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Abstract—In this paper, we present a general approach to
finite-memory detection. From a semi-tutorial perspective, a
number of previous results are rederived and new insights are
gained within a unified framework. A probabilistic derivation
of the well-known Viterbi algorithm, forward-backward, and
sum-product algorithms, shows that a basic metric emerges natu-
rally under very general causality and finite-memory conditions.
This result implies that detection solutions based on one algorithm
can be systematically extended to other algorithms. For stochastic
channels described by a suitable parametric model, a conditional
Markov property is shown to imply this finite-memory condition.
This conditional Markov property, although seldom met exactly
in practice, is shown to represent a reasonable and useful ap-
proximation in all considered cases. We consider, as examples,
linear predictive and noncoherent detection schemes. While good
performance for increasing complexity can often be achieved
with a finite-memory detection strategy, key issues in the design
of detection algorithms are the computational efficiency and the
performance for limited complexity.

Index Terms—Adaptive detection, finite-memory detection,
forward-backward (FB) algorithm, graph-based detection, iter-
ative detection, maximum a posteriori (MAP) sequence/symbol
detection, sum-product (SP) algorithm, Viterbi algorithm (VA).

1. INTRODUCTION

HE PROBLEM of decoding and detection over noisy

channels has long been considered in the literature. In par-
ticular, the Viterbi algorithm (VA) [1], [2] provides an efficient
way to implement the maximum a posteriori (MAP) sequence
detection criterion, based on a suitable trellis diagram descrip-
tive of the communication system. The key characteristic of the
VA is the recursive computation of path metrics associated with
a number of surviving paths which is kept constant and equal
to the number of trellis states.

In [3], an efficient algorithm to compute the a posteriori
probability (APP) of a particular symbol, with complexity on
the same order of the VA, is proposed. This algorithm allows
therefore to implement exactly the MAP symbol detection
criterion. The trellis-based algorithm derived in [3] and usually
termed, after the authors, BCJR algorithm, is based on a for-
ward and a backward recursion, and it is thus also referred to as
forward—backward (FB) algorithm. The discovery, in the early
1990s, of turbo codes [4]-[7] and of the concept of iterative
decoding' has called for soft-output algorithms, i.e., algorithms
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I'This concept can be originally found in [8], but was crystallized in [7].

computing “reliability values,” rather than decisions, for the
transmitted symbols. Hence, the FB algorithm, which allows
the exact computation of the symbol APP, has received a new
and ever-increasing attention since then.

In the last years, low-density parity-check (LDPC) codes,
originally invented in [8], were also rediscovered [9]. One of
the reasons behind the renewed interest for LDPC codes is the
fact that a simple iterative message passing algorithm, operating
on a graph descriptive of the linear block code [8], [10], can
be devised for computing reliability values for the transmitted
symbols. In particular, this algorithm is termed sum-product
(SP) algorithm [11]. In [11], it is shown that if the factor graph
corresponding to a linear block code does not contain cycles,
then the SP algorithm leads to the exact computation of the APP
of the transmitted symbols. For factor graphs with cycles, the
soft-output value generated by the SP algorithm approximates
well the APP in several important cases.

In this paper, we show that in order to perform detection
for communications over channels with memory, possibly sto-
chastic, the same basic metric is the key ingredient to implement
any of the considered hard-output or soft-output detection algo-
rithms (VA, FB algorithm, and SP algorithm). The algorithms
are obtained through a probabilistic derivation based on min-
imal causality and finite-memory conditions. For instance, we
show that a metric derived for a VA can be systematically ex-
tended to FB and SP algorithms. In particular, we point out that:
1) performing combined detection and decoding of trellis codes
transmitted over channels with memory leads naturally to the
introduction of an augmented trellis (with an increased number
of states), whereas 2) in the case of a Tanner graph-based detec-
tion for linear block codes [10], taking into account the channel
memory leads to the introduction of another level of nodes in the
factor graph. In both cases, it is possible to conclude that there
is an expansion of the original trellis or graph structures.

In stochastic channels with suitable parametric models, a
conditional Markov property is shown to imply the finite-
memory condition. Unfortunately, this property rarely holds in
realistic channels. However, reasonable approximate detection
algorithms can be derived. Unlike most of the existing works
in the literature, the generality of the approach proposed in this
paper resides in the fact that, first, a general conditional Markov
property is assumed and, then, the channel statistical charac-
terization is exploited. A few detection strategies (noncoherent
and linear predictive) are considered to exemplify the general
result in terms of special cases.

