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On Reliable Communications over
Channels Impaired by Bursty Impulse Noise

Dario Fertonani, Member, IEEE, and Giulio Colavolpe, Member, IEEE

Abstract—Digital communications over channels impaired by
impulse noise are addressed. We adopt a two-state Markov
model that allows to describe the typical bursty nature of the
impulse noise, in contrast to the memoryless models generally
considered in the literature. For this channel, we evaluate the
achievable information rate and propose a couple of practical
communication systems based on powerful codes and iterative
receivers. Moreover, we discuss the effectiveness of the considered
receivers in terms of performance/latency tradeoff as well as
in terms of robustness to erroneous channel estimations. The
proposed schemes are shown to perform fairly close to the
theoretical limits, and significantly better than the conventional
schemes employing memoryless detection.

Index Terms—Impulse noise, Markov channels, maximum-a-
posteriori symbol detection, achievable information rate, low-
density parity-check codes.

I. INTRODUCTION

THE power delivery networks and some mobile radio sce-
narios are often characterized by interference that exhibits

a significant impulsive nature and cannot be properly described
by the conventional additive white Gaussian noise (AWGN)
model. Such phenomena, referred to as “impulse noise”, are
generally described by means of the Class-A model [1] or
the Bernoulli-Gaussian model [2]. Since these models are
memoryless, they cannot describe one of the main features
of the actual channel, i.e., the occurrence of impulsive bursts
(see [3] and references therein). Hence, given that the actual
channel is characterized by a significant amount of memory,
it is interesting to evaluate which performance gain can be
achieved when the memory is exploited in the system design,
in terms of ultimate theoretical limits as well as performance
of practical systems. To address these issues, we follow the
guidelines in [3] and consider a channel model that modi-
fies the Bernoulli-Gaussian model [2] such that the channel
state is, instead of a Bernoulli process, a two-state Markov
process [4]. A two-state Markov process indeed provides a
simple and effective way for describing a bursty evolution
of the channel state [5]. The considered model, yet able to
account for the actual channel memory, is still as manageable
as the memoryless ones in [1], [2], so that we can derive an

Paper approved by G. M. Vitetta, the Editor for Equalization and Fading
Channels of the IEEE Communications Society. Manuscript received Decem-
ber 11, 2007; revised August 17, 2008 and November 4, 2008.

D. Fertonani is with Scuola Superiore Sant’Anna, Via G. Moruzzi 1, I-
56124 Pisa (e-mail: dario.fertonani@gmail.com).

G. Colavolpe is with the Department of Information Engineering, Uni-
versity of Parma, Viale G. P. Usberti 181/A, 43100 Parma, Italy (e-mail:
giulio@unipr.it).

Parts of this work appear in the proceedings of the IEEE International
Symposium on Power Line Communications and its Applications (ISPLC
2008) and the IEEE International Conference on Communications (ICC 2008).

Digital Object Identifier 10.1109/TCOMM.2009.07.070638

algorithm for optimal maximum-a-posteriori (MAP) symbol
detection.

We first carry out an information-theoretical analysis on
the performance limits imposed by the channel, in terms of
information rate [6] of systems employing linear modulations.
Although the state process underlying the channel is the same
as in the Gilbert-Elliott model (see [5] and references therein),
whose information rate can be analytically computed [5],
the same analytical arguments do not lead to a closed-form
expression here, since the channel-output alphabet is not finite
nor discrete [7]. Hence, we compute the information rate
by means of the simulation-based method described in [8],
exploiting the derived algorithm for MAP symbol detection.
Such investigations definitely show that the ultimate perfor-
mance limit improves as the memory of the impulse noise
becomes more significant, motivating us to design practical
schemes able to exploit the channel memory. Moreover, we
compare the information rate achievable in conditions of
ideal channel estimation with that achievable in conditions of
mismatched decoding [9], that is, with errors in the channel
estimation. Interestingly, the system results fairly robust to
possible estimation errors.

