressed as follows

(28)

Since at epoch the survivor of each transition is known
and , we replace

with . The choice of the sur-
vivor associated with (that is, ) is based on the max op-
eration. The term affects the exact value of

but it does not affect the survivor selection. Instead of
computing we propose to utilize deter-
mined through the max operation and replace it with

I

(29)

where the expression denotes that and are monoton-
ically related quantities. The forward recursion finally reduces
to

I

I

(30)

Once the survivor map has been determined during the forward
recursion, the probability density function, used in the back-
ward recursion, can be calculated

I

I

(31)

C. Fading Channels

We consider the transmission of differentially encoded-ary
phase shift keying ( -PSK) over a Rayleigh flat-fading channel.
We refer to the transmission system considered in [39] and
denote by the normalized fading rate of the channel. We
assume that each information symbolcorresponds to a group
of bits, i.e., . The -PSK
symbol is obtained byGray-mapping the bits .
The differentially encoded -ary symbols are defined by the
rule , with ( acts as a reference symbol).
The corresponding received signal at the matched filter output
canbewrittenas ,where thechannelcoefficients

are complex random variables whose quadrature compo-
nents are independent, Gaussian with zero mean, and are
samples of a zero mean complex-valued white Gaussian noise
process. The autocorrelation of the fading process is assumed to
follow the classical isotropic scattering model [40].

Assuming that the information bits are independent within
each symbol, we can consider .5

The proposed formulation gives thea posterioriprobability of
the -PSK information symbols . If the interleaver works
bit-wise, as in [39],a posterioriprobabilities of bits have
to be calculated. To obtain these probabilities (1) can be modi-
fied as follows

(32)

for . Since the channel coefficients are unknown
in practice, linear prediction [41], [42] can be used. The branch
metric becomes [39]

(33)

5In the case of an iterative decoding process, wherePfa g are derived from
input extrinsic information, this is an approximation.
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where is the fading gain estimate, is the prediction order,
are the prediction coefficients and is the variance

of the prediction error, which can be computed as shown in
[43]. We may observe that . By defining

, the corresponding trellis consists
of states. Assuming that the autocorrelation coefficients
of the channel fading process are known, the optimal predic-
tion coefficients , are obtained by solving the
Wiener-Hopf equations [39]. Hence

(34)

Noting that and do not depend on and defining

we have

(35)

The first term in (35) depends on and should not be
neglected, unless one assumes perfect channel estimation.

To reduce the number of trellis states, we proceed as in the
case of an ISI channel. We may define a reduced state

, with , obtaining (the formalization
is identical to that used in Section IV-A)

(36)

V. NUMERICAL RESULTS

The performance of receivers based on reduced-state BCJR-
type algorithms in the three cases considered in Section IV is
assessed by means of computer simulations in terms of bit error

Fig. 5. Application of the proposed technique to iterative decoding/detection
over an ISI channel. Receivers with various levels of complexity are considered
and compared with the full-state receiver (� = 16). The considered numbers
of iterations are one and six in all cases. The performance in the case of coded
transmission over an AWGN channel, without ISI, is also shown (solid lines
with circles).

rate (BER) versus , being the received signal energy
per information bit and being the one-sided noise power
spectral density. In any component decoder we consider the
second simplified logarithmic version of the BCJR-type algo-
rithm proposed in Section III (hybrid method).