The rest of this paper is structured as follows. In Section 1I,
causality and finite-memory conditions are introduced. In
Section III, probabilistic derivations of VA, FB, and SP algo-
rithms are proposed. In Section IV, detection for stochastic
channels is considered and a conditional Markov property is
introduced. In Section V, numerical results relative to a few
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Fig. 1. Communication system.

significant examples are presented. Finally, concluding remarks
are given in Section VL.

II. CAUSALITY AND FINITE MEMORY

We consider a generic time-continuous transmission system,
depicted in Fig. 1. A sequence of independent and identically
distributed M -ary information symbols {ax} are transmitted
successively from epoch 0 to epoch K — 1. A sequence of in-
formation symbols is denoted in vector notation as

k2

a'kl :(ak17ak1+17"'7 kZZkl-

k)

For brevity, the entire sequence is denoted by a. This sequence
is input to the encoder and modulator. The coded and modulated
signal is denoted as s(¢, @) to emphasize its dependence on the
information sequence. The channel is viewed as a noiseless filter
(possibly stochastic) with output signal z(t, @), rendered noisy
by the addition of white noise w(t). The received signal r(t) is
observed by the demodulation and decoding block, which out-
puts a sequence of decisions {a}.

The encoder/modulator block in Fig. 1 is a generic system
which evolves, upon receiving at its input the information
sequence a, through a sequence of states {ug,f1,...}. In
many communication schemes, the encoder/modulator can
be described as a time-invariant finite-state machine (FSM)
(e.g., trellis coded modulation (TCM) [12] or continuous phase
modulation (CPM) [13]). In this case, the state p; belongs
to a set of finite cardinality and a time-invariant ‘“next-state”
function ns(-, -) describes the evolution of the system as

Pk = 0S(fhk—1,Qk—1)- (1)

Therefore, the evolution of the encoder/modulator can be de-
scribed through a trellis diagram, in which there are M exiting
branches (in correspondence with M different information sym-
bols) from each state. A trellis branch corresponds to a transi-
tion, defined as t;, 2 (14x, ar)- In the rest of this paper, the initial
state po is assumed to be known.

The received signal can be expressed as

r(t) = z(t,a) + w(t). (2)

By means of a discretization process, the received signal r(¢)
can be converted into a time-discrete sequence r [14]. In partic-
ular, we assume that there is one observable 7 per information
symbol ag, or formally, r = ré" _1, with a notation similar to
that used for the information sequence.

The considered discrete-time model is based on a sampling
rate of one sample per symbol, which may be practically suffi-
cient in many cases. In a more general setting, there may be two
or more elements of r per information symbol ay, e.g., when a
convolutional code or a time-varying channel is considered.
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A causality condition for the considered communication
system can be formulated in terms of statistical dependence of
the observation sequence 7%, up to epoch k, on the information
sequence. Accordingly, a system is causal if

p(rila) = p (r|af) . 3)

Similarly, a finite-memory condition can be formulated, in sta-
tistical terms, as follows:

P (Tk|"‘]8_17a§) =p (Tk|rlg_17fl]1§_c7ltk—c) 4
where C'is a suitable finite-memory parameter and pi,_ ¢ rep-
resents the state, at epoch k — C', of the encoder/modulator. The
finite-memory condition (4) is an extension of the folding con-
dition introduced in [15], which accounts for the (possibly re-
cursive) encoder/modulator state ji;.. The considered model in-
cludes any definition of state /i, in terms of a suitable state vari-
able, not necessarily defined in terms of input variables. It can
easily be proved (see Appendixes I and II) that causality and
finite-memory conditions imply the following equalities:

k-1 _k
p (Tk|TO 70‘11sz7/1/ka)
k-1 _k
=D (Tk|”'0 7ak—C7Mk7C)
K—1, k=1 k-1
p (rk |T0 ) )

=p(r s el ) - 6)

VD > C 5)

The first equality formalizes the intuition that considering past
information symbols, before epoch &k — C, adds no further in-
formation regarding the observation at epoch k. The second
equality formalizes the idea that the finite-memory condition?
extends to future observations beyond epoch k.

