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Time-Frequency Packing for Linear Modulations:
Spectral Efficiency and Practical Detection Schemes
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Abstract—We investigate the spectral efficiency, achievable
by a low-complexity symbol-by-symbol receiver, when linear
modulations based on the superposition of uniformly time- and
frequency-shifted replicas of a base pulse are employed. Although
orthogonal signaling with Gaussian inputs achieves capacity
on the additive white Gaussian noise channel, we show that,
when finite-order constellations are employed, by giving up
the orthogonality condition (thus accepting interference among
adjacent signals) we can considerably improve the performance,
even when a symbol-by-symbol receiver is used. We also op-
timize the spacing between adjacent signals to maximize the
achievable spectral efficiency. Moreover, we propose a more
involved transmission scheme, consisting of the superposition of
two independent signals with suitable power allocation and a
two-stage receiver, showing that it allows a further increase of
the spectral efficiency. Finally, we show that a more involved
equalization algorithm, based on soft interference cancellation,
allows to achieve an excellent bit-error-rate performance, even
when error-correcting codes designed for the Gaussian-noise-
limited channel are employed, and thus does not require a
complete redesign of the coding scheme.

Index Terms—Linear modulations, interchannel interference,
multiuser channels, information rate, spectral efficiency.

I. INTRODUCTION

WE consider linear modulations over an additive white
Gaussian noise (AWGN) channel. The transmitted sig-

nal is the superposition of time- and frequency-shifted replicas
of a base pulse multiplied by channel symbols belonging to
a complex constellation. As common in the literature (e.g.,
see [1]–[3]) a uniform rectangular tiling of the time-frequency
domain is considered. Hence, the signal model is completely
defined by the base pulse and the distance between adjacent
symbols in the time and frequency domains, denoted by 𝑇
and 𝐹 , respectively. Note that, with respect to [1]–[3], we
consider flat channels only, although all ideas underlying this
paper could be extended to frequency-selective channels as
well. It is clear that 𝑇 and 𝐹 play an important role, since
on one hand they establish the efficiency in the usage of the
available time and frequency resources, and at the same time
their values determine the amount of interference (if present)
a signal brings to the adjacent ones.
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A common choice in the literature is the use of orthogonal
signaling, that ensures absence of interference. Rectangular
or sinc pulses with orthogonal signaling are employed in
orthogonal frequency division multiplexing (OFDM), which
is known to be optimal from an information theoretic point of
view when independent Gaussian distributed input symbols are
used. Hence, constellations and practical coding schemes are
often designed such as to ensure an approximately Gaussian
input [4]. On the contrary, it is known that, when finite-order
constellations are considered (e.g., phase shift keying (PSK)
or quadrature amplitude modulation (QAM)), the efficiency
of the communication system can be improved by giving up
the orthogonality condition. For example, faster-than-Nyquist
signaling [6], [7] is a well known technique consisting of
reducing the spacing in the time-domain well below the
Nyquist rate, thus introducing controlled inter-symbol inter-
ference (ISI). In [8] the joint optimization of both time and
frequency spacing is considered, by finding their smallest
values that ensure no reduction of the minimum Euclidean
distance, with respect to the Nyquist case. In order for those
techniques to be effective, a receiver able to cope with the
(possibly very large) interference, stemming from the lack
of orthogonality, is assumed. The computational complexity
of such a receiver may be extremely large, and no hints are
given by those paper regarding the optimization in the more
practical scenario where a trivial symbol-by-symbol receiver
is employed.

Although our goal in this paper is similar to the above
mentioned works, we pursue here a different approach for
the optimization of the spacing values 𝑇 and 𝐹 . We fix the
base pulse1 and we evaluate the information rate, achievable
by a symbol-by-symbol receiver, as a function of the spacing
values. Eventually, we optimize the spacings such as to max-
imize the achievable spectral efficiency of the communication
system. The considered problem is relevant since it turns out
that improving the spectral efficiency without increasing the
constellation order, e.g., by using a quaternary PSK (QPSK),
can be considerably convenient, since the decoding complexity
increases as the constellation size increases. Moreover, it is
well known that low-order constellations are more robust to
channel impairments such as time-varying fading or phase
noise [5].