Aimed at approaching the theoretical performance limits as
close as possible, we focus on systems employing powerful
channel codes, such as low-density parity-check (LDPC) codes
or turbo-like codes [10], [11], and propose two receivers based
on MAP detection. One receiver exploits the exchange of soft
information between the MAP detector and the decoder, as in
the turbo-equalization schemes [12], while the other receiver
is simpler and does not perform iterative detection. We show
that both receivers can perform close to the ultimate limit, and
significantly better than the conventional schemes that neglect
the channel memory.

The remainder of this paper is organized as follows. In
Section II, we describe the considered channel model and
compare it with the Bernoulli-Gaussian model. In Section III,
we derive an algorithm for optimal MAP symbol detection,
which is then exploited for the evaluation, in Section IV, of
the achievable information rate. In Section V, we describe a
couple of practical communication schemes, comparing their
performance and complexity. Finally, some conclusions are
drawn in Section VI.

II. CHANNEL MODEL

A sequence of M -ary complex-valued symbols {ck}K
k=1

belonging to a suitable constellation, e.g., phase-shift key-
ing (PSK) or quadrature amplitude modulation (QAM), is
transmitted over a discrete-time channel that introduces ad-
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ditive noise. The received signal can be written as

yk = ck + nk , k ∈ {1, 2, . . . , K} (1)

where {nk}K
k=1 are noise samples. At each time epoch k,

the statistical properties of the sample nk are completely
defined by the channel state sk, which belongs to the binary
alphabet {G, B} — G for the good channel and B for the bad
channel, according to the notation in [5]. We assume that nk

is a complex circularly-symmetric Gaussian random variable
with variance depending on sk, so that the probability density
functions (PDFs) of nk conditioned to sk are

p(nk|sk = G) =
1

2πσ2
exp

{
−|nk|2

2σ2

}
(2)

p(nk|sk = B) =
1

2πRσ2
exp

{
− |nk|2

2Rσ2

}
(3)

where the parameter R ≥ 1 gives the ratio between the average
noise power in the bad channel and that in the good channel.
This model can describe a channel that, in the good state, is
impaired only by background Gaussian noise, whereas, in the
bad state, is impaired also by impulsive interferers [2], [3].

The statistical description of the state process sK
1 completes

the characterization of the channel. A widely adopted model,
proposed in [2], assumes that sK

1 is a stationary Bernoulli
process [4], fully described by the probability that the bad
state occurs

PB = P (sk = B) . (4)

Here, we consider a more general model for the state pro-
cess, assuming that sK

1 is a stationary first-order Markov
process [4], that is,

P (sK+1
1 ) = P (s1)

K∏
k=1

P (sk+1|sk) (5)

for each realization of the process. The evolution of the
channel state is thus described by the transition probabilities

PIJ = P (sk+1 = J |sk = I) , I, J ∈ {G, B} (6)

which here are all assumed non-zero. Since the memory-
less channel model recalled above is often referred to as
Bernoulli-Gaussian channel due to the underlying Bernoulli
state process, we will refer to the considered model as Markov-
Gaussian channel due to the underlying Markov state process.
The latter model reduces to the former when the transition
probabilities (6) depend on the arrival state only. We also
point out that the Markov-Gaussian channel turns out to be
a particular instance of the general model proposed in [3] for
describing channels impaired by bursty impulse noise.

Note that the pair (PGB, PBG) suffices for a complete
description of the state process [4]. The probabilities of being
in a given state are

PG = P (sk = G) =
PBG

PGB + PBG
(7)

PB = P (sk = B) =
PGB

PGB + PBG
(8)

and the average number of consecutive samples of persistence
in a given state are

TG =
1

PGB
(9)

TB =
1

PBG
(10)

for the good state and the bad state, respectively [4]. In all
typical scenarios, the bad state is relatively infrequent, that is,
PG > PB or, equivalently, TG > TB . Equations (9) and (10)
clarify how to derive the statistical parameters (PGB , PBG)
from the knowledge of the physical parameters (TG, TB),
which can be measured on field [3].