The encoder/modulator block in Fig. 1 can often be decom-
posed into the cascade of an encoder and a memoryless mapper.
In this case, causality and finite-memory conditions imply anal-
ogous relations between the observation sequence r and code se-
quence ¢ = cé( ~1, where ¢, is a generic code symbol. More pre-
cisely, a coded symbol ¢ has to be interpreted as the discrete-
time output of the encoder/modulator FSM according to a suit-
able “output” function o(, -), such that ¢, = o(ug, ay)—this
function was not clearly introduced at the beginning of this
section because in the communication system model in Fig. 1
the output of the encoder/modulator is represented as a con-
tinuous-time signal. Accordingly, causality and finite-memory
conditions can be formulated as follows:

p (role) =p (r5les) @)
p (Tk|r§_17c§) =p (Tk|rg_17c§—c) . (8)

‘We remark, however, that these conditions involve the transmis-
sion channel only and, in general, do not imply (3) and (4). A
case of interest may be that of a linear block code followed by a
memoryless modulator. In particular, a linear block code is not
guaranteed to be causal and finite-memory? so that the channel
causality (7) and finite memory (8) do not imply the system
causality (3) and finite-memory condition (4).

2Note that there is a slight difference between the formal definition of the
finite-memory condition (4) and (6), since in (6) the conditioning information
sequence is a’g_ ! and does not include symbol a,,. This is, however, expedient
for the derivation of the backward recursion of the FB algorithm in Section III-B.

3Block-wise causality and finite-memory must be indeed satisfied.
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In the case of a linear block code, a trellis representation is
possible, but the trellis is time-variant, both in terms of states
and branches [3]. In this case, the evolution of the encoder/mod-
ulator could be described by a time-variant next-state function
nsg (-, -). A Tanner graph representation for a linear block
code—where the parity checks determine the structure of the
graph—may be more appealing, especially if the parity check
equations involve a few code symbols as, for instance, in the
case of LDPC codes [16].

III. DETECTION STRATEGIES

Based on the statistical definition of causality and finite-
memory conditions introduced in Section II, a probabilistic
derivation of the principal detection/decoding algorithms is now
presented. In particular, conditions (3) and (4) will be applied
to trellis-based algorithms (VA and FB algorithm), whereas
conditions (7) and (8) will be applied to factor graph-based
algorithms (SP algorithm).

A. Viterbi Algorithm (VA)

The VA is an efficient method to perform MAP sequence de-
tection. The causality and finite-memory conditions (3) and (4),
the independence of the information symbols, and the chain fac-
torization rule allow one to derive the following:

Plalr} ~p(rla)1’{a}

HP rilrs ' a) Plax)

HP (relrg ™", a8) P{ar}

H p (Tk|r§_17
k=0

where the symbol ~ indicates that two quantities are monotoni-
cally related with respect to the variable of interest (in this case,
a). Note that the last step in (9), where the finite-memory con-
dition is applied, holds if £ > C, i.e., in the algorithm “regime.”
In the initial transient period for £ < C, (9) holds assuming that
negative indeces are replaced by 0.

Defining augmented trellis state and branch (transition) as
follows:

a;_cok—c) P{ar} (9

k—1

Sk = (afZt, pic) (10)
Ti. 2 (S, ar) = (ab_c. p—c) (11)

the kth factor in (9) can be expressed as
Y (Tk) ép(rklr(’i’l’aﬁfc’um) P{ay}. (12)

As well known, the VA can now be formulated in the logarithmic

. . . A
domain, by defining the branch metric* A (7%) = log vk (Tk),
and obtaining

K-1

log P{alr} ~ Y M(Ti).
k=0
4Following the definition of Aj, ( T}.) as metric, in the remainder of this paper,

we will refer to v, (T ) as “exponential metric.”
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MAP

The MAP sequence, denoted as a , 1s such that

aMAP = argmax log P{a|r}-
a

The VA is an efficient trellis-based algorithm to determine
aMAP [2]. Note that the state Sj, is augmented with respect
to the state yuj, of the encoder/modulator. This corresponds to
considering combined detection and decoding. The next-state
function for this augmented trellis diagram, denoted as NS(-, -),
can be straightforwardly expressed as follows:

Sky1 = NS(Sk,ar) = (@ _cy1.08(pe—c, ar—c)) -

B. Forward-Backward (FB) Algorithm

The FB algorithm allows to implement the MAP symbol de-
tection criterion, since it explicitly computes the APP P{ay|r}.
Based on the causality and finite-memory conditions (3) and (4),
the following probabilistic derivation of an FB algorithm is ob-
tained by marginalization:

Plalr} = Y Y P{aj_c.mm—clr}

aklmc

~ 2 Dl

’”IHAC

=2 >0

"1NAC

(rlai_c. ur-c) P{ai_c.m—c}
rk-l—ill |1‘]57 0'2707 Nk’fc)

p(Tk|1‘0 7ak—C7.u'k—C)
p (M ak_c. o) P{af_c,m-c}  (13)

where Bayes and chain rules have been used. Based on (6) and
causality, it follows that:

p("k+11|7‘07“k 'y k- C) P(Tk+11|7'o a’k C+1 Hk— c+1)

Based on causality, one can also write
p (e ak_c.pu—c) = p (r§ " ag & tr—c) -

Recalling the independence of the information symbols, (13)
can be rewritten as follows:

Plar}~ Y Y p

(TkK+_11 |7'15> aﬁ—c+1; uk—c+1)

:_é He—C
P(Tk|"‘o_ 7‘12—07/%—0)17( 1|ak o Mk— c)
-P{a’,::é,uk,c}P{ak}.