Furthermore, we propose a more involved transmission
scheme, consisting of the superposition of two independent
signals belonging to rectangular time-frequency lattices (being

1We consider pulses commonly employed in practical systems, namely
rectangular (REC), Gaussian, and pulses whose spectrum is root raised cosine
(RRC) shaped—for simplicity the latter will be denoted as RRC pulses.
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the two lattices properly staggered), with a suitable power
allocation between the two signals, and a two-stage receiver
that proceeds as follows: symbol-by-symbol detection of the
first set of signals is carried out, followed by decoding, and
the corresponding hard-decisions are used to mitigate the
interference caused by the first set to the second one. Finally,
symbol-by-symbol detection of the second set of signals
is carried out based on the interference-mitigated received
samples. We show that the spectral efficiency achievable by
the proposed scheme is considerably high, even when a low-
order constellation, such as QPSK, is used. Finally, although
all the information-theoretic results will be obtained assum-
ing a symbol-by-symbol receiver, the bit-error-rate (BER)
performance of a suitably designed receiver based on soft
interference cancellation (SIC) [9], [10] will be assessed as
well. We will show that such a receiver exhibits an excellent
BER performance despite the presence of strong interference,
even when error-correcting codes designed for the AWGN
channel are employed, thus without the need for a complete
redesign of the coding scheme.

The novelty of the ideas and methods proposed in this paper
can be summarized in three aspects: first, we consider the
spectral efficiency as our performance measure, rather than
the minimum distance. Second, we consider a low-complexity
symbol-by-symbol detection algorithm at the receiver, char-
acterized by a negligible complexity irrespectively of the
interference set size, rather than more complex algorithms
such as the Viterbi or linear equalizers employed in [6]–[8].
This makes our approach more realistic, since those algorithms
may be unfeasible in strongly interfered channels, i.e., when
the optimal values of 𝑇 and/or 𝐹 are small. We point out
that, with our approach, also the optimization of the spacing
values takes into account the presence of a symbol-by-symbol
receiver. Third, we propose a transmission scheme based on
the superposition of two independent signals with a suitable
staggering and power allocation, showing that the achievable
spectral efficiency can be dramatically increased, with only
a negligible increase in the computational complexity of the
receiver.

The remainder of this paper is organized as follows. In
Section II, we give the system model, while in Section III
we address the related ultimate performance limits. In Sec-
tion IV we describe an algorithm for optimizing the achievable
spectral efficiency, while in Section V a novel transmission
scheme based on the superposition of two independent signals
is proposed. In Section VI a practical equalization algorithm
for the considered problem, based on the SIC framework,
is described. Finally, in Section VII, the effectiveness of
the spectral efficiency optimization algorithm is proved by
numerical simulation results. Moreover, in the same section
a convergence threshold analysis based on extrinsic informa-
tion transfer (EXIT) charts [11], and the corresponding BER
performance, are assessed for a practical low-density parity
check (LDPC) [12] coded system. Finally, Section VIII gives
some concluding remarks.

II. SYSTEM MODEL

We consider a linear modulation, where the base pulse 𝑝(𝑡)
is regularly shifted in the time and frequency domains, of

multiples of 𝑇 seconds and 𝐹 Hz respectively. We assume
a perfect synchronization among the data streams (downlink
assumption) and that the transmitted symbols {𝑥𝑛,𝑘} (being 𝑛
the time index and 𝑘 the carrier index) belong to a given zero-
mean 𝑀 -th order complex constellation and are independent
and uniformly distributed (i.u.d.), i.e.,

𝔼{𝑥𝑛,𝑘} = 0

𝔼{𝑥𝑛,𝑘𝑥∗𝑛′,𝑘′} = 𝛿(𝑛− 𝑛′)𝛿(𝑘 − 𝑘′) (1)

where 𝛿(⋅) denotes the Kronecker delta. Under the above
assumptions, the baseband transmitted signal reads [1], [2]2

𝑥(𝑡) =
√
𝐸𝑆𝑇𝐹

∑
𝑛

∑
𝑘

𝑥𝑛,𝑘𝑝(𝑡− 𝑛𝑇 )𝑒𝑗2𝜋𝑘𝐹𝑡 (2)

where the factor
√
𝑇𝐹 has the important aim of normalizing

the signal power, such as to ensure a constant average power
spectral density (PSD), irrespectively of 𝑇 and 𝐹 [1]. We
point out that this normalization is arbitrary, and a different
choice would have been acceptable as well. For example,
when a frequency division multiplexed (FDM) multi-user
scenario is considered, namely when the index 𝑘 in (2) denotes
signals coming from different users, a reasonable choice is
to normalize the average power of each user, rather than
the average PSD. Hence, with this choice the normalization
factor in front of (2) would become

√
𝐸𝑆 instead of

√
𝐸𝑆𝑇𝐹 .

This would lead to slightly different simulation results with
respect to those obtained in this paper, although the general
conclusions still remain unchanged. Note that the summations
in (2) extend from −∞ to +∞, namely an infinite number of
time epochs and of carriers are employed [1]. The base pulse
𝑝(𝑡) can be an RRC pulse with roll-off factor 𝛼, an REC pulse,
or a Gaussian pulse. Gaussian pulses will be analyzed thanks
to their time-frequency compactness property [13]. Without
loss of generality, we will normalize the employed pulses in
the time domain such that the RRC pulse has bandwidth 1+𝛼,
the REC pulse has a duration of 1, and the Gaussian pulse
has the same standard deviation in both time and frequency
domains (symmetry assumption) [1]. Moreover, the base pulse
will be assumed of unitary energy.