Let us define the parameter

γ =
1

PGB + PBG
(11)

which, as explained later, quantifies the channel memory.
Based on (7), (8), and (11), we obtain the following constraint
on the value of γ

γ > max{PB, 1 − PB} (12)

by imposing that both PGB and PBG belong to (0, 1).
When (12) is satisfied, the pair (PB , γ) is in one-to-one
correspondence with the pair (PGB , PBG), and thus com-
pletely describes the state process. Hence, with respect to the
Bernoulli-Gaussian model, where the state process is com-
pletely described by PB , the Markov-Gaussian model requires
the further parameter γ, whose meaning is now discussed.
First, it can be shown that the channel is memoryless if and
only if γ = 1. Moreover, for any given value of PB , the
parameter γ equals the ratio between the actual value of TI

and the value of TI as if the channel were memoryless,
where I can be either G or B. Hence, according to the
notation in [5], we can state that, when γ > 1, the channel
has a persistent memory, that is, the average permanence in a
state is longer with respect to the memoryless case, whereas,
when γ < 1, the channel has an oscillatory memory, that is,
the average permanence in a state is shorter with respect to
the memoryless case.1 Since we are interested in modeling
interferers that occur in bursts, thus with persistent memory
by physical nature, we will focus on scenarios where γ ≥ 1.
The impact of the parameter γ on the noise process, when all
other channel parameters are fixed, is shown in Fig. 1. It is
clear that, while the classical memoryless model (γ = 1) fails
in describing the bursts typically affecting the actual channels,
the Markov model properly does, allowing to set the average
duration of such bursts simply by modifying the value of γ.

III. MAXIMUM-A-POSTERIORI SYMBOL DETECTION

We now consider the computation, for each time epoch k
and each symbol ck belonging to the modulation alphabet,
of the a posteriori probability P (ck|yK

1 ) that the actual
transmitted symbol is equal to ck, given the received se-
quence yK

1 . Based on information-theoretical arguments, we

1In [5], the parameter μ = 1 − 1/γ is adopted for the characterization
of the channel memory. We prefer the parameter γ because of the direct
proportionality between its value and the average duration of the permanence
in a state. For example, a doubled value of γ readily calls for a doubled
average duration of the impulse bursts.
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Fig. 1. Magnitude of the noise process for three different values of γ, when
the other channel parameters are σ2 = 1, PB = 10−1, and R = 102.

will first exploit the relevant algorithm for computing the
ultimate performance limits imposed by the channel. Then, we
will explain how this algorithm can be employed as soft-input
soft-output (SISO) module for iterative detection/decoding.
The algorithm, whose derivation is omitted being basically
an instance of the general forward-backward algorithm (FBA)
discussed in [13], can simply be obtained as an applica-
tion of the factor graphs (FGs) and the sum-product algo-
rithm (SPA) [13], but the same result can be achieved by
means of the probabilistic arguments leading to the SISO
algorithm in [14].

Defining

Fk(ck, sk, sk+1) = P (sk+1|sk)p(nk = yk − ck|sk) (13)

and denoting by P (ck) the a priori probability that the source
emits, at time epoch k, the symbol ck, the algorithm is based
on the following forward and backward recursions

αk+1(sk+1) =
∑
sk,ck

Fk(ck, sk, sk+1)P (ck)αk(sk) (14)

βk(sk) =
∑

sk+1,ck

Fk(ck, sk, sk+1)P (ck)βk+1(sk+1) (15)

and on the completion stage

Uk(ck) =
∑

sk,sk+1

Fk(ck, sk, sk+1)αk(sk)βk+1(sk+1) . (16)

The recursions are initialized as follows [13]

α1(I) = PI , I ∈ {G, B} (17)

βK+1(I) = 1 , I ∈ {G, B} (18)

and the a posteriori probabilities are obtained from

P (ck|yK
1 ) ∝ P (ck)Uk(ck) (19)

according to the SPA, where the proportionality symbol ∝
denotes that the sides may differ for a positive multiplicative
factor irrelevant for the detection process [13]. Equation (19)
also clarifies that the terms {Uk(ck)} constitute the “extrin-
sic information” produced by the algorithm [15]. Although
implementation-related details are not a major concern here,
we point out that the algorithm results numerically safer
when implemented in the logarithmic domain [16]. Also, note
that a simpler implementation of the algorithm consists of
propagating, at each time epoch k, not the values of αk(G)
and αk(B) (or βk(G) and βk(B)), but their ratio only.