Considering augmented state S, and transition T}, as in (10) and
(11), and defining
A _
Brer1(Sk+1) =p (r ' 176, @ i—c1)
A _
ar(Sk) =p (ro~ " g mi—c) P{ay "¢, m—c}
the symbol APP in (13) can be finally expressed as

Plaglry ~ ) Brsr (NS(Sk, ar)) e ( Sk, ar)eur (Sk)

Sk

where 7 (T%) is defined in (12).
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Based on the causality and finite-memory conditions, the
quantities v (Sy) and Br4+1(Sk+1) can be computed by means
of forward and backward recursions, respectively. More pre-
cisely, in Appendix III, it is shown that

ar(Sk) = Z -1 (Sk—1)Vk—1(Th-1) (14)
Tk_lis;‘.

Br(Sk) = D Br1(Skra)y(Ti) (15)
Ty :Sk

where the notation 7}, : S} indicates all transitions 7}, com-
patible with state S%. As usual, proper boundary conditions
{ap(So)} and {Bx_1(Sk—1)} must be specified. The algo-
rithm can be also formulated in the logarithmic domain based
on the branch metric A\;(Tx) = log~yx(Tk). In particular,
defining

@k(sk) é log ak(Sk)
B (Sk) = log Br(Sk)

and the operator max * as
max x f(u) 2 log Z e

where u belongs to a discrete set and f(-) is a given function
of u, the FB algorithm can be equivalently described by the
following formulas:

logP{ak|'r} ~ mg:x* {Ek(Sk) + )\k(Tk)
k

+Bk41 (NS(Sk, ax))}
@, (Sk) = mmax & {@k—1(Sk-1) + Me—1(Tk—1)}

B1(Sk) = max x {Bry1(Se41) + Me(Ti) } -

The approximation max * f(u) ~ max f(u) leads to a widely
used approximated version of the FB algorithm, referred to as
max-log [17] or min-sum [18].

We remark that the derived formulation of an FB algorithm
for detection over channels with memory is based on very gen-
eral causality and finite-memory statistical conditions, and it
does not make any assumption on the specific nature of the
channel. Since any detection strategy, designed for implemen-
tation with a VA, is solely defined in terms of specific branch
metric A, and trellis state S, it is immediate to conclude that
such a detection strategy can be systematically extended to an
FB algorithm, and vice versa.

C. Sum-Product Algorithm

The application of the SP algorithm [11] to a factor graph rep-
resenting the APP of the transmitted code sequence ¢, given an
observation sequence r, allows the exact or approximate com-
putation of the symbol marginal APPs [11]. Therefore, this al-
gorithm may be used to implement a MAP symbol detection
algorithm.

Since an information sequence is in a one-to-one correspon-
dence with a coded sequence, the information sequence APP
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Code constraints, x(c)

C2 < C3 ( (&) Cs
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Fig. 2. Overall factor graph for C' = 2.
may be conveniently expressed, in terms of the coded sequence,
as

Plajr} = Plclr} ~ P{clp(rle) = P{c} 1:[ P (relrg ™" 5)

where ¢ is the unique coded sequence corresponding to @ and
the causality condition (7) has been used.

Assuming that the a priori distribution of the transmitted
codewords is uniform and denoting by x(¢) the code charac-
teristic function,’ equal to 1 if ¢ is a codeword and to zero,
otherwise, under the finite-memory condition (8), we have

K—1
Plefry ~ x(e) [T » (ralr ™ ek_c) -
k=0

The corresponding factor graph, representing both the code con-
straints [described by x(¢)] and the channel behavior, is shown
in Fig. 2 for C' = 2. With respect to SP-based decoding schemes
for linear block codes (e.g., LDPC codes) over a memoryless
channel, additional factor nodes must be added at the bottom
of the graph, as shown in Fig. 2. These additional factor nodes
perform a marginalization, based on the channel model, without
taking into account the code constraints—the application of the
SP algorithm to this factor graph leads to a scheme for separate
detection and decoding. This approach is different from that pro-
posed in [19], where new variable nodes, representing the un-
known channel parameters, are introduced.

