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Abstract—in this paper, we propose a technique to reduce the memory [12] but it is generally assumed as being so [13]. Once
number of trellis states in BCJR-type algorithms, i.e., algorithms  the overall system memory has been identified, a relevant trellis
with a structure similar to that of the well-known algorithm by diagram can be defined and soft-output algorithms, such as the

Bahl, Cocke, Jelinek, and Raviv (BCJR). This work is inspired by . .
reduced-state sequence detection (RSSD). The key idea is the (:on-BC‘JR algorithm, can be employed. If the overall memory is

struction, during one of the recursions in the reduced-state trellis, |arge, the complexity of a BCJR algorithm, even with the cited
of a “survivor map” to be used in the other recursion. In a more logarithmic simplifications, may be unacceptable because of

general setting, two distinct survivor maps could be determined in - the trellis size. Various solutions have appeared in the literature
the two recursions and used jointly to approximate thea posteriori  tg reduce the complexity of the decoder trellis diagram. The
probabilities. Three examples of application to iterative decoding so-called T-algorithm and M-algorithm reduce the number of

are shown: 1) coherent detection for intersymbol interference (ISI) . . L -
channels; 2) noncoherent detection based on an algorithm recently paths which are searched in the trellis diagram [14]. Trellis

proposed by the authors; and 3) detection based on linear predic- Splicing based on a confidence criterion may be used to detect
tion for Rayleigh fading channels. As in classical RSSD, the pro- reliable information symbols early on during decoding [15].

posed algorithm allows significant state-complexity reduction with  When the channel memory is not finite, as for a “noncoherent

limited performance degradation. channel” [16], it is possible to utilize soft-output algorithms
~ Index Terms—Error correcting codes, iterative decoding, soft- with a structure similar to that of the BCJR algorithm, which
input soft-output, turbo codes. try to partially take into account this memory by means of an
augmented trellis [6]. This approach can be generalized to other
I. INTRODUCTION channels with infinite memory by means of suitable algorithms

o o ‘which will be referred to aBCJR-type
N CURRENT digital communication systems based on it- |, yhis haper, we propose an extension of reduced-state se-

erative detection/decoding, it is necessary to determine the. -« detection (RSSD) [17]-[19] to a general BCJR-type al-
likelihood that a particular symbol has been transmitted. Sofi-

lqorith h b Hered with é}rithm. Further generalizations toward the application of per-
output algorithms [1]-{6] have been considered with renew rvivor processing (PSP) techniques [20] in order to dynam-

"“efeSt- the rgcent fT‘OSt famous application of them being theittéllly estimate unknown channel parameters are also possible,
erative decoding of interleaved concatenated codes [7], [8]. TQ for example in [21]-[23]

Bahl, Cocke, Jelinek, and Raviv (BCJR) algorithm [2] is base

on a symbol-wise maximum posteriariprobability (MAP) cri- lrﬁ:duction of soft-input soft-output (SISO) algorithms was previ-

terion and proves to be optimal for estimating the states or out- .
puts of a Markov chain observed in white noise. This algorithr%USIy addressed. As an example, RSSD may be straightforwardly

is rather complex to implement because of the following applied to a soft-output Viterbi algorithm as in [24] (see also [6]
for a recent application). Other applications were brought to the

1 P_r_o blems of numerical representation of very low probag i, attention during the review process [25]-[29]. Most of
bility values_; N the algorithms proposed in these papers deal with ISI channels
2) Use of nonlm_ear funct_lor_13, _ . and none considers iterative decoding. Reference [25], mentions
3) Numerous mixed multiplications gnd_ addmon_s _ theuse of RSSD to simplify the forward and backward recursions
_In order to r_educ_:e these_problems, realizations of th_ls algontrmaa BCJR algorithm employed as a soft-output equalizer in a
in the logarithmic domain have been proposed, which resultdy, . ,ency selective channel. In [26], a soft-output equalizer with

useful simplifications [9}-{11]. soifjk-decision feedback is derived from a modified version of

The application of the principle of RSSD to the complexity

Whenever the overall transmission system can be considefgd | o algorithm [30] for a minimum-phase channel impulse
as finite memory, the receiver has to take into account the overr%l ponse. Itis also shown that the algorithm there proposed may
memory In a trellis 'dlagram.. For ex‘?‘mp'e* th[s IS th'e case fo 2 given an equivalent formulation by introducing a backward
convolutional code in an additive white Gaussian noise (AWG ; AR .

L . recursion, making it similar to the BCJR algorithm. In [27], a
channel and/or a finite intersymbol interference (ISI) channel; . . s - :
. : ) : . family of Bayesian conditional decision feedback estimators are
A frequency nonselective fading channel is not rigorously finite i . . : :
proposed, the T-algorithm is applied to reduce the complexity,
and the possibility of applying RSSD techniques is mentioned.

Manuscript received April 26, 2000; revised November 22, 2000. This workhis idea is further developed in [28], where reduced-complexity
was supported by Ministero dell'Universita e della Ricerca Scientifica e Tec- . f the fixed-| ft. | ithm i d di
nologica (MURST), Italy. This work was presented in part at #BEE Inter- versions of the fixed-lag soft-output algorithm introduced in [5]

national Conference on CommunicatioifiCC'00), New Orleans, LA, USA, are proposed based on the application of the T-algorithm and
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A reduced-state BCJR algorithm similar to that here prendgy (e ) are proportional to suitable probability density func-
sented and its application to iterative decoding was proposi#ehs. They depend on the particular trellis branch and their ex-
independently in [31] at the same time of the first presentatigmessions can be specified for the transmission system under
of this work [32]. considerationP{a;} and P{S~(ex)} represent the priori

The paper is organized as follows. In Section Il, we give probabilities of information symbat;. and beginning state of
general definition of BCJR-type algorithms. In Section IlI, wéranchez, respectively. If the symbols a priori equiprob-
propose a reduced-state BCJR-type algorithm in general teri@gle, these probabilities reduce to constants. On the contrary,
In Section IV, we consider examples of application of the prdf the algorithm is used in an iterative decoding process, these
posed technique for ISI channels, noncoherent channels, Prebabilities in general are not constant in successive iterations,
Rayleigh flat-fading channels. Numerical results are present@@dd must be explicitly considered.