At the receiver, we assume that a filter matched to the
time-frequency shifted replicas of the base pulse is employed,
together with a symbol-by-symbol detection algorithm [2].
Note that this is the optimal choice in the maximum a
posteriori (MAP) sense, only if the signals

{𝑝(𝑡− 𝑛𝑇 )𝑒𝑗2𝜋𝑘𝐹𝑡}𝑛,𝑘 (3)

are mutually orthogonal. On the contrary, when orthogonality
is not ensured, interference among the signals arises and
the MAP criterion leads to a more involved receiver, whose
complexity depends exponentially on the cardinality of the
interference set. The set of signals in (3) is denoted as a Weil-
Heisenberg system of functions [1]. As it will be clear from
the next sections, the product 𝑇𝐹 (i.e., the lattice size of the

2We point out that more general signal structures were proposed in
the literature, for example based on hexagonal lattices [2]. Although we
investigated those signaling schemes also, the relevant results are not reported
here since the improvements they provide in terms of spectral efficiency are
negligible.
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time-frequency grid) is of paramount importance in defining
the performance of the considered communication system.

Since we assumed in (2) an infinite amount of signals,
without loss of generality in the rest of this paper we will
consider the problem of detecting the signal 𝑥0,0 only. Since
symbol-by-symbol detection is considered, the only observed
sample employed in the detection reads

𝑦0,0 =

∫
𝑦(𝑡)𝑝∗(𝑡)𝑑𝑡 =

∫
[𝑥(𝑡) + 𝑤(𝑡)]𝑝∗(𝑡)𝑑𝑡 (4)

where an AWGN channel is considered, 𝑤(𝑡) being a circu-
larly symmetric zero-mean white Gaussian process with PSD
equal to 𝑁0. By joining (2) and (4), we eventually obtain

𝑦0,0 =
√
𝐸𝑆𝑇𝐹

∑
𝑛

∑
𝑘

𝑥𝑛,𝑘𝐴𝑝(𝑛𝑇, 𝑘𝐹 ) + 𝑧0,0 (5)

where 𝐴𝑝(𝜏, 𝜈) is the ambiguity function [2], defined as3

𝐴𝑝(𝜏, 𝜈) =

∫
𝑝(𝑡− 𝜏)𝑝∗(𝑡)𝑒𝑗2𝜋𝜈𝑡𝑑𝑡 (6)

that depends only on the base pulse 𝑝(𝑡) (e.g., if 𝑝(𝑡) is
Gaussian, then 𝐴𝑝(𝜏, 𝜈) is bi-variate Gaussian). The additive
noise term 𝑧0,0 is 𝑧0,0 =

∫
𝑤(𝑡)𝑝∗(𝑡)𝑑𝑡. We remark that 𝑧𝑛,𝑘

is colored unless the signals (3) are orthogonal. However, the
performance of a receiver which carries out symbol-by-symbol
detection depends only on the variance of 𝑧0,0, given by 𝑁0.

Note that (5) can be rewritten as

𝑦0,0 =
√
𝐸𝑆𝑇𝐹𝑥0,0

+
√
𝐸𝑆𝑇𝐹

∑
(𝑛,𝑘) ∕=(0,0)

𝑥𝑛,𝑘𝐴𝑝(𝑛𝑇, 𝑘𝐹 ) + 𝑧0,0 (7)

where the two different impairments experienced by the
receiver, namely the background noise and the interference
due to adjacent signals, are pointed out [14]. The Gaussian
pulse has the highest energy compactness jointly in time and
frequency [13], and is therefore widely considered in the
literature [1], [2].

Instead of simply neglecting the interference due to adjacent
signals in (7), we pursue here a more general approach, which
consists of modeling the interference as a zero-mean Gaussian
process with PSD equal to 𝑁𝐼 , of course independent of the
additive thermal noise—we point out that this approximation
is exploited only by the receiver, while in the actual channel
the interference is clearly generated as in (7). Note that the in-
terference is really Gaussian distributed only if the transmitted
symbols 𝑥𝑛,𝑘 are Gaussian distributed as well. Approximating
the interference as Gaussian even when the constellation is fi-
nite, is common in the multi-user literature (see, e.g., [15]). We
remark that, especially when the interference set is small, e.g.,
when 𝑇 and 𝐹 are large, actual interference distribution may
substantially differ from a Gaussian distribution. However, we
point out that the accuracy of this approximation is not of
concern here: assuming Gaussian-distributed interference is
anyway required to ensure that a symbol-by-symbol receiver
is optimal, according to the MAP criterion, for the assumed
channel model. Namely, it is like to say that the Gaussian

3We point out that (6) differs from the definition employed in [2] for an
unimportant multiplicative factor of unitary magnitude.

assumption is a consequence of the choice of the symbol-by-
symbol receiver.