The quality of the convergence of the SP algorithm to the
exact marginal probabilities is in general determined by the girth
of the graph.® As an example, in designing LDPC codes, cycles
of length 4 must be avoided to ensure good decoding conver-
gence. The graph derived from the proposed factorization has,
in general, girth 4, involving the factor nodes which model the
channel behavior. However, we verified by computer simula-
tions that these length-4 cycles often do not affect the conver-
gence of the algorithm (see [20] for more details). An important
scenario where these length-4 cycles do affect the performance
of the SP algorithm is given by the case of transmission over
intersymbol interference (ISI) channels. In this case, however,

5In the hypothesis of a uniformly distributed codebook, P{e} = x(¢)/M*,
where M X is the number of codewords.

A cycle is a closed path in the graph and its length is defined as the corre-
sponding number of path edges. The length of the shortest cycle is the girth of
the graph.
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particular factor graph transformations (e.g., stretching) can be
used to overcome these limitations [21].

D. Exact Applications

Significant examples where the causality and finite-memory
conditions strictly hold are involved in transmission over chan-
nels with finite ISI, possibly encompassing a nonlinearity with
finite memory. The exponential metric (7} ) in (12) simplifies,
by dropping the conditioning observations to

w(Te) = p (rilai_p, pe—r) Plar} (16)
where L accounts for the channel dispersion and i, for the
encoder/modulator memory. In this particular case, the finite-
memory parameter C' is equal to L. We remark that (7}) in
(16) can be directly used both in a VA and an FB algorithm. A
similar property holds for (8), which is of interest, for example,
in the case of transmission of linear block codes over ISI chan-
nels. Hence, the SP algorithm can also be applied [21].

IV. STOCHASTIC CHANNELS

In the case of a channel characterized by parameters affected
by stochastic uncertainty, the observations {ry} are dependent,
so that the channel memory may not be finite. A very general
parametric model for the observation 7y, is the following:

k k

re =g (af g s, €5) +w an

where L is an integer, 5’5 is a sequence of stochastic parameters

independent from a, and wy, is an additive noise sample.” Under

this channel model, the following conditional Markov property

p (relrs ™" a5) = p (rlriZ, ap) (18)

where N is the order of Markovianity, is sufficient to guarantee

a finite-memory condition. In fact, as shown in Appendix IV,
(18) implies the following:

-1

p (rilrg ™" a5) = p (relri— N af_cspe—c)  (19)
where the finite-memory parameter is C' = N + L. It is imme-
diate to recognize that (19) represents a special case of (4). As a
consequence, all the derivations in the previous section hold by
using the exponential metric vx(1%) = p(rx|r_ &, T) P{ax}.
In other words, (19) is the key relation which “links” the
algorithms derived in Section III with the detection problem
over channels with memory. A statistical description of the
stochastic channel parameter allows one to compute this expo-

nential metric as

p (TIILN|T’€)
p (riZn1S%)
B Egx {P ("le—N|Tk7§§>}
PRACETY)

"Gaussianity of the additive noise is not required for the validity of the fol-
lowing derivation in this section.

Yi(Tk) = Play}

Plac}.  (20)
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The above exact result, although theoretically limited by the
fact that in realistic scenarios the conditional Markov property
(18) is seldom met exactly, suggests a reasonable approach to
devise effective approximate detection algorithms whenever the
conditional observations are asymptotically independent for in-
creasing index difference [15], [22].

V. EXAMPLES OF APPLICATIONS

A. Noncoherent Channel

As a first example, we assume that the channel introduces an
unknown phase rotation, modeled as a time-invariant random
variable # with uniform distribution in [0,27). We consider
coded linear modulations at the transmitter side. In this case,
the samples at the output of a matched filter have the following
expression:

e = cpe’? 4+ wy, 2n
where wy, is an additive white Gaussian noise (AWGN) sample
of variance o2. The channel model (21) is a special case of
(17) with L = 0 (C = N) and a dependence from a single
time-invariant stochastic parameter. It is immediate to conclude
that, being # a random variable, the channel memory is infinite.
Hence, the conditional Markov property can be claimed in an
approximate sense only. On the basis of the considered phase
model, v can be expressed as

_ Ey {p (TII:—C|07T7€
Eq {p (r’,i:éIH; Sk

I 2
Jex|? < >
~ €Xp —202

(% )

where I (z) is the zeroth order modified Bessel function of the
first kind [23]. This result, obtained here as a special case of
(20), is equivalent to previous solutions devised for noncoherent
detection [24]-[27].