in Section V. Conclusions are drawn in Section VI. A proper normalization ofi(ex), ax (ex ), andBy (e is nec-
essary in order to correctly express #heosterioriprobabilities

in (1). However, an arbitrary normalization of these quantities
would scale the resulting posterioriprobabilities by a factor

An information source emits a sequence of independent amtlich would not affect the correctness of the algorithms under
identically distributed information symbalg which is possibly consideration. As a consequence, we take the notational liberty
encoded and transmitted through a channel. We assume thaf denoting byP{a;|x¥} ascaled versiorf thea posteriori
soft-output algorithm can be devised to computesthesteriori  probabilities and referring to them asposterioriprobabilities
probabilities of the transmitted information symbols or good afer simplicity. Similarly, we refer toy,(ex.), ax(ex) andsi(ex)
proximations of them as in [6]. The calculation of these protgs probability density functions, although strictly speaking they
abilities is generally based on the observation of a suitable $aay be so except for a normalization constant. If necessary, we
guence of samples at the input of the receiver. We denote this@&y further relax the terminology by referring to probabilities
quence by A {x}H<_,, whereK is the transmission length and probability density functions and using the relevant notation

and vectorx,, is the observation at theth signaling interval. even if an approximation may be involved.

This vector notation accounts for possible multiple observationsSimilarly to the B.C.‘]R algqrithm, We assume that we can
at thekth signaling interval. compute the probability density functions,(ex) and Fx(ex)

Let¢ be the number of properly defined receiver trellis state%ﬁﬁrgﬁqan; +Of fo;vg/atlrr]cé f?:gl gg?gvg?{gr:;%urs'\?vgsm[g’ VEIGI‘i]t,eW].
which depends onthe modulation format, the presence of coding; 95% (ex) on y

Il. BCJR-TYPE ALGORITHMS

the channel model and possible approximations.dietlenote  «y,(ex) = Z r(er—1,ex)op_1(cp_1)
the trellis state at epodh For simplicity, we assume that a single en_1:5F(en_1)=5"(e)

information symbok;, is associated with a transition from state p {8 ( N @)
S}, to stateSy41 and there are no parallel transitions. The exten- k-1

sion to more general cases, such as convolutional codes with rafee (ex) = > Prt1(er; rt1)Pryi(Cr)
k/nandk > 1 ortrellis coded modulations, can be easily ob- ert1:5t (en)=5"(en+1)

tained by a suitable notation. To simplify the notation, we also as- - Pla(ert1)} (3)

sume thaty, € {0,...,M — 1}, although in generai, could . )
belong to any\/ -ary set. Therefore, a trellis section is characte\g\—ggﬁlreszfgl(eeg_16%3 asm?y d)é‘;’égft’;/’ (?l‘];lc)tl Oanrse titg;[a?rlwe,g gr?zral
ized by (M branches, each of them being uniquely identifiem de eno] on two consecutive branches 33 ) we '
by the couple of states it connects. We denote the branch Wh('jceﬁ:wyote t?we information symbol “lost” in trans.itiof“:_i "
/ ' ; —1, 1.€.,

connectssy, = m’ 10 Sgq1 = m by ex(m’,m) and the infor- "4 symbol in the initial staté(e,_;). The couple
mation symbol which drives this transition byey). et ) 3((34 }) uniquely identifiesS—(cx 1). In (2), the

With these definitions, we assume that a good approxmau&ﬁ ,kfltv g kal I?th yt it ¢ k*ﬁl*'l Lt t, q
of thea posterioriprobability of symboks;, can be determined SUM IS €xt€naed over all the transitions of €épaca 1 that en
on the basis of the considered observations. We denote this vAiLH€ initial state of branchy. The sum in (3), relative to the
by P{a.|x"} and assume that it can be expressed, in analoﬂ? lis section at epoch + 1, may be interpreted similarly.

with a generalized version of the BCJR algorithm [2], [6] as We may also define reliability values of each symtaglwith
respect to a reference symhbal = 0, by considering loga-

Plag|xX} = P{ay) Z yeler) o (er) Buler) rithmic likelihood ratios of the following type
exialer)=ax Liap =) 2 Plag = i|xK
- P{S7(ex)} ar=0,....,.M -1 P{a, = 0]xI
k=1,...,K. 1) = In P{as = i|x{} — In P{ay = O|x{*
P{ak = L}
The sumin (1) is extended over all transitions of epbelssoci- = in m

ated with information symbal;.. The quantities;, (ex ), ax(ex)
> wlen)an(en)Biler) PLS™ (er)}
1As customary, we do not use a specific notation to distinguish between +1n enialer)=d
random quantities and their hypothetical values. Specific@l, } denotes Z ’Vk(Ck)Oék(Gk)ﬁk(Ck)P{S_(Gk)}
thea priori probability that the information symbol at titeh epoch takes on
the hypothetical value,.. A consistent notation is used throughout and the
correct interpretation should be clear from the context. i=1,2,...,M—1. (4)

er:aler)=0
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The second term in (4) represents the generated extrinsic infar-each epoch, a (vector) samptg = (x;”,...,x;")) at
mation, that is the component of the likelihood values to be fede output of the channel. Generalizations to the case of
back in an iterative decoding process (as an example, see fKlersampling or multiple decoder inputs are straightforward.
[8]). Equations (1)—(3) can be reformulated in the logarithmiDenoting byL the length of the discrete-time overall impulse
domain [9]-[11]. response, each samplg, will depend onL code symbols

We remark that the algorithm described by (1)—(3) reduceste, _r+1,-. ., ¢x).
the classical BCJR algorithm [2] in the special case of strictly We consider a trellis diagram with a reduced number of states
finite memory. In this case, the probability density functiong’ < ¢ and denote its generic state by. Following the prin-
a and B depend on transition, through a single stat§. ciple of RSSD [17]-[19], we define the state reduction by as-
Moreover, ;. and¢x41 depend on a single transitian, and suming that a transitios, = (s, sx41) in the reduced trellis
reduce toy,_; and~y41, respectively. diagram is equivalent to a sequen@g.—g+1,...,ax) of in-