With the above mentioned Gaussian approximation, the
channel model assumed by the receiver is

𝑦𝑛,𝑘 =
√
𝐸𝑆𝑇𝐹𝑥𝑛,𝑘 + 𝑣𝑛,𝑘 (8)

where {𝑣𝑛,𝑘} are independent and identically distributed zero-
mean circularly symmetric Gaussian random variables, with
variance 𝑁0 +𝑁𝐼 . It turns out that

𝑁𝐼 = 𝐸𝑆𝑇𝐹
∑

(𝑛,𝑘) ∕=(0,0)

∣𝐴𝑝(𝑛𝑇, 𝑘𝐹 )∣2 (9)

where the independence of the transmitted symbols has been
used.

III. ULTIMATE PERFORMANCE LIMITS

We are interested in evaluating the ultimate performance
limits achievable by a symbol-by-symbol receiver designed
for the auxiliary channel (8) when the actual channel is that
in (7), in terms of information rate and spectral efficiency.
This issue is an instance of mismatched decoding [16] (see
also [17]). The achievable information rate (AIR), measured
in bit per channel use, for the mismatched receiver yields

𝐼(𝑥0,0; 𝑦0,0) = 𝐸𝑥0,0,𝑦0,0

{
log2

𝑀𝑝𝑌0,0∣𝑋0,0
(𝑦0,0∣𝑥0,0)∑

𝑥 𝑝𝑌0,0∣𝑋0,0
(𝑦0,0∣𝑥)

}

(10)
where 𝑝𝑌0,0∣𝑋0,0

(𝑦0,0∣𝑥0,0) is a Gaussian probability density
function (pdf) of mean

√
𝐸𝑆𝑇𝐹𝑥0,0 and variance 𝑁0 + 𝑁𝐼

(in accordance with the auxiliary channel model (8)), while
the outer statistical average, with respect to 𝑥0,0 and 𝑦0,0, is
carried out according to the real channel model (7) [14], [17].
Eq. (10) can be evaluated efficiently by means of a Monte
Carlo average. Let us recall that the mismatched receiver can
assure error-free transmissions when the provided information
rate does not exceed 𝐼(𝑥0,0; 𝑦0,0) in (10).

From a system viewpoint, the spectral efficiency, that is
the amount of information transmitted per unity of time and
per unity of bandwidth, is a more significant quality figure
than the information rate. Hence, the derivation of the spectral
efficiency for the considered system is given in the following.
First, we notice that the overall information rate (in bits per
channel use) achievable by the symbol-by-symbol receiver
when 2𝑁 +1 time epochs and 2𝐾 +1 carriers are employed,
is given by

𝑁∑
𝑛=−𝑁

𝐾∑
𝑘=−𝐾

𝐼(𝑥𝑛,𝑘; 𝑦𝑛,𝑘)

while the signal duration and bandwidth are proportional to
2𝑁 + 1 and 2𝐾 + 1, respectively, plus some additive terms
independent of 𝑁 and 𝐾 and taking into account the pulse
tails in time and frequency. Thus, for increasingly large values
of 𝑁 and 𝐾 the boundary effects become negligible for
the overall information rate, the overall duration, and the
overall bandwidth. Hence, under the assumption of infinite
transmission in both the time and the frequency domain, the
achievable spectral efficiency (ASE) yields

𝜂 =
1

𝐹𝑇
𝐼(𝑥0,0; 𝑦0,0)

[
bit

s ⋅Hz

]
. (11)
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Fig. 1. AIR of a QPSK modulation for several pulses and values of the
spacing.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

-10 -8 -6 -4 -2  0  2  4  6  8  10  12  14  16  18  20

η 
[b

it/
s/

H
z]

ES/N0 [dB]

RRC, α=0.2, F=1.2, T=1.0
RRC, α=0.2, F=1.0, T=0.8
RRC, α=0.7, F=1.7, T=1.0
RRC, α=0.7, F=1.1, T=0.7
Gaussian, F=0.86, T=0.86

Fig. 2. ASE of a QPSK modulation for several pulses and values of the
spacing.

As a consequence, thanks to the assumption of a large number
of signals in both time and frequency domains, we can keep
focusing on the information stream 𝑥0,0 even for evaluating
the ASE.

Some simulation results are reported in Fig. 1, which shows
how the AIR varies with the value of 𝐸𝑆/𝑁0 when different
values of the time and frequency spacings 𝑇 and 𝐹 are
considered, for RRC and Gaussian pulses and QPSK symbols.
Note that, for the RRC pulse with roll-off factor 𝛼, when
𝑇 = 1 and 𝐹 ≥ 1 + 𝛼 the resulting signals (3) are mutually
orthogonal, thus 𝐴𝑝(𝑛𝑇, 𝑘𝐹 ) = 0 for each (𝑛, 𝑘) ∕= (0, 0) and
the interference term disappears from (7). In this case, 𝑁𝐼 = 0
and the auxiliary channel (8) becomes equivalent to the real
channel (7). The two curves with 𝑇 = 1 and 𝐹 = 1 + 𝛼
in Fig. 1 can therefore be interpreted as interference-free
benchmark curves.