Yie(T)

)} pry
N {ax}
igork_icz_i

C
D Th-iCh
=1

Play}

[y

g

B. Flat Rayleigh-Fading Channel

As a second example, we consider transmission over a flat
Rayleigh-fading channel (L. = 0 and C = N). Assuming, for
simplicity, that a sampling rate of one sample per information
symbol is adequate, the observation sequence can be expressed
as

Ty = fucr + wy

where { f1.} is a sequence of realizations of zero mean Gaussian
random variables with autocovariance sequence modeled ac-
cording to isotropic scattering [28], i.e., givenby E{ fi f;: .} =
Jo(2mBn), where Jo(-) is the zeroth-order Bessel function [23]
and B is the normalized Doppler rate. In this case, the condi-
tional Markov property is an approximation as well, and the ex-
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Fig. 3. System block diagram in the case of transmission of a SCCC over a
fading channel with iterative detection at the receiver.

ponential metric 7, can be computed, considering linear predic-
tion, according to

e (Tk) = Pfay}

(22)
where the order of Markovianity C' can be interpreted as the
prediction order, {p; }¢_, are the prediction coefficients (which
depend on state S, but not on symbol ay), and o} represents
the mean square prediction error at epoch k. The result in (22),
which can be derived from (19) owing to the Gaussianity of the
observable, was obtained in [29]-[33] as a solution for max-
imum-likelihood sequence detection over fading channels. Re-
lated work for detection over Rayleigh/Ricean flat fading chan-
nels can be found in [34] and [35].

C
1 1 Cj
ex —— |7 — E Th_i—Pi
2%0% P 0']3 p 'k P

C—1

C. Numerical Results

We now evaluate the performance, by means of computer
simulations, of a few iterative detection schemes using the fi-
nite-memory detection algorithms previously derived. Our re-
sults will show that the performance of the proposed schemes
tends to that of the equivalent coherent schemes for increasing
complexity. In particular, the performance is assessed in terms
of bit-error rate (BER) versus the bit signal-to-noise ratio (SNR)
E, /Ny, E), being the received energy per information bit and Ny
the one-sided noise power spectral density.

We first consider transmission of a serially concatenated con-
volutional code (SCCC) on a Rayleigh flat fading channel with
normalized Doppler rate B = 0.01. The system block diagram
is shown in Fig. 3. The code consists of an outer four-state,
rate-1/2 convolutional code connected through a length-1024
pseudorandom interleaver to an inner four-state, rate-1/2 convo-
lutional code. The generator polynomial matrices of outer and
inner codes are given by, respectively

Go(D)=[1+ D+ D* 1+ D?]

)

The output symbols are mapped to a quaternary phase shift-
keying (QPSK) constellation with Gray mapping. In Fig. 4, the
performance of a receiver based on linear predictive detection
at the inner decoder is shown, for various values of the predic-
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Fig. 4. Linear prediction-based iterative detection of a SCCC with QPSK in a
fading channel.
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Fig. 5. Noncoherent iterative detection of a (3,6) regular LDPC code with
BPSK.

tion order C'. For comparison, the ideal coherent performance,?
i.e., assuming that the fading coefficients are perfectly known, is
also shown. In all cases, five decoding iterations are considered.
Increasing further the prediction order calls for the use of com-
plexity reduction techniques at the inner detector/decoder [36].

In Fig. 5, the performance of the SP algorithm on the factor
graph described in Fig. 2, for different values of C, is shown for
a channel introducing an unknown phase rotation modeled as a
time-invariant random variable uniformly distributed in [0, 27).
The code is a (3,6) regular LDPC code with codewords of
length 4000. A binary phase shift keying (BPSK) modulation
format is used and a maximum of 200 iterations of the SP
algorithm on the overall graph is allowed, using the flooding
schedule [11]. A pilot symbol every 19 coded bits is added for
ambiguity problems, and accounted for in the computation of
the SNR—this makes the effective spectral efficiency equal to
0.487 bits/channel use. For increasing values of C, the perfor-
mance approaches that of the corresponding coherent receiver.

8We remark that the ideal coherent receiver provides a lower bound to the per-

formance of any practical receiver. Being the channel time-varying, this bound
cannot be achieved with vanishing SNR loss by increasing C'.
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Fig. 6. Performance of noncoherent iterative detection of a PCCC with BPSK,
as a function of finite-memory parameter N = C'. Various channel dynamics
(in terms of standard deviation o o of the Wiener phase model) are considered.
In all cases, E, /Ny = 2.5 dB and five decoding iterations are considered.

In this case as well, the complexity can be reduced by applying
techniques similar to reduced-state sequence detection [20],
[21].