In the case of coherent detection over an ISI channel, we
consider the scheme of turbo detection in [35]. More precisely,
we consider a binary ( ) transmission system character-
ized by a rate 1/2 16-state recursive systematic convolutional
(RSC) encoder with generators , (octal no-
tation), followed by a nonuniform interleaver. The bits
at the output of the interleaver are sent through the channel by
a binary PSK (BPSK) modulation. The minimum phase dis-
crete-time channel impulse response is identified by the fol-
lowing coefficients: , , ,

and [35]. The receiver is based on a
serial concatenation of a detector, which uses the reduced-state
BCJR algorithm with metrics proposed in Section IV-A, and
a decoder which is a SISO module [36]. The extrinsic infor-
mation is used according to the heuristic method proposed in
[44]. By trial and error, we found that a good performance
is obtained when the extrinsic information generated by the
inner detector is weighted (i.e., multiplied) by a parameter
equal to 0.3 and the extrinsic information generated by the
outer decoder is weighted by a parameter equal to 0.5. The
state reduction technique is applied to the inner detector. In
Fig. 5, the performance of the full-state receiver (inner de-
tector with states) is compared with the performance
of the receiver with reduced complexity (inner detector with

= 8, 4, or 2 states). In all cases, we consider one and
six decoding iterations. At six decoding iterations, the perfor-
mance loss for a detector with = 4 states with respect to
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Fig. 6. Application of the proposed technique to noncoherent decoding of
an RSC code. Receivers with various levels of complexity are considered and
compared with a full-state receiver (withN = 3) and the coherent receiver.

the receiver without state reduction is only 0.75 dB at a BER
of , and it reduces to 0.25 dB for a detector with=
8 states. For comparison, the performance in the absence of
ISI, that is for coded transmissions over an AWGN channel,
is also shown. In this case, the receiver reduces to the outer
decoder of the RSC code considered above.

In the case of noncoherent decoding, we first consider a single
16-state RSC binary code with generators ,
and rate 2/3 obtained by means of puncturing, used as compo-
nent of the turbo code presented in [7]. The modulation format
is BPSK. In Fig. 6 the performance of the noncoherent decoder
using the BCJR-type algorithm with metrics described in Sec-
tion IV-B is assessed for various levels of state reduction and
compared to that of a coherent receiver. With respect to a de-
coder with and states (full complexity), for

and states the performance is appreciably im-
proved at low signal-to-noise ratios (SNRs). For and

, the performance loss with respect to the full-state re-
ceiver with is less than one dB for every SNR, and re-
duces to only 0.5 dB at SNRs above five dB.

We also consider noncoherent decoding of a turbo code
having as component codes those described in the previous
paragraph [7]. The two component encoders are parallelly con-
catenated by a nonuniform interleaver. At the receiver,
each noncoherent component decoder uses the reduced-state
BCJR-type algorithm described in Section IV-B. In this case
too, the extrinsic information generated by each component
decoder is passed to the other one by following the heuristic
method proposed in [44]. By trial and error, we found that the
best performance is obtained when the extrinsic informations
generated by both the component decoders are weighted by a
parameter equal to 0.3. Fig. 7 shows the performance of the
receiver for various levels of state reduction, specified by the
values of and , and compares it to that of a coherent re-
ceiver and a noncoherent receiver with and

Fig. 7. Application of the proposed technique to noncoherent decoding of
a turbo code. Receivers with various levels of complexity are considered and
compared with a full-state receiver (withN = 3) and a coherent receiver. The
considered numbers of iterations are 1, 3, and 6 in all cases.

(full number of states). In all cases, the considered numbers
of iterations are 1, 3, and 6. The reduced-state BCJR-type
algorithm with and ( ) exhibits a
performance loss of about 3.2 dB at six decoding iterations
with respect to the coherent receiver. For and
( ), at a BER of a performance gain of about 1.2 dB
is obtained with respect to the full-state case with
and the same number of states ( ). We conclude that
the use of the proposed state reduction technique makes the
algorithm proposed in [6] applicable, even for large values of
phase memory .