The proposed formulation of BCJR-type algorithms genergbrmation symbols, with) < V.3 The central point is that,
izes the classical one [2] and may be suitable for specific detesen with this reduction of states, knowledgdo#- 1 informa-
tion problems characterized by strictly unlimited memory. Agon symbols is necessary in order to spediy_y, ..., cw),
an example, the noncoherent BCJR-type algorithm proposedyRich is required to compute,, 1%, andés. Hence, for a given
[6] is obtained by truncating the infinite memory of the considransitione;,, we need to estimate symbatg_; for i > Q in
ered channel and falls within the considered formulation. In fagtder to compute the metric. According to RSSD, this estimate
in [6], the expression of tha posteriori probability involves could be obtained by tracking the survivor of each state in the
a probability density function;. which depends on a singleredyced-state trellis. However, how could we define a survivor
transition, the forward and backward recursions involve proy this case?
ability density functions/ and;. which depend on two suc- A «fy|-state” BCJR-type algorithm runs first a forward re-
cessive transitions, ang and 3, depend on a transition (ot ¢ysjon to computev(c; ) for each transitiore;, and epochs
on a state). As shown in the Appendix, two alternative formula-_ 1 o i As shown in (1) and (2)3x is associated with
tions of a BCJR-type algorithm may be conceived but none rgyransitione,, instead of a single staf, as in a classical case.
duces exactly to the classical BCJR algorithm. The choice Oftp%nce, a “survivor” associated with a single transition has to
formulation previously described has several motivations. Firgla qefined. By considering the algorithm in the logarithmic do-

the alternative f_ormulat|ons dgscnbed in the Appendix 'nVOlVr?lain, the forward recursion ofy, ((2)) can be expressed as
augmented trellis diagrams with larger number of states. As this

paper deals with reduced-state algorithms, it would be contra- 7, (¢,) 2 1 ar(er) =In Z
dictory to begin with augmented trellis diagrams. Second, the ex 155" (cn1)=5—(ex)
described formulation is easily reduced to the classical BCJR al- — _

gorithm when the overall memory is finite, as opposed to the al- ' eXp{z/”;(e"‘—l’ ex) + tp-1(er-1)

ternative formulations (see the Appendix). Finally, the described +ln P{a(er—1)}} (5)
formulation is consistent with that adopted in [6]. . A

where ;. (ex—1,er) = lnyp(er—1,er). We can approximate
[Il. REDUCED-STATE BCJR-TYPE ALGORITHMS this recursion by the “max-log” approximation as follows [9]

A BCJR-type algorithm formulated as in Section Il requires ar(er) =~ max {(er—1, cx)
the calculation of essentially two kinds of probability density eh—1:5F (ex—1)=57 (er)
functions:;, which depends on a single transition, ahdand + @1 (er1) + In P{a(er_1)}} (6)
¢r, which may depend on two consecutive transitions. Let us
assume thaf code symbol$c§€1), . cé”)) are generated by a In (6), it is intuitive to interpret the term to be maximized as a
single information symbok,. By using a vector notation, we “metric” associated with a path ending with transitian as in
denote this sequence of code symbolspy= (", ..., ") a classical Viterbi algorithm.

and refer toc;, as the code (vector) symbol at epokhlIn Considering the reduced-state trellis and assuming we know
general, a single transition can be relateda@ode symbols, the survivors of each transitiof,_;, we now show how the
thatisex = (cxk—n41,-..,Ck), Where the symbak denotes survivors can be extended to time instéanby using the for-
a one-to-one correspondence between transitiorand the ward recursion. We may define blii,@j(ek_l) the sequence
sequence ofV code symbols. The parametaf is related to of ; transitions reaching epoch — j along the survivor of

the channel and/or the detection strategy. As an example, f@insition ¢,_;, i.e., E}EZ) (enm1) = (Baejmitty s ney)
an AWGN channelN' = 1 in the case of coherent detection_ (Gh—jieg 2y - - - &k_j__’QH)_ Each transitioné;_;, for
whereasN is the assumed phase memory for noncohere T S . : '

: . : ) Jyeenf i —1HINEY” (e d information symbol
detection based on the algorithm proposed in [6]. A smg{g% {7,--,7 +i=1}in B y(ep—1) andinform Yy

ar—j_n, fork € {@ —1,...,Q + i — 2}, depend on the

'—Q)

branch can be related % information symbols, that ig;, = o v
transition ¢,_;. Hence, the couple(E;” ;™ (ex_1), €x—1)

(ax—v+1,--.,ax). The relation between intege¥s(relative to ! ¢ - - -
information symbols) and/’ (relative to code symbols) dependé{”'quely |dAent|f|es the sequence of mformaﬂgn symbols
on the coding structureWe assume that the receiver observe§@s—v, - - -, 4k—Q—1, #—q; - - - » ak—1) Where{az_;} 5, rep-

resent the information symbols in the path history of transition
2If the considered code is recursive, as it is usually for turbo codes, one should
consider some encoder state variables together with the information symbols ifMore complex techniques based on set partitioning may also be employed
the definition ofS, ande, [6]. [17], [19].
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ex—1. Similarly, we can extend a couple of transitidps_1 , ) o O o
inorderto get” + 1 information symbols. With these definitions, /){‘

it is easy to extend the survivors by a step, i.e., to egadn ? O ° ’
the reduced-state trellis, taking into account pﬁl,ﬁ@_l(ek_l) 7 °© ° ©
associated with transitions at epdeh- 1, (6) reducesto ° ° © ©
(oY O o o)

— 7 (pV-Q)
ax(ex) ~ max {1/1k(Ek_2 (€r—1),€r—1,¢k) ) : o o’ o

ex—1:5T(ep—1)=s"(er) .