It is worth to notice that the described algorithm degenerates
into a symbol-by-symbol algorithm when the channel is mem-
oryless, that is, when γ = 1. In this case, no recursion should
be performed, and the completion stage simply becomes

Uk(ck) =
∑
sk

p(nk = yk − ck|sk)P (sk) . (20)

Finally, we notice that the described algorithm produces, as a
by-product output, the a posteriori probability P (sk|yK

1 ) that
the state sk is the actual channel state at time epoch k, since

P (sk|yK
1 ) ∝ αk(sk)βk(sk) (21)

according to the SPA. Hence, the detection algorithm also
provides a Bayesian state identifier, which is expected to
be much more effective than the threshold-based identifiers
generally considered in the literature.

IV. ULTIMATE PERFORMANCE LIMITS

Before describing practical communication systems, we
analyze the ultimate performance limits imposed by the con-
sidered channel. In particular, we evaluate the information rate
between the sequence cK

1 and the received samples yK
1 [6].

We recall that it is possible to design communication schemes
with arbitrarily low error rate only if the number of in-
formation bits transmitted per channel use does not exceed
the information rate [6]. We will restrict ourselves to the
case of memoryless sources that emit equally likely symbols.
Following the arguments in [7], we do not expect that Markov
sources and/or biased sources can improve the achievable
information rate.

A simulation-based method for the computation of the
information rate of finite-state channels is exploited in the
following. Since the theoretical details of the method are
described in [8], only the resulting algorithm is reported here.
First, we generate, according to the statistical properties of the
source and the channel, a very long sequence of symbols cK

1 ,
as well as the corresponding sequence of received samples yK

1

— the meaning of “very long” is discussed in [8]. Then, for
each time epoch k ∈ {1, 2, . . . , K + 1} and for each value sk

of the state, we compute the coefficients

μk(sk) = p(sk, yk−1
1 ) (22)

νk(sk) = p(sk, yk−1
1 |ck−1

1 ) (23)

where p(sk, yk−1
1 ) is the joint PDF of sk and yk−1

1 ,
while p(sk, yk−1

1 |ck−1
1 ) is the same joint PDF conditioned

to the knowledge of the transmitted symbols ck−1
1 . A

computationally-efficient way for the evaluation of the terms
{μk(sk)} and {νk(sk)} consists of resorting to the forward
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Fig. 2. Signal-to-noise ratio required to achieve an information rate equal
to 1.75 bits per channel use. A QPSK modulation is adopted and matched
decoding is considered.

recursion (14), by properly setting the a priori probabil-
ities {P (ck)} [8]. Namely, the coefficients {μk(sk)} are
evaluated by setting each term P (ck) equal to 1/M , since
equally likely modulation symbols are considered, whereas
the coefficients {νk(sk)} are evaluated by setting, at each
time epoch k, the term P (ck) equal to one if ck is equal
to the actual transmitted symbol, and to zero otherwise [8].
Finally, the simulation-based estimation of the information rate
is evaluated as [8]

1
K

log2

(
νK+1(G) + νK+1(B)
μK+1(G) + μK+1(B)

)
. (24)

We point out that the implementation of the FBA, including
the forward recursion (14) required for the evaluation of the
information rate, assumes that the values of PB , γ, R, and σ2

are known. Since, in most practical scenarios, these parameters
are actually unknown, it is interesting to evaluate how the
system performance is impaired by erroneous assumptions
on their values. As explained in [8], the information rate
achievable in this condition can still be evaluated by means of
the simulation-based method described above. In particular,
the channel output should be simulated according to the
actual channel parameters, whereas the evaluation of the terms
{μk(sk)} and {νk(sk)} should be based on the erroneous
channel parameters.