We point out that the difference, in terms of AIR, between
the two considered orthogonal signaling formats stems from
the normalization factor

√
𝐹𝑇 introduced in (2). Fig. 1 gives

a quantitative evidence of the fact that the lower the values
of 𝑇 or 𝐹 , the larger the interference due to the adjacent
signals, and therefore the smaller the resulting AIR. We
remark again that the values of information rate shown in

Fig. 1 are achievable by a MAP symbol-by-symbol receiver
designed for the channel model (8).

On the other hand, very interesting insights are given by the
results reported in Fig. 2, which shows the ASE corresponding
to the same modulation formats as in Fig. 1. These results
clarify that the values of 𝑇 and 𝐹 providing the best AIR
are not those providing the best ASE, and thus that a careful
design strategy, when the spectral efficiency is the key quality
figure, should trade an intentional degradation in AIR for a
larger ASE.

For instance, in the case of the RRC pulse with roll-off
factor 𝛼 = 0.7, the choice 𝑇 = 0.7 and 𝐹 = 1.1 provides a
spectral efficiency significantly larger than the choice 𝑇 = 1.0,
𝐹 = 1.7, namely the minimum spacing that ensures orthogo-
nality. Moreover, despite the ambiguity function 𝐴𝑝(𝜏, 𝜈) of
the Gaussian pulse is strictly larger than 0 for each 𝜏 and
𝜈 (thus interference is always present, irrespectively of the
values of 𝑇 and 𝐹 ), the Gaussian pulse outperforms, in terms
of achievable spectral efficiency, the orthogonal signal sets
based on RRC pulses, at least for vanishing small noise power.

IV. OPTIMIZATION OF THE SPECTRAL EFFICIENCY

Our aim is to find, for a given constellation and base pulse,
the spacings 𝑇 and 𝐹 that provide the largest ASE. In general,
we could expect that the optimal spacings depend on the
signal-to-noise ratio (SNR). To this purpose, we plotted (not
shown here for a lack of space) the ASE as a function of
𝑇 and 𝐹 and for different values of 𝐸𝑆/𝑁0. As the SNR
increases, not only the ASE increases, but also the optimal
values of the spacing change. For 𝐸𝑆/𝑁0 → ∞, the maximal
ASE for the RRC pulse with 𝛼 = 0.2 is achieved with 𝑇 = 0.8
and 𝐹 = 1.0, i.e., the values previously employed in Fig. 1.
However, since we noticed that the dependence of the optimal
spacing values on the SNR is usually very limited, and in
order to simplify computer simulations, we decided to carry
out the optimization only asymptotically, i.e., for vanishing
small noise power, and evaluate the ASE at any SNR using
the spacings that are asymptotically optimal.

The properties of the function 𝜂(𝑇, 𝐹 ) cannot be easily
studied in closed form,4 but it reads clear, by physical ar-
guments, that it is bounded, continuous in 𝑇 and 𝐹 , and
tends to zero when 𝑇, 𝐹 → 0 or 𝑇, 𝐹 → ∞. Hence, the
function 𝜂(𝑇, 𝐹 ) has a maximum value—according to our
findings, in most cases there are no local maxima other than
the global maximum. Formally, for a given modulation format,
base pulse, and value of 𝐸𝑆/𝑁0, the optimization problem
consists of finding the maximal ASE

𝜂M(𝐸𝑆/𝑁0) = max
𝑇>0,𝐹>0

𝜂(𝑇, 𝐹,𝐸𝑆/𝑁0) (12)

which can be solved by evaluating 𝜂(𝑇, 𝐹,𝐸𝑆/𝑁0) on a
grid of values of 𝑇 and 𝐹 (coarse search), followed by an
interpolation of the obtained values (fine search).