_ o :
+ @-1(ex-1) + InPla(er_1)}}. @) k—V k=3 k-2 k-1 k  k+1 k+2
%/—)

For each transitiort;, the branche;*¥ that maximizes (7) BV T (1), bty €8) = (XNt -+ X5)

should be stored.
During the forward recursion, a “full-state” BCJR-type algoFig. 1. Forward recursion of the probability density functien(e,) for a

rithm does not necessarily make a selection between the metfgieral reduced-state BCJR-type algorithm.

of the paths terminating with a given transitieppas shown in

o] o] o] e} o]

(6) but rather determines a new mettig(c;) as an average . 3 Buler) 3
of these path metrics as in (5). Similarly, in the reduced-ste

trellis equation (7) does not necessarily have to be used to cc ° i i Br-1(€x—1) ’

pute«y(ex) but only to determine the survivor associated witl . . © o0 © © °

transitioney,. o o o . o

We note that the concept of survivor associated with a tran a. oo °

tion can be reconciled with the classical one by properly definit o

[e]
anaugmented trellis diagram, to be used in the forward and ba : \
ward recursions, and reformulating the described BCIJR-type ;. _y, k=3 k-2 k-1 & Earl k42
gorithm. The Appendix describes this possible formulation. -
In the reduced-state trellis, it is necessary to keep track of t EY3P(e ) (Y 7D (e1m1), hos €6) = (RboNaDs- -+ %8)

survivors associated with each transition, at each epoch, in the

forward recursion oty only. In fact, these survivors may beFig. 2. Backward recursion of the probability density functigi(e,) for a

used in the backward recursion @f and in the calculation of general reduced-state BCJR-type algorithm. The mefrits calculated using
- i . - _the survivor map previously built in the forward recursion.

the probabilityP{a;|x{* }, by evaluating the probability density

functionyy, in (1). We will refer to the ensemble of the survivors B gt he initial and final ¢

generated in the forward recursion as “survivor map.” The badi€res ™ (¢x) ar:j sT(eny1) are tle initial and _mahstaters] 0

structural idea can be further generalized. In fact, it is not ngg@nsitionse; ande;.1, respectively. In Fig. 1, itis shown how

essarily the forward recursion which allows the construction e forward recursion proceeds in the reduced-state trellis ac-

a survivor map to be used in the backward recursion. One cogRf@ing to (9). In order to compute (), one should consider

build a survivor map during the backward recursion (run firsi)€ 44 Probability density functiong e (ex—1)} such that

and use it in the forward recursion. Finally, one could build twd (“t—1) = s~ () and, for each of them, compute the branch

distinct survivor maps during the forward and backward recu@etricz/)k by _c_onsidering the symhals assoqiated with the sur-
sion, and consider an extendegin the combination (1). In the vivor of transitione;, ;. The backward recursion proceeds sim-

rest of this section, we will refer for simplicity to the case of 42 using the survivor map generated during the forward re-

survivor map built during the forward recursion but generaliz&HrSion. as shown in Fig. 2.

tions of the proposed formulation to the other cases are possible/ WO logarithmic simplified versions of a reduced-state

Given the above definitions, we can reformulate (1)—(3), Oll;B_CJR-type algorithm may be considered. A first one is derived

by applying the max-log approximation [9], [10] to (8)—(10).

taining e A — A ;
By defining¥,, = lny andy, = Iny, (9) can be approxi-
P{CLMX{(} = P{ak} Z ’Yk(E]EY;Q)(Fk)7 fk) mated as follows
epaler)=ay — A (V-Q)
arler) ~ max br(E2" €h—1), €k—1s €k
o) (e PLs™ (ca)} @ TH= e B e G )
onler) = > + @1 (en_1) + In P{a(er_1)}} (11)
er_1:8T(en_1)=5"(ep
(v—) ) Similar logarithmic extensions hold for (8) and (10), by defining
wk(E( Q)(kal) €—1 Gk) - A - A . . .
k—2 ’ ’ B, = Inp, and ¢, = ln¢y. This version of the algorithm
-Ozk_l(ck_l)P{gL(ck_l)} (9) would be motivated, besides complexity reduction, by the fact
Buler) = Z that the forward recursion af;. allows to determine the sur-

vivors without additional operations. In a second logarithmic
V@) simplified version, the max-log approximation for the forward
Pt (B (), ek €nt) and backward recursions is maintained but a “full” combina-
< Brar(ens 1) Plaleay1)} (10) tion is considered in order to computeP{a;|x }. Hence, we

ertrist (en)=5"(ext1)
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may retain (11) for the forward recursion @f, and the corre- v ‘ (,3‘/\

sponding one for the backward recursiondfin combination O, O
with the use of (8), which in the logarithm domain becomes ... © ce “
o o]
In Plag/xf} = mP{a} +In o o
epialer)=ax .
;o o o
cexp{TL(EL T D), @) + Tnler) : ,
+ Bilen) + In P{s™(ex)}}- (12) k-L k=3 k-2 k-1 &k  k+1
%/—/
This second method, referred to as “hybrid” method, tries i1 (B9 (57 (en1)), €-1) = Xio1

fully exploit the reduced information carried lay, andz3,, be-
cause of the approximated recursions and will be consideredrign 3. Forward recursion of the probability density function(s) for

the numerical results the reduced-state BCJR algorithm in the case of coherent detection over ISI
. ’ . channels.
The computational complexity of the forward and backwaro‘1

recursions is related to the number of branches in the receiver

trellis, which is proportional to the number of states. Hence, Brler) = Pr(ST(en)) (17)
the complexity of the proposed reduced-state BCJR-type algo-

rithms is approximately (V' =@ times less than that of the full- P{Si} = ] Plan—i} (18)
state case. =

With the introduction of the concept of survivor aSSOCiatqﬂlhere symbob( denotes proportiona"ty_ The genera| formula-
with a transition, further generalizations to PSP techniques [2@bn (1)—(3) can be specialized to this case by letifig= 1 and
such as those considered in [21]-[23], [33], are possible with — [, (that is, the receiver observes a single samplat each
taking into account that a single step in the recursions 0fe®och).