In order to investigate the impact of the finite-memory condi-
tion for communication over a channel introducing a phase ro-
tation on the transmitted signal, we consider the case where the
channel phase rotation is no longer modeled as a time-invariant
random variable. In this case, the observation can be written as

r = cped* 4wy

where we assume that {6} is modeled as a discrete-time
Wiener process, with incremental variance over an observation
interval equal to o3 . In particular, we consider a parallel con-
catenated convolutional code (PCCC) of rate 1/2 with 16-state
binary recursive systematic convolutional (RSC) component
codes with generators (in octal notation) G; = (37)s and
G2 = (21)s. The inner pseudorandom bit interleaver is 32 x
32. The output modulation is BPSK. The overall code is nonco-
herently noncatastrophic [37]. In Fig. 6, the BER is shown as a
function of the finite-memory parameter C', for various values
of the phase standard deviation oa. In all cases, the SNR is
equal to 2.5 dB, and five decoding iterations are considered. As
one can see, while for low values of the finite-memory param-
eter the phase dynamics have little influence on the performance
of the detection algorithm (which depends, basically, on the
SNR value), for larger values of the finite-memory parameter
the phase dynamics significantly influence the performance. In
particular, for each value of standard deviation oA there is an
optimal value of the finite-memory parameter C = N—this
is clearly visible in the cases with oo = 15° and oo = 10°,
whereas it is not visible in the other cases, since the optimal
value is larger than six and the use of computer simulations
becomes impractical. These results underline that the proposed
detection strategy is “inherently” limited. In particular, the
fact that the basic metric is obtained by averaging over the
statistics of a random time-invariant phase rotation prevents the
algorithm from tracking efficiently the channel dynamics.
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VI. CONCLUDING REMARKS

In this paper, a general framework on finite-memory detec-
tion for channels with memory has been presented. We have
shown that the same basic metric can be used in all consid-
ered hard-output and soft-output algorithms. Accounting for the
channel memory, one can consider (combined) trellis-based de-
tection and decoding for trellis codes or (separate) graph-based
detection and decoding for linear block codes. A finite-memory
detection algorithm designed in one case (either trellis-based or
graph-based) can be systematically extended to the other case.
We have applied the proposed approach to the case of trans-
mission over stochastic channels. While the conditional Markov
property is seldom met exactly in this scenario, it is possible to
specialize the basic metric depending on the specific channel,
and, consequently, to design trellis-based or graph-based detec-
tion algorithms.

APPENDIX 1
PROOF OF (5)

We now show that (4) implies (5). By marginalization, we
obtain

> p(rlrs " ag, mi-n)

k—D—1
a

P {a§7D71|TI(§717a£7D7/1'k7D}~ (23)

p (Tk|T§717027D7Mk—D) =

If a sequence alg -b _1, given pi, is incompatible with pg_p,
then P{al~"~*|ur_p} = 0. Hence, for any sequence af > ~*

compatible with px_p

p(relrs ™" ab, w—p) =p (r&lr; ™", af)
=bp (Tk|’l‘§_17 ag—C'/ .u'k—C)

where the last equality is based on the finite-memory condition
(4). Hence, (23) becomes

D (rk|r§717a§—D7uk7D)
= Z P(Tk|‘r§_17a]1§_c,ltk—c)

k—D-—1
0

. P{alg—D—1|r§—17a§_D7uk—D}
=p(rilre™ " af_c, p—c)
PO Ui

k—D-—1

e,

~

~
1

=P (Tk|"§717azfc; [k—c) -

APPENDIX II
PROOF OF (6)

We now show that (3) and (4) imply (6). By independence
and causality assumptions, we obtain

p(ritirga0) =D p(riyIng.ap 1) - P{af IS, af} -
K—1 N —— —
@t P{"EJ;I

(24)
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Applying the chain rule, it is immediate to write

H p ’I“Z|‘I‘ K 1)

1=k+1

p (Tk+11|7'07 (25)

where based on the causality and finite-memory conditions,
each term in (25) can be expressed as®

D (Ti|7‘ Lag H=p (Ti|ré_lvaf__cl‘+1vlflk—0+l) . (26)
Hence, substituting (26) in (25), one obtains
p (rk+ll|r0 ay~ 1)

10 o
i=k+1

=p (rk+11|r0

Finally, (24) becomes

K—-1
s _C41> /lfk—C+1)

o ).

a;_ c+1aﬂk C+1 27

k K-1
p ("”k+11|"‘0»ao) = Z p (rk+11|'r0,ak c+1»llk C-I—l)
a

P {af+_1l}

_p(rk+11|’"0»a]1§ C+1s Hk— c+1)