4Although the functions AIR 𝐼(⋅) and ASE 𝜂(⋅) depend on various system
parameters, in the following we will only explicitly indicate the parameters
of interest for the relevant discussion.
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V. DOUBLE SIGNALING WITH INTERFERENCE

CANCELLATION

So far, a significant increase in the ASE was achieved
by intentionally introducing controlled interference among
adjacent signals, in order to make a better use of the available
resources (time and frequency). Inspired by the same rationale,
we propose a more involved way to improve the ASE, with
only a minor increase of the computational complexity at the
receiver. The idea is to combine two independent signals,
each of them belonging to a rectangular time-frequency lattice
(being the two lattices properly staggered), with a suitable
power allocation between the two signals. The transmitted
signal reads5

𝑥(𝑡) =
√

(1 − 𝛽2)𝐸𝑆𝐹𝑇
∑
𝑛,𝑘

�̇�𝑛,𝑘𝑝(𝑡− 𝑛𝑇 )𝑒𝑗2𝜋𝑘𝐹𝑡

+ 𝛽
√
𝐸𝑆𝐹𝑇

∑
𝑛,𝑘

𝑥𝑛,𝑘𝑝(𝑡− (𝑛+ 1/2)𝑇 )𝑒𝑗2𝜋(𝑘+1/2)𝐹𝑡

(13)

where 𝛽 ∈ [0, 1] is the power allocation factor, {�̇�𝑛,𝑘} and
{�̈�𝑛,𝑘} both satisfy (1), and 𝔼{�̇�𝑛,𝑘𝑥∗𝑛′,𝑘′} = 0 for each
𝑛, 𝑛′, 𝑘, 𝑘′. The constant multiplicative factors in (13) ensure
a constant average PSD independently on 𝑇 , 𝐹 , and 𝛽. The
sequences {�̇�𝑛,𝑘} and {�̈�𝑛,𝑘} are the output of two separate
encoders, with rate �̇� and �̈�, respectively. Note that, for 𝛽 = 0
or 𝛽 = 1, a signal equivalent to (2) results.

At the receiver, whose frontend is again composed by a
bank of matched filters, the following operations are carried
out. First, the samples

�̇�𝑛,𝑘 =

∫
𝑦(𝑡)𝑝∗(𝑡− 𝑛𝑇 )𝑒−𝑗2𝜋𝑘𝐹𝑡𝑑𝑡

(𝑦(𝑡) being the continuous-time received signal) are employed
to perform a symbol-by-symbol detection of the transmit-
ted symbols �̇�𝑛,𝑘. It is worth noting that, besides the self-
interference as described in (7), samples �̇�𝑛,𝑘 are affected by
the interference due to the secondary symbols �̈�𝑛,𝑘 as well,
thus the parameter 𝑁𝐼 of the auxiliary channel model (8) must
take into account the increased interference power. Therefore,
we expect that the AIR 𝐼(�̇�0,0; �̇�0,0), which of course depends
on the SNR, the base pulse, and the spacings 𝑇 and 𝐹 ,
rapidly decreases for increasingly large values of 𝛽. However,
assuming that 0 < �̇� < 𝐼(�̇�0,0; �̇�0,0), there exists a rate-�̇�
code that ensures an arbitrarily small probability of error for
the hard decisions of the symbols �̇�𝑛,𝑘. Consequently, after
successful decoding of the symbols �̇�𝑛,𝑘 has been carried out,
the following interference-mitigation operation is performed

𝑦(𝑡) = 𝑦(𝑡)−
√

(1− 𝛽2)𝐸𝑆𝐹𝑇
∑
𝑛,𝑘

�̇�𝑛,𝑘𝑝(𝑡− 𝑛𝑇 )𝑒𝑗2𝜋𝑘𝐹𝑡

(14)
and the samples

𝑦𝑛,𝑘 =

∫
𝑦(𝑡)𝑝∗(𝑡− (𝑛+ 1/2)𝑇 )𝑒−𝑗2𝜋(𝑘+1/2)𝐹𝑡𝑑𝑡

5We point out that the transmitted signal in (13) falls under the general
model of multi-pulse multi-carrier (MPMC) modulations of [3]. However, we
remark that, as opposed to [3], we do not look for orthogonal pulses, we
(partially) deal with interference at the receiver, and we employ finite-order
constellations.

are employed to perform symbol-by-symbol detection of the
secondary sequence {�̈�𝑛,𝑘}. In order to ensure arbitrarily small
probability of error for the detection of the secondary sequence
as well, it must be 0 < �̈� < 𝐼(�̈�0,0; 𝑦0,0).

The overall AIR of the proposed method is the sum of
the AIRs of the two sequences, and the ASE is the ratio
between the overall AIR and 𝐹𝑇 . We remark that the power
allocation parameter 𝛽 plays a key role, and must be optimized
in order to maximize the overall AIR. We denote by 𝛽𝑂𝑃𝑇

the optimized parameter. For vanishing small noise power, the
following proposition holds.

Proposition: If 𝐸𝑆/𝑁0 → ∞, 𝐴𝐼𝑅(𝛽) is continuous on
(0, 1] (rather than on the closed interval [0, 1]), it is strictly
decreasing in (0, 1], and 𝐴𝐼𝑅(𝛽 = 0) = 𝐴𝐼𝑅(𝛽 = 1). Its
supremum

sup
𝛽
𝐴𝐼𝑅(𝛽) = lim

𝛽→0+
𝐴𝐼𝑅(𝛽) (15)

is doubled with respect to the case of a single signal (10),
when the base pulse and the spacing values 𝑇 and 𝐹 are
fixed. Moreover, the supremum is not attained by any value
of 𝛽 ∈ [0, 1].
Note that, when the SNR is bounded, the factor of increase of
the AIR is strictly less than 2, and 𝛽𝑂𝑃𝑇 must be optimized
numerically.