BCJR-type algorithm could involve two consecutive transitions. |fthe impulse response of the equivalent time-discrete channel
{fi}L, has minimum phase [17]-[19], [34], an efficient re-

IV. EXAMPLES OF APPLICATIONS duced-state trellis diagram is obtained by defining a state-
(ax Q+1,.. ,ar—1),With@ < L, and, consequently, atransi-
As examples of application of the above reduced-staign., — (Sk,8k+1) = (ax_g41,. -, ax). Hence, searching

BCJR-type algorithms, we consider the case of cohergRtihe path history associated with staxe_ 5™ (ex), We may
detection for ISI channels (assuming perfect knowledge of tB@termlneE(L Q)( ~(ex))=(@r—r41, -- -, ax—c)and obtain

ISI channel coefficients), noncoherent detection as proposed
in [6], gnd detection based on linear prediction for Rayleigh ’Vk(E,EL,IQ)(S_(Ck)),Ck)
flat-fading channels.

Q-1 L—1
-~ 2
Tr — Ap—iJi — ar_ . 15
A. ISI Channels |2k Z w—if, E: k5 1]

i=0 i=Q
X exp{ — 557 (29)

In the case of an ISI channel, we assume uncoded transmis-
sion; henceg; reduces toz;,. The observation samples at the
output of a whitened matched filter, can be writtenaas =
S Fak_ifi + wy [34]. The noise sample$w;} are real
independent Gaussian random variables, with zero mean and P{si} = [ Plar—i}- (20)
variances?. The distortion on the elementary shaping pulse =

makes the samples, dependent orl, information symbols, |n Fig. 3, it is shown how the forward recursion proceeds in
each weighted by a different coefficierff. By defining the the reduced-state trellis in the case of coherent detection over

state asSy = (ax—r+1,...,ak—1), it is easy to show that an |S| channel. Sinces, depends on a single staie and not
the classical BCJR algorithm can be directly applied withp g transitione,, each forward step involves a single transi-
er = (ar—r+1,---,ax) [2]. Hence, the probability density tion. In this case, we associate with each state states;_1,
functions which appear in (1)-(3) reduce to chosen among the beginning states of Mebranches ending
o in s. The backward recursion proceeds similarly, by using the
9 survivors selected during the forward recursion. As one can see
o — Za" ifi from Fig. 3 in this case, the concept of survivor coincides with
Yr(er) o< exp § — Z;z_? (13) the usual one. With the definition given for stateand transi-

tion e, a®(ex—1) in (11) reduces tax_q. The expression (11)
for the forward recursion reduces to
Yrlen—1, ex) = Yrler—1) = m—1(er—-1) (14) (L-0)
fa? . = d . E (e , €k—
Prt1(ers ery1) = Pry1(ert1) = Tnt1(ertr) (15) an(sk) ek,l;sir%lil):sk{wk—l( ho2 (57 (k1)) k1)
ag(er) = (5™ (ex)) (16) +ap-1(s" (1)) + In Plax_o}} (21)
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Br41(8h4)
o o

o o o
© Bi(sh) o » o o
0] o) Nyt e)
o o . O ©
© o \\O\\ o
o o o) 0
k-1 k k+1 k+2 k+3 kE+L-1

——
(e BS54 ()))) = xi
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because beyond the scope of the paper. Related aspects are dis-
cussed in [22].

B. Noncoherent Channels

In the case of noncoherent decoding, we refer to the BCJIR-
type algorithm proposed in [6]. We may express this algorithm
in terms of the general formulation given above with =
landN > 1 (hence, the receiver considers a “window” /gf
consecutive samples at each epoch). Denoting.pyhe en-
coder state, the “decoder state” is definedy= (ap—1, ...,
ap_N4+1, Nk—N-i—l) [6], hencee;, = (Ck, . 7Ck—N+1)- In this
case, the probability density functiong, vx and¢;. appearing
in (1)—(3) specialize as follows

Fig. 4. Backward recursion of the probability density function(s,) for
the reduced-state BCJR algorithm in the case of coherent detection over ISI
channels. The survivor map is built during this recursion.

and (12) reduces to

me(er) = p(xsz+1|@k)

1 N—-1
X exp {_ﬁ

=0

[Ixr—il® + |Cki|2]}

N-1
: 1
In P{ax|[x¥} = In P{ax} +1n Z g <§ Z Xp_ici . ) (23)
erialer)=1 =0
Pr(en—1,ex) = p(Xp—n X’;i_NH, Cx—1, k)
exp { T(ELT D s () ) 2 2
CXP § Vel k) Ck [|Xk—N + |Ck—N ]
X eXpq — 552
+an(s™(ex)) + Br(sT(en) Ll
Q-1 o[ = Z oH
0 Xk—iCp_;
+> InP{ap_i}p. 22 <02 — )
Z {ar }} (22) , i (24)
- N-1
1 H
If the overall impulse responds; }-—' is maximum phase, lo | — Zxkﬂ'ck—j
efficient definitions of trellis state and transition may be =0
s, = (Gr—L41,---> Ok_L4Q—1) and€§€+1 = (@r—r41,---> Prlen—1,61) = p(Xk|X];:j\m6k—1,6k)
ar—r+¢), respectively. As mentioned in Section Ill, a new ver- [Ixx 2 + |ex|2]
sion of a reduced-state BCJR-type algorithm can be conceived, X €exp {—T}
which starts with the backward recursion, builds a “survivor N
map” compatible with the new reduced stafe and runs the lo 1 ZX’“ oH
forward recursion. Related reverse-time processing structures, o? prd Tk
suited to impulse responses with energy concentrated toward the ’ ~ (25)
end, are considered in [37], [38]. In this “specular” version of the lo 1 ZX’“ eH
previously introduced algorithm, during the backward recursion o2 o k=
the information symbat,_ 1+ is relative to the transition from
states; |, to states; and symbola,_r.+¢ is discarded. The where[-]” is the transpose conjugate operator.
formulation is a straightforward extension of that previously By defining a reduced state as = (ax—1,...,ak—Q+1.

introduced, the only modification being a termination of thg,_o,+), with @ < N, atransition in the reduced-state trellis
reduced-state trellis necessary to better initialize the backwayecomes, = (cr—g+1, ..., cx). Hence, the probability den-
recursion. Fig. 4 schematically shows how the survivor map cgity function-y, can be expressed as
be built during the backward recursion. The survivor may be
denoted b)Egcﬁ—_lQ)(sl-i—(e/k-kl)) = (An—L+Q+1, - - -, ), Where
5’7 (¢j41) indicates the final state* . of transitione), ;.