Some of the obtained results are reported and discussed
in the following, first for the condition of matched decoding,
that is, ideal knowledge of the channel parameters, then for
the condition of mismatched decoding, that is, erroneous
assumptions on the channel parameters.

A. Matched Decoding

In Fig. 2, it is shown how the value of the signal-to-noise
ratio (SNR) required to achieve an information rate equal to
1.75 bits per channel use varies when different channels are
considered and a quaternary PSK (QPSK) is adopted. The
SNR is here defined with respect to the background Gaussian
noise only, that is,

SNR =
E
{|ck|2

}
2σ2

(25)
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Fig. 3. Signal-to-noise ratio required to achieve an information rate equal
to one bit per channel use. A QPSK modulation is adopted and matched
decoding is considered.

where E {·} is the expectation operator. Together with the
curves related to Markov-Gaussian channels characterized
by PB = 10−1 and different values of γ and R, we also
reported the corresponding curves related to an AWGN chan-
nel and a system with ideal channel-state information (CSI),
that is, a system that knows the actual realizations of the state
process. Note that the information rate of systems with CSI
equals the statistical average of the information rates over
the channel states, so that the value of γ is irrelevant [7].
It is clear that, for a given value of R, the theoretical power
efficiency monotonically improves as the memory increases,
up to the value related to the system with CSI. This was
expected, since the memory helps to track the state process, up
to the limit given by the ideal CSI tracker. On the other hand,
when the value of R is very large, all curves tend to the value
related to the system with CSI, irrespectively of the amount
of memory. This also was expected, since the stronger the
impulsive interferers, the easier to detect them even when the
state tracking is not helped by the memory. It is also interesting
to notice that, for a given value of γ, the theoretical power
efficiency exhibits a non-monotonic behavior with respect
to R. In particular, there exists a threshold value for R
depending on γ such that, above that value, the larger the value
of R the better the performance. Such a behavior, which tends
to vanish as the value of γ increases and vanishes at all for
the system with CSI, is somehow surprising since it implies
that the system can take advantage of a larger power of the
impulsive interferers. The key point is, again, that the stronger
the interferers, the easier to detect their presence.

Although similar considerations qualitatively hold for all
values of PB and all values of the target information rate, the
performance gain provided by the presence of memory quanti-
tatively depends on such values. This is proved by comparing
the simulation results reported in Fig. 2 and those reported
in Fig. 3, which refer to QPSK transmissions with a target
information rate equal to one bit per channel use. Namely, in
the former case the memory can provide performance gains
in the order of 3 dB, while in the latter case the beneficial
effect of the memory is very limited when PB = 10−1 and
practically negligible when PB = 10−2.
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matched decoding is considered.

The impact of the memory can also be characterized by
evaluating how the achievable information rate varies with γ
when all other channel parameters are fixed. In this case,
as discussed above, the information rate increases with the
value of γ, and takes values in the range whose lower limit
is given by the memoryless channel with γ = 1 and whose
upper limit is given by the corresponding system with CSI.
The span of such ranges is reported in Fig. 4 for QPSK
transmissions and different channel parameterizations. These
results definitely show that the impact of the memory on the
achievable information rate is limited, and tends to vanish
when the value of PB is very low, that is, when the presence of
impulsive interferers is very infrequent. Hence, the presence of
memory can provide a significant gain in terms of SNR when
we fix the target information rate (see Fig. 2), but it does not
provide a significant gain in terms of achievable information
rate when we fix the target SNR (see Fig. 4).