Proof: First of all, note that 𝐴𝐼𝑅 = �̇�+�̈�. In the absence
of thermal noise, from the definition of achievable information
rate, it turns out that �̇� is a continuous function of 𝛽, since
the expectation is a linear operator and the integrand function
is a continuous function of 𝛽, for 𝛽 ∈ [0, 1]. Moreover, �̇� is
decreasing in 𝛽, since 𝛽 determines the signal-to-interference
ratio. On the other hand, since due to (14) the samples 𝑦𝑛,𝑘
are not affected by the interference due to the first signal,
and since the signal-to-noise ratio is infinite irrespectively of
𝛽 (as long as 𝛽 > 0), �̈� is constant for 𝛽 ∈ (0, 1] and is
null for 𝛽 = 0. This proves the claims regarding monotonicity
and continuity. Moreover, from the monotonicity of �̇� and the
step shape of �̈�, (15) is immediately proved. Finally, note that
the same signaling scheme is obtained for 𝛽 = 0 and 𝛽 = 1
(with only an exchange between the two signals), thus the
corresponding AIRs are the same. ⋄

In Fig. 3, the spectral efficiency achievable by the proposed
receiver based on interference mitigation, when the transmitted
signal is (13), is shown as a function of the power allocation
factor 𝛽. A QPSK modulation and an RRC pulse with 𝛼 = 0.2,
𝑇 = 0.8, 𝐹 = 1.0, and several values of 𝐸𝑆/𝑁0 have
been used. As it can be seen, for very small values of the
SNR, the ASE is almost independent of 𝛽, and basically no
improvements are obtained when a signal format as in (13) is
employed (i.e., when 𝛽 > 0). On the contrary, for increasingly
large values of the SNR, the gain provided by the proposed
scheme becomes larger and larger, whereas 𝛽𝑂𝑃𝑇 rapidly
decreases to 0.

VI. LOW-COMPLEXITY EQUALIZATION

Although a symbol-by-symbol receiver has been assumed
throughout this paper, in particular circumstances the inter-
ference among adjacent symbols could be strong enough to
require a suitable design of the coding scheme, since in these
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Fig. 3. ASE of the proposed interference-mitigation receiver and double
signaling, as a function of the power allocation factor 𝛽, for a QPSK
modulation and an RRC pulse with 𝛼 = 0.2, 𝑇 = 0.8, and 𝐹 = 1.0.

cases error-correcting codes designed for the interference-free
AWGN channel fail to achieve reliable communication at the
SNR values predicted by the information-theoretic analysis.
An effective way to avoid such a complete redesign of the
coding scheme is the use of a more involved equalization
algorithm at the receiver, as that proposed in this section, based
on the well known soft interference cancellation principle
and inspired by the wide literature on multiuser detection
(see, e.g., [9], [10] and references therein). The resulting
algorithm may be employed as a soft-input soft-output (SISO)
block in iteratively decoded concatenated “turbo” schemes,
according to the turbo-equalization principle [18]. However,
we remark that it is not possible to evaluate the information
rate, achievable by the proposed SIC-based receiver, using
the tools described in Section III, since there does not exist
an auxiliary channel for which the proposed SIC receiver
is an instance of the exact MAP criterion. Therefore, the
performance of the proposed equalization algorithm will be
assessed, in Section VII, in terms of convergence threshold
and BER only.

Assume that, at a given iteration, the equalization algorithm
is activated with a set of a priori probabilities, coming from
the SISO decoder, equal to {𝑃 (𝑥𝑛,𝑘)} (in such concatenated
schemes, the code symbols are usually assumed independent).
The algorithm proceeds as follows:

1) 𝑖𝑡𝑒𝑟 = 0 and the extrinsic probabilities 𝑝(𝑖𝑡𝑒𝑟)(y∣𝑥𝑛,𝑘)
are initialized to a constant value (we denote with y the
set of all the observed samples belonging to the current
codeword);

2) the a posteriori mean and variance of every code symbol
is evaluated according to

𝜇𝑛,𝑘 =

𝑀−1∑

ℓ=0

𝑥(ℓ)𝑃 (𝑥𝑛,𝑘 = 𝑥(ℓ)∣y) (16)

≃
𝑀−1∑

ℓ=0

𝑥(ℓ)𝑃 (𝑥𝑛,𝑘 = 𝑥(ℓ))
𝑝(𝑖𝑡𝑒𝑟)(y∣𝑥𝑛,𝑘 = 𝑥(ℓ))