This example leads to a more general conclusion on the pos-
sible applications of the proposed technique. Survivor maps can
be built during both the forward and backward recursions, de-

(BT ) )

. N—
= p(xb_n BT (@), )

Q-1
1
 exp {——202 Sl + |ck_7¢|21}
=0

pending on the overall channel impulse response and, conse- N_1
quently, on the structure of the received signal samples. As an - exp 1 [xa—j]? =+ |€x—; ]
example, a proper use of survivor maps built during both recur- 202 i—o

sions may prove useful if the overall impulse response is “mixed

phase.” A specific investigation of this case was not performed e

Q-1
1 R
o o E Xk—icf_ﬂrg Xp—j€i (26)
i=0 i=Q

4For example, if a causal whitening filter is selected.
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and (8) specializes as follows Once the survivor map has been determined during the forward
recursion, the probability density functign, used in the back-
P{ap|xEY = P{ag)} Z w(EN T ), en) ward recursion, can be calculated
Ek:a(ek)zg“ . (/)k(E}EJE;Q)(kal)aekfl,Gk)
. ak(ﬁk)ﬁk(tk) H P{ak_i}. (27) :p(xk|x2:}\”E£ﬁ2 Q)(Ck—l)ack—lack)
i< { [k 2 + e ] }
Xexpy ——— 53—
The survivor map is built during the forward recursion and 20
employed in the backward recursion and to evalyati (26). 1|9t N R
Referring to the original formulation proposed in [6], the exten- lo ) Zxk*icl{‘{—i + Zxk*jcl{‘{—j
sion of the previously introduced general recursions is not im- ] =0 i=Q . (31
mediate. Noting that®(e,_1) = ar—g, the forward recursion Q-1 N
=1 be expressed as follows b | L S xpicl 4+ > xp el
ONcaj = lnoyg can P 0 2 Z lxk,ZCk_i ; ka*JCk—j

ay(eg) == lllnax{ak_l(ek_l) +lnp(xf_ylar—q, ex)
41:71@ » - ) 28) C. Fading Channels
n AL — — N pPIX;_ ar ¢ ). . . . . .
b=q PAFr—n+1] We consider the transmission of differentially encodéehry

and (ax_g. ex) = (ex_1,ex), We replacep(xt_y|aw_o, ) W refer to the transmission system considered in [39] and
with p(xt EN-Q (ex_1), n_1,ex). The ch(;ice of the sur- denote byfpT the_normali_zed fading rate of the channel. We
vivor asé(;c]\iate]a_\?vitlak (that7 is,e}jé’f) is based on the max op- 25SUMe that each information symbglcorresponds to a group

) _ He _ (L) () _
eration. The termn p(x}_,,|ex) affects the exact value of oflogy M = 7 bits,i.e.ar = (g ",...,a, "), TheM-PSK

@x(ex) but it does not affect the survivor selection. Instead GMbPOlay is obtained by Gray-mapping the bits,”, . ag”).
computingln p(x}_ v, |e1) we propose to utilize;™%, deter- The differentially encoded/-ary symbols:, are defined by the
mined through the max operation and replace it with rulecy = arcr—1, Withco = 1(co acts as areference symbol).
The corresponding received signal at the matched filter output
Inp(xE_ni |E£11’2—Q—1) (XY, X ) canbewrittenas; = hxci, +wi, Wherethe channel coefficients

{hi} are complex random variables whose quadrature compo-

N 1 Q 2[|Xk P+ lens?] nents are independent, Gaussian with zero mean{apd are
202 pard - - samples of a zero mean complex-valued white Gaussian noise
N_1 process. The autocorrelation of the fading process is assumed to
+ % Z [xa_i]? 4 |ér_j|*] follow the classical isotropic scattering model [40].
20 1 Assuming that the information bits are independent within

Q-2 N1 each symbol, we can considB{a; } = P{ag)} e P{agf)}ﬁ
+1nl, 1 Z Xp_icil .+ Z xp_ el The proposed formulation gives theposterioriprobability of
o? o ' ! the M-PSK information symbol$ay }. If the interleaver works
(29) bit-wise, as in [39]a posterioriprobabilities of bits{ag’)} have
to be calculated. To obtain these probabilities (1) can be modi-
where the expressian~ y denotes that andy are monoton- fied as follows
ically related quantities. The forward recursion finally reduces P{agj) = jlxf

to = P{a,(j) =7} Z Y (er ) (S~ (er))

ma.x) e,k:a(e,k)(ﬂ:j

[e73 (Fk) ~ ak—l(gk—l
EST (@), ¥, o) BSHeNPLS (@} [[ P’y (62

i=Q-1

+Inp(xy y

i
—In (xk |E(J\Y*Q*1)(Cmax) emax ) . . ?él-
P\Xp—nNt11Ex—2 k—=1/2 Ck—1>k for j € {0, 1}. Since the channel coefficients;, } are unknown
+In Play_¢} in practice, linear prediction [41], [42] can be used. The branch
2, |5 2 icY —
Ty (1) 4 [|xx_n +2|ck_N ] metric, (ex) = Invi(ex) be?omes [39]
20 _ |.Tk — hkck|2
1 Q-2 N Tilew) ~ T 952
+Inlg 2 Z xk_icf_i + Z xk_jéf_j N 2
=0 j=Q-1 Tr — Ck anwk—ncz,n
Q-2 N—-1 n=1
1 R = — (33)
—lInly ; Z xk_icf_i + Z xk—jcl’j—j 201%re
=0 J=Q-1 SIn the case of an iterative decoding process, wme{reﬁ,”} are derived from

+1InPlax_o}. (30) input extrinsic information, this is an approximation.
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wherehy, is the fading gain estimate, is the prediction order,
{pn} are the prediction coefficients am:ﬁre is the variance

of the prediction error, which can be computed as shown in s

[43]. We may observe thag.c;_; = [];_p ax—;. By defining
Sk = (Gr—vt1,-

Wiener-Hopf equations [39]. Hence
2

v n—1
Tp — § pnxk—nHak—j
n=1 7=0

Fler) ~ —
2012,re
2
v n—1
|2k + lan? | > pnwr—n [ [or—
n=1 j=1
2012,re
v n—1
R xZGkZPnJCk—nHak—j
n=1 j=1
+ ; (34)
[0

pre

Noting that|ax|? and|z|? do not depend o, and defining

v n—1
A
g(Sk) = anaik—n H ap—j
n=1 j=1

we have

l9(S~ (ex))I?