APPENDIX III
PROOF OF (14) and (15)

Applying the Bayes and marginalization rules, it is possible
to write
ar(Sk) =p (r¢HagZe, t—c) P{a;=¢, pi—c'}
—P{ak 1 i C|7'16 l}p( k— 1)
= > PlayZe_y, h—c—alrg ™'}

Hk—C—1:0k—C—1°
NS(up_c_1rar_c—1)=Hr_C

p(rg™")-

Indicating concisely by T;_1 : Si the summation set in (28)
and applying Bayes and chain factorization rules, (28) can be
expressed as follows:

(28)

a(Sk)= Y p(ro M ep ey th-c1)
Tp—1:Sk
'P{azzlc_p,u'k—C—l}
= Z p(Tk—1|"‘ a’,i lc 19 Hk—C— 1)
Tp—1:Sk

p(r k_ZIaZ_é 1+ k—C—1)
P{agZg g pi—c1} -

Owing to causality and independence of the information sym-
bols, respectively, the following identities hold:

(29)

p(r§_2|a£:1071:/‘k—0—1) :p( 2lax" ¢ 1o Hk—c— 1)
P{alz:é_lvﬂkfcfl} :P{ak_c_plikfcfl}
~P{ak_1}.

9Note that, based on the causality condition, the conditional proba-
bility density function at the right-hand side of (26) can be written as
p(r; |r5*1,a§c_c+1, Hr—c+1). However, leaving it as indicated is expedient
for the application of chain factorization rule in (27).
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Finally, (29) can be expressed as follows:

Ozk(Sk): Z p(?”k_1|’l‘§ 2

-
Ti—1:Sk

Lay” Gy M—Cm 1) P{lag_1}

"/k—l(Tk—l)
‘D (7‘]5_2|GZ:10_1, Mkfcq)P{aﬁ:é_p ukfcq}
ak—lzrsk—l)

= Z Yi—1(Th—1)0tk—1(Sk—=1)

Tk.,lzs;‘,

which corresponds to (14).

The backward recursion (15) can be similarly obtained. In
fact, applying Bayes, marginalization, and chain factorization
rules, it is possible to write

K71| k=1 k-1 )

Br(Sk) =p ( T ak ¢ Mk—C
_Zp 1|T a'§7C7lj/k7C)

'P{aklr Ly k-c}

- Zp (re3tIrss ai_cs pe—c)

p (relrs ™" a’,z c+ Hk—c)
Plaglrg e Tl pr—c ) - (30)

Indicating concisely by T} : S} the summation set in (30) and
owing to (6) and independence of the information symbols, re-
spectively, the following identities hold:

p (rllc(-;ll |r](§7 0,27(;7 Nkfc)

=P (T;€(+]1|T]57 aﬁ C+1s Mk—C+1 = ns(pr—c, akfc))

P{aglrg™ ay ¢, pi—c'}
= P{ax}.
Finally, (30) can be written as
Br(Sk) = Zp rk+1 |7'07ak C41s Mk— C+1)
/fk+1(5k+1)
p (relre ™" ag_c.p—c) Plax}
"/kzg"k)
= Zﬂk+1(5k+1)%(Tk)
aj,

which corresponds to (15).

APPENDIX IV
PROOF OF (19)

Based on (18), one can write

k—1 k

k k
, p(rf_vla
(Tk|rk N3 "'0) = ( - 0)

- k—1 A
p (re"ylag)
The conditional probability density function at the numerator of

(31) can be expressed, by applying the total probability theorem,
as follows:

p(rhonlat) = [+ [ (rhovlab.b) o (651ab) ags.
L)

'3

p(rilrs™" ag) = 31)

(32)
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Owing to the considered observation model (17), itis immediate
to conclude that

k k ¢k k k k
p ("'ka|ao=§0) =Pp (rk—N|a’k7C> Nk—c;ﬁo)

where C = N + L. Being the stochastic parameters independent
from the information symbols, the second probability density
function inside the integral in (32) can be equivalently expressed
as p(ﬁg la¥ _; o, pk—r—c). Finally, the integral (32) becomes

k
P (T§7N|a§) :/ .. /p (rﬁiN|aﬁ,c,/kac7fo)
e—_
&
k k
p (§0|a’,§_c,uk—c) dg

=p (rllsz|a'ﬁfca /kac) .

Applying the same line of reasoning to the denominator of (31)
(taking also into account the causality of the system), one can
conclude that

k1 gy P (Thonlei_c o)
PA\TE|T ,a = — —
™) = ek c)

=p (relri_1-cr oy h—c)

which corresponds to (19).
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