B. Mismatched Decoding

In Fig. 5, it is shown how the value of the SNR required
to achieve an information rate equal to 3 bits per channel
use varies when different channels are considered and a 16-
QAM is adopted. In all cases, the channel is characterized
the PB = 10−1 and γ = 10, while the parameter R is the
abscissa of the plot. The performance in different conditions
of mismatched decoding are compared with the performance
in the ideal condition of matched decoding. For each curve
reported in Fig. 5, the mismatched parameter and the related
(erroneous) value are pointed out in the key. Let us first
comment on the impact of an erroneous assumption on the
memory parameter γ. According to Fig. 5, a receiver that
assumes γ = 1, that is, a receiver that neglects the channel
memory, may experience a degradation of almost 1 dB with
respect to the optimal receiver. On the other hand, a receiver
that strongly overestimates the value of γ, assuming γ = 103,
is much more effective. Many other simulation results, which
are not reported here due to space limitations, confirm this
behavior, showing that the classical memoryless assumption
may cause degradations even of 3 dB or more, thus motivating
the design of practical communication schemes able to exploit
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Fig. 5. Signal-to-noise ratio required to achieve an information rate equal
to 3.0 bits per channel use. A 16-QAM modulation is adopted and various
conditions of mismatched decoding are considered. The actual channel is
characterized the PB = 10−1 and γ = 10.

the channel memory — this issue is addressed in Section V. As
a rule of thumb, it turns out that we should design the system
assuming the presence of some memory, and the value of γ
can be safely overestimated.

Other results suggest that the estimate of the parameter R
is critical for the performance of the FBA (for example, see
Fig. 5), while the estimate of the parameter PB is not. We
point out that the estimate of the parameter R may be much
less critical, or even not critical at all, when blind detection
schemes are used instead of the FBA — this point is addressed
in [17], [18] for channels with γ = 1. In the following, since
we are here mainly interested in the impact of the parameter γ,
it is assumed that correct information on all other channel
parameters is available.

V. PRACTICAL COMMUNICATION SYSTEMS

We are interested in designing communication systems that
can approach the ultimate performance limits evaluated in
Section IV. Hence, we focus on systems employing powerful
channel codes, such as LDPC codes or turbo-like codes [10],
[11]. The block scheme of the considered system is depicted in
Fig. 6, and is briefly described in the following. At the trans-
mitter side, a sequence of equally likely information bits is first
encoded, then interleaved, and finally mapped onto the mod-
ulation sequence cK

1 . The channel corrupts the sequence cK
1 ,

generating the noisy samples yK
1 according to the Markov-

Gaussian model. At the receiver side, we consider a scheme
based on the exchange of extrinsic information [15] between
the FBA detector described in Section III and the SISO
decoder, which iteratively refine the quality of their outputs
similarly to the receivers employing turbo equalization [12]
— in this case, the term “turbo detection” may be preferred,
but the underlying idea is the same, that is, the application
of the SPA to a FG with cycles [13]. In particular, at each
iteration, the detection algorithm updates the extrinsic infor-
mation {Uk(ck)} based on the last vector {P (ck)} produced
by the SISO decoder, which then updates the vector {P (ck)}
based on the novel terms {Uk(ck)}. The exchange of extrinsic
information between these two blocks is managed by SISO
mapping/demapping, as explained in [19].



FERTONANI and COLAVOLPE: ON RELIABLE COMMUNICATIONS OVER CHANNELS IMPAIRED BY BURSTY IMPULSE NOISE 2029

Π

SISO
DEMAPPER

SISO
MAPPER

MAPPERENCODER CHANNEL

DECODER
SISOSISO

Π

Π −1

DETECTOR

Fig. 6. Block scheme of a system employing iterative detection/decoding.

As a reference benchmark for the performance of the
proposed scheme, we adopt the conventional approach that
consists of neglecting the channel memory. This leads to a
simpler receiver with respect to that depicted in Fig. 6, since,
once assumed the absence of memory, the detection algorithm
works symbol-by-symbol producing the metrics (20), and does
not require to exchange extrinsic information with the SISO
decoder — the terms {P (ck)} are indeed not exploited in (20).
Hence, this approach provides a significant improvement in
terms of latency with respect to the scheme based on the FBA.
On the other hand, the information-theoretical results reported
in Section IV show that, in many scenarios, the potential
performance gain justifies the increase of latency. A “hybrid”
solution, aimed at reducing the latency that characterizes the
proposed scheme without neglecting the channel memory, con-
sists of executing the FBA only once per received codeword,
without further iterations with the SISO decoder.