2
201)re

I %{xzak!}(s—(ek))}.

2
al)re

iler) ~ — (35)

The first term in (35) depends ofi (e;) and should not be

neglected, unless one assumes perfect channel estimation.

-, ai—1), the corresponding trellis consists
of M¥~! states. Assuming that the autocorrelation coefficients
of the channel fading process are known, the optimal predic-
tion coefficientsp,, 1 < n < v are obtained by solving the
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10
— {’=2, L=5, Q=2
- O'=4, L=5, Q=3
A4 =8, L=5, Q=4
10'1 a--a £=16, L=5, Q=5
o—e No ISI ’
1072 1 iteration
0 _
o 6 iterations
10
10™
10°

4 5 6 7 8 9 10 11
E/N, [dB]

Fig. 5. Application of the proposed technique to iterative decoding/detection
over an ISI channel. Receivers with various levels of complexity are considered
and compared with the full-state receivér £ 16). The considered numbers

of iterations are one and six in all cases. The performance in the case of coded
transmission over an AWGN channel, without ISI, is also shown (solid lines
with circles).

rate (BER) versu#’, /Ny, E; being the received signal energy
per information bit andV, being the one-sided noise power
spectral density. In any component decoder we consider the
second simplified logarithmic version of the BCJR-type algo-
rithm proposed in Section Il (hybrid method).

In the case of coherent detection over an ISI channel, we
consider the scheme of turbo detection in [35]. More precisely,
we consider a binaryM/ = 2) transmission system character-

To reduce the number of trellis states, we proceed as in thed by a rate 1/2 16-state recursive systematic convolutional

case of an ISI channel. We may define a reduced state-
(ar—Q+1,---,ar—1),With@ < v, obtaining (the formalization
is identical to that used in Section 1V-A)

g(EETV (s (@), s (a))
v n—1
= anxk—n H Ak —j +
n=1 j=1

T B D (5™ (), en)

BV (s (@) s (@)

2
205,

| Rlapag(B (@), 5™ ()
a]?n‘e
Q-1 +

Pisiy = [[ [T Pl

i=1 j=1

Z Prnlr—n

n=Q+1

n—1
I1 a-s
i=1

(36)

V. NUMERICAL RESULTS

(RSC) encoder with generatofs, = 23, G» = 35 (octal no-
tation), followed by &4 x 64 nonuniform interleaver. The bits

at the output of the interleaver are sent through the channel by
a binary PSK (BPSK) modulation. The minimum phase dis-
crete-time channel impulse response is identified by the fol-
lowing coefficients: fo = v/0.45, f1 = v/0.25, fo = v/0.15,

f3 =+/0.10 and f, = +/0.05 [35]. The receiver is based on a
serial concatenation of a detector, which uses the reduced-state
BCJR algorithm with metrics proposed in Section IV-A, and
a decoder which is a SISO module [36]. The extrinsic infor-
mation is used according to the heuristic method proposed in
[44]. By trial and error, we found that a good performance
is obtained when the extrinsic information generated by the
inner detector is weighted (i.e., multiplied) by a parameter
equal to 0.3 and the extrinsic information generated by the
outer decoder is weighted by a parameter equal to 0.5. The
state reduction technique is applied to the inner detector. In
Fig. 5, the performance of the full-state receiver (inner de-
tector with { = 16 states) is compared with the performance
of the receiver with reduced complexity (inner detector with

The performance of receivers based on reduced-state BC§JR= 8, 4, or 2 states). In all cases, we consider one and
type algorithms in the three cases considered in Section IVsix decoding iterations. At six decoding iterations, the perfor-
assessed by means of computer simulations in terms of bit emzaince loss for a detector witfi = 4 states with respect to
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Fig. 6. Application of the proposed technique to noncoherent decoding
an RSC code. Receivers with various levels of complexity are considered ¢ E /N, [dB]
compared with a full-state receiver (wiffi = 3) and the coherent receiver.

Fig. 7. Application of the proposed technique to noncoherent decoding of
. . . . a turbo code. Receivers with various levels of complexity are considered and
the receiver without state reduction is only 0.75 dB at a BERmpared with a full-state receiver (wifii = 3) and a coherent receiver. The

of 10~%, and it reduces to 0.25 dB for a detector with=  considered numbers of iterations are 1, 3, and 6 in all cases.
8 states. For comparison, the performance in the absence of