Finally, we consider transmission of differentially encoded
quaternary PSK (QPSK) signals over a flat-fading channel, as
in [39]. The outer code is a 64-state nonrecursive convolutional
code with generators and . This code is
concatenated, through a nonuniform bit interleaver, with
an inner differential encoder. In fact, bit interleaving is an ap-
propriate means to combat the effects of fading [45], [46]. The
normalized fading rate is . The differential inner de-
tector uses linear prediction and the state reduction technique.
In Fig. 8 the performance of the full-state receiver, with predic-
tion order and 4, respectively, is compared with
the performance of a receiver with various levels of complexity
specified by the couple of parameters ( ). In all cases, we
consider one and six decoding iterations. At six decoding itera-
tions, a detector with and exhibits a performance
loss of only 0.2 dB at a BER of , with respect to a full-state
one ( ). For and , the performance gain
with respect to a full-state receiver with is about 0.6 dB at
a BER of . For comparison, the performance curve in the
case of perfect knowledge of the fading coefficients (coherent
decoding) is also shown.
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Fig. 8. Application of the proposed technique to iterative decoding/detection,
through linear prediction, for flat-fading channel. Receivers with various levels
of complexity (in terms of prediction order� and reduced state parameterQ)
are shown. The considered numbers of iterations are one and six in all cases.
The performance in the case of decoding with perfect knowledge of the fading
coefficients is also shown (solid lines).

VI. CONCLUSION

A class of BCJR-type algorithms has been defined as an
extension of the well-known BCJR algorithm, whenever the
channel memory is not finite or partially taken into account.
Similarly to the BCJR algorithm, the proposed algorithms run
a forward and a backward recursion. Techniques for state-
complexity reduction for these algorithms have been introduced
based on reduced-state sequence detection. The structure of
the proposed BCJR-type algorithms leads to the definition of a
survivor associated with a trellis branch (instead of a state). De-
pending on the structure of the system memory, a survivor map
can be determined during one of the recursions and used in the
other one. Alternatively, two survivor maps can be computed
(one for each recursion) and suitably combined when gener-
ating a posteriori probabilities. A reduced-state BCJR-type
algorithm is well suited for iterative processing applications.
In the considered examples, the proposed reduced-state BCJR-
type algorithms are effective for appreciably limiting the
receiver complexity with minor performance degradation or
improving performance for a given level of complexity.

APPENDIX

The considered formulation of a BCJR-type algorithm dif-
fers from that of the classical BCJR algorithm [2], although it
reduces to the latter when the channel is strictly finite-memory.
In this Appendix, we show that two alternative equivalent for-
mulations of a BCJR-type algorithm exist, but none coincides
exactly with the classical one.

Let us define an augmented “super-state”in a one-to-one
correspondence with a transition. The number of states of
this augmented trellis diagram is times that of the original

one because information symbol now appears in the state
definition. In this augmented trellis, we may identify a transition
as . With these definitions, we may rewrite
recursion (2) as

(37)

where and are the beginning and ending states
of transition , respectively, and the sum is extended over all
transitions ending in . The forward recursion (37) now re-
duces to that of the classical BCJR algorithm, except for the
more general use of the probability density function . A
similar conclusion also holds for the backward recursion. How-
ever, let us consider the “central” combination (1), which gives
thea posterioriprobability of an information symbol . Unlike
a classical BCJR algorithm, if this combination is expressed in
terms of states and transitions in the augmented trellis, the fol-
lowing consequences arise: 1) the probability density functions

and depend on states relative to the same time instant and
2) the sum must be extended over of the possible super-
states at epoch , that is over all states characterized by the
considered symbol (and not over all states). Therefore, even
if this alternative formulation would entail a forward recursion
in a form similar to that of a usual BCJR algorithm, it would still
exhibit differences in this central combination.

In a second alternative formulation, forward and backward re-
cursions may be computed on the augmented trellis, whereas the
central combination may be computed on the original trellis. In
this case, the BCJR-type algorithm is similar to a classical BCJR
but the two recursions and the central combination must be re-
ferred to two different trellis representations in order to consider
a single step as involving a single transition. Specifically, in the
forward and backward recursions an augmented trellis must be
used with times the number of states of the trellis relative to
the central combination.
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