The performance of the considered schemes was assessed
by means of computer simulations in terms of bit-error
rate (BER) versus SNR. In Fig. 7, the BER curves related
to different detection schemes are reported, for the case of
a system employing QPSK transmissions over a Markov-
Gaussian channel characterized by PB = 10−1, γ = 10, and
R = 10. The adopted channel code is a rate-1/2 irregular
LDPC code with codewords of 20,000 bits, whose degree
distribution, optimized for AWGN channels, is taken from [20]
— the choice of this code is motivated at the end of the
section. Due to the pseudo-random structure of the LDPC
code, no interleaver is used, and two consecutive code bits are
directly Gray-mapped onto a QPSK symbol. At the receiver
side, the decoder performs a maximum of 100 iterations before
producing the hard decisions on the information bits [10]. We
remark that the proposed scheme employing iterative detec-
tion/decoding provides a performance gain of about 0.6 dB
with respect to the conventional memoryless one. Interestingly,
if the FBA is applied without iterative detection/decoding, the
performance is practically the same — this fact is discussed
at the end of the section. Note that the obtained results can
be directly compared with the ultimate limits reported in
Fig. 3, since the use of a rate-1/2 binary code combined
with a QPSK modulation implies an actual information rate
equal to one bit per channel use. For the considered channel
parametrization, the proposed scheme achieves a BER of 10−6

when the SNR is about 0.5 dB worse than the ultimate
limit shown in Fig. 3. This result, yet satisfactory, can be
improved by adopting longer codewords and/or increasing the
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Fig. 7. Performance of various detection schemes over a Markov-Gaussian
channel characterized by PB = 10−1, γ = 10, and R = 10. A system
employing a rate-1/2 LDPC code and a QPSK modulation is considered.

number of decoding iterations [10]. Hence, given the excellent
agreement between the theoretical results and the performance
of the practical systems, we can definitely confirm that the
conventional approach of neglecting the channel memory,
which is actually present in any real channel due to the bursty
nature of the interferers, can be significantly outperformed.

Finally, we discuss the fact that iterative detection/decoding
does not significantly improve the performance of the FBA
in the scenario considered above. This suggests that the FBA
cannot take advantage of the soft information produced by the
LDPC decoder. It is interesting to investigate if this behavior
is peculiar of the considered scenario or if it is a general
property, irrespectively of the noise parameterization. A simple
tool for characterizing how much a detection algorithm can
take advantage of iterating with a SISO decoder consists
of the extrinsic information transfer (EXIT) charts [20]. We
carried out extensive simulations for various parameterizations
of the Markov-Gaussian channels, and found that, in all of
them, the detection algorithm is expected not to significantly
gain from iterating with a SISO decoder — in the context
of [20], it means that the detection EXIT chart is nearly flat.
Some EXIT charts related to different detection strategies and
channel parameterizations, pointed out in the key and in the
caption, are reported in Fig. 8, where the standard notation
for labelling the plot axes is adopted [20]. Note that the EXIT
charts related to the FBA are as flat as those related to the
memoryless detector, which definitely shows that there is no
need for iterative detection/decoding — this fact also implies
that LDPC codes optimized for AWGN channels are good
for the Markov-Gaussian channels too. Interestingly, the same
conclusion does not hold for more general Markov models,
for which the code design should thus be based on ad-hoc
techniques as those presented in [21] and [22].

VI. CONCLUSIONS

The performance of communication systems over chan-
nels impaired by Markov-Gaussian impulse noise has been
analyzed. We have first approached this issue from an
information-theoretical viewpoint, showing that the informa-
tion rate of such systems improves as the channel memory
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Fig. 8. EXIT charts related to different detection strategies and different
channel parameterizations. In all cases, we adopted a Gray-mapped QPSK
modulation and we set PB = 10−1 and γ = 10.

becomes more significant. Then, motivated by these results,
we have described a couple of practical detection schemes
able to exploit the channel memory. The proposed schemes
have been shown to perform fairly close to the ultimate limit
and to provide, in various scenarios, a significant gain with
respect to the conventional memoryless ones.
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