ISI, that is for coded transmissions over an AWGN Ch‘"‘””%l‘ull number of states). In all cases, the considered numbers
is also shown. In this case, the receiver reduces to the o fliterations are 1, 3, and 6. The reduced-state BCJR-type
decoder of the RSC code considered above. algorithm with N = 2 and¢’ = 16 (Q = 1) exhibits a
Inthe case of noncoherent decoding, we first consider a singlé toymance loss of about 3.2 dB at six decoding iterations
16-state RSC binary code with generatGfs = 37, G2 = 21 it respect to the coherent receiver. Bér= 6 and¢’ = 64
and rate 2/3 obtained by means of puncturing, used as com&?-z 3), at a BER ofLl0—* a performance gain of about 1.2 dB
nent of the turbo code presented in [7]. The modulation format,,yiained with respect to the full-state case with= Q = 3
is BPSK. In Fig. 6 the performance of the noncoherent decodgl ihe same number of states £ 64). We conclude that
using the BCJR-type algorithm with metrics described in Sefie s of the proposed state reduction technique makes the
tion 1V-B is assessed for various Ievgls of s_tate reduction aﬁijgorithm proposed in [6] applicable, even for large values of
compared to that of a coherent receiver. With respect to a dgr o memory .
coder with V' = 3 and( = 64 states (full complexity), for * ginajy we consider transmission of differentially encoded
N = 6 and(" = 64 states the performance is appreciably iMyaternary PSK (QPSK) signals over a flat-fading channel, as
proved at low signal-to-noise ratios (SNRs). F6r= 2 and i [39]. The outer code is a 64-state nonrecursive convolutional
¢’ = 16, the performance loss with respect to the full-state rgnqe with generator§; = 133 andG» = 171. This code is
ceiver with V' = 3 is less than one dB for every SNR, and regoncatenated, througléa x 64 nonuniform bit interleaver, with
duces to only 0.5 dB at SNRs above five dB. an inner differential encoder. In fact, bit interleaving is an ap-
We also consider noncoherent decoding of a turbo cofgopriate means to combat the effects of fading [45], [46]. The
having as component codes those described in the previgig$malized fading rate i, 7" = 0.01. The differential inner de-
paragraph [7]. The two component encoders are parallelly cqBetor uses linear prediction and the state reduction technique.
catenated by a2 x 32 nonuniform interleaver. At the receiver,|n Fig. 8 the performance of the full-state receiver, with predic-
each noncoherent component decoder uses the reduced-gi@t€orderr = @ = 3 and 4, respectively, is compared with
BCJR-type algorithm described in Section 1V-B. In this casge performance of a receiver with various levels of complexity
too, the extrinsic information generated by each componesgecified by the couple of parameters @). In all cases, we
decoder is passed to the other one by following the heuristignsider one and six decoding iterations. At six decoding itera-
method proposed in [44]. By trial and error, we found that thgons, a detector withr = 3 and@ = 2 exhibits a performance
best performance is obtained when the extrinsic informatiofagss of only 0.2 dB at a BER dfo—*, with respect to a full-state
generated by both the component decoders are weighted lyne ¢ = @ = 3). Forr = 5 and@ = 3, the performance gain
parameter equal to 0.3. Fig. 7 shows the performance of twih respect to a full-state receiver with= 3 is about 0.6 dB at
receiver for various levels of state reduction, specified by tlEeBER of10~%. For comparison, the performance curve in the
values of N and{’, and compares it to that of a coherent recase of perfect knowledge of the fading coefficients (coherent
ceiver and a noncoherent receiver with= ¢ = 3 and{ = 64 decoding) is also shown.
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one because information symb@] now appears in the state
definition. In this augmented trellis, we may identify a transition

1 iteration

10 asé& = (Sk_1,Sk). With these definitions, we may rewrite
6 iterations recursion (2) as
102 (S = Y. @ano1(ST(&)Pla(E)} (37)
ék:5+(ék):Sk
o N whereS~ (&) andS*(¢;) are the beginning and ending states
o 10° of transitioné;, respectively, and the sum is extended over all

transitions ending irSy,. The forward recursion (37) now re-
duces to that of the classical BCJR algorithm, except for the
more general use of the probability density functigr(é,). A
similar conclusion also holds for the backward recursion. How-
——a v=4, 0=3 ever, let us consider the “central” combination (1), which gives
v v=5, 0=83 3 thea posterioriprobability of an information symbai;.. Unlike

s a classical BCJR algorithm, if this combination is expressed in
terms of states and transitions in the augmented trellis, the fol-
lowing consequences arise: 1) the probability density functions
ay andfy, depend on states relative to the same time instant and
Fig. 8. Application of the proposed technique to iterative decoding/detecticd®) the sum must be extended ougM/ of the possible super-

through linear prediction, for flat-fading channel. Receivers with various lev % ; :
of complexity (in terms of prediction order and reduced state parametg)y egtates{Sk} at epoch, thatis over all states characterized by the

are shown. The considered numbers of iterations are one and six in all ca§&¥1sidered symbal,. (and not over all states). Therefore, even
The performance in the case of decoding with perfect knowledge of the fadifighis alternative formulation would entail a forward recursion

coefficients is also shown (solid lines). in a form similar to that of a usual BCJR algorithm, it would still
exhibit differences in this central combination.
In a second alternative formulation, forward and backward re-

A cl ¢ BCIR lorith has b defined cursions may be computed on the augmented trellis, whereas the
class o JR-type algorithms has been defined as @Bntral combination may be computed on the original trellis. In

extension of the well-known BCJR algorithm, whenever tht‘i”]is case, the BCJR-type algorithm is similar to a classical BCJR

channel memory is not finite or partially taken into accounbut the two recursions and the central combination must be re-

Similarly to the BCJR algorithm, thg proposed_algorithms "Ured to two different trellis representations in order to consider
a forward and a backward recursion. Techniques for stafe:

lexi duction for th lorithms h b introd ingle step as involving a single transition. Specifically, in the

gompzjexny red UCtIé)n orthese a gorltdms ave _?En Intro uc?divéard and backward recursions an augmented trellis must be

ased on reduced-state sequence etection. The _st_r_uctur s8d with) times the number of states of the trellis relative to
the proposed BCJR-type algorithms leads to the definition o Re -

X ) d . . central combination.

survivor associated with a trellis branch (instead of a state). De-
pending on the structure of the system memory, a survivor map
can be determined during one of the recursions and used in the
other one. Alternatively, two survivor maps can be computed References [24]-[29], [31], and [33] were brought to the au-
(one for each recursion) and suitably combined when genéghors’ attention during the review process. Three anonymous re-
ating a posteriori probabilities. A reduced-state BCJIR-typeviewers and W. H. Gerstacker are gratefully acknowledged.

algorithm is well suited for iterative processing applications.

— Coherent
- v=3 (0=3)
4 | ®e v=4 (Q=4)
—e v=3, Q=2

E/N, [dB]

VI. CONCLUSION

ACKNOWLEDGMENT

In the considered examples, the proposed reduced-state BCJIR-
type algorithms are effective for appreciably limiting the |4
receiver complexity with minor performance degradation or
improving performance for a given level of complexity.

(2]
APPENDIX 3]
The considered formulation of a BCJR-type algorithm dif- )

fers from that of the classical BCJR algorithm [2], although it
reduces to the latter when the channel is strictly finite-memory.
In this Appendix, we show that two alternative equivalent for- [
mulations of a BCIR-type algorithm exist, but none coincides
exactly with the classical one.
Let us define an augmented “super-staﬁi’@”in a one-to-one

correspondence with a transiti@p. The number of states of
this augmented trellis diagram & times that of the original

(6]
(7]
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