𝑝(𝑖𝑡𝑒𝑟)(y)

𝜎2
𝑛,𝑘 =

𝑀−1∑

ℓ=0

∣𝑥(ℓ)∣2𝑃 (𝑥𝑛,𝑘 = 𝑥(ℓ)∣y)− ∣𝜇𝑛,𝑘∣2 (17)

≃
𝑀−1∑

ℓ=0

∣𝑥(ℓ)∣2𝑃 (𝑥𝑛,𝑘 = 𝑥(ℓ))
𝑝(𝑖𝑡𝑒𝑟)(y∣𝑥𝑛,𝑘 = 𝑥(ℓ))

𝑝(𝑖𝑡𝑒𝑟)(y)

− ∣𝜇𝑛,𝑘∣2

where the complex values 𝑥(ℓ), ℓ = 0, . . . ,𝑀−1, denote
all the constellation symbols of the 𝑀 -ary alphabet.
Note that, in (16) and (17), 𝑝(𝑖𝑡𝑒𝑟)(y) plays the role
of a constant normalization factor, and in fact need not
to be evaluated or stored;

3) the interference is removed from all the received samples
according to

𝑦𝑛,𝑘 = 𝑦𝑛,𝑘 −
√
𝐸𝑆𝑇𝐹

∑
(𝑚,𝑖)∈ℐ

𝐴𝑝(𝑚𝑇, 𝑖𝐹 )𝜇𝑛+𝑚,𝑘+𝑖

where ℐ denotes the interference set. Although in gen-
eral ℐ = {(𝑚, 𝑖) : ∣𝑚∣ + ∣𝑖∣ ∕= 0}, in practice only
the symbols adjacent to the considered one contribute
to interference, since 𝐴𝑝(𝑚𝑇, 𝑖𝐹 ) rapidly decreases
when ∣𝑚∣ or ∣𝑖∣ become large. Therefore, we will use
ℐ = {(𝑚, 𝑖) : ∣𝑚∣ ≤ 𝐿𝑇 , ∣𝑖∣ ≤ 𝐿𝐹 , ∣𝑚∣+ ∣𝑖∣ ∕= 0}, being
𝐿𝑇 and 𝐿𝐹 design parameters;

4) a symbol-by-symbol evaluation of the extrinsic prob-
abilities is carried out by assuming independent and
Gaussian distributed {𝑦𝑛,𝑘}, namely

𝑝(𝑖𝑡𝑒𝑟+1)(y∣𝑥𝑛,𝑘) ∝ exp

[
−∣𝑦𝑛,𝑘 −

√
𝐸𝑆𝑇𝐹𝑥𝑛,𝑘∣2
Σ𝑛,𝑘

]

where

Σ𝑛,𝑘 = 𝑁0 + 𝐸𝑆𝑇𝐹
∑

(𝑚,𝑖)∈ℐ
∣𝐴𝑝(𝑚𝑇, 𝑖𝐹 )∣2𝜎2𝑛+𝑚,𝑘+𝑖 ;

5) 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟+1; if 𝑖𝑡𝑒𝑟 < 𝑆𝐼 (the design parameter 𝑆𝐼
being the overall number of self-iterations) return to 2,
otherwise continue;

6) the extrinsic probabilities fed to the SISO decoder are
{𝑝(𝑆𝐼)(y∣𝑥𝑛,𝑘)}.

We remark that the computational complexity of the proposed
SIC algorithm is in general very limited, and only slightly
larger than that of the plain symbol-by-symbol detector. In
particular, the complexity depends linearly on the codeword
size, the number of self-iterations, the constellation size, and
the cardinality of the interference set ℐ. Moreover, we point
out that the proposed algorithm does not involve any sequential
operation, and can thus be implemented fully parallel, with a
latency of the same order of magnitude of the symbol-by-
symbol receiver. The performance of the proposed receiver in
practical scenarios will be assessed in Section VII.

We also point out that, when the proposed SIC-based
receiver is employed as the SISO turbo-equalization block in
iteratively decoded schemes, some of the self-iterations can be
saved by introducing memory between consecutive iterations
of the overall detection and decoding scheme. In particular, a
smart solution that allows excellent performance, as we will
show in Section VII, with limited computational complexity,
consists in avoiding the reset of messages 𝑝(0)(y∣𝑥𝑛,𝑘) carried
out at step 1), that instead can be initialized with the extrinsic
probabilities evaluated in the previous run of the equalization
block. In this way, even if only one self-iteration is carried
out, the performance in an iteratively-decoded scheme may
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TABLE I
ASYMPTOTIC (I.E., FOR VANISHING SMALL NOISE POWER) ASE.

Constell. Pulse Sig. mod. 𝑇𝑜𝑝𝑡 𝐹𝑜𝑝𝑡 Orthog. 𝜂

QPSK REC eq. (2) 1.00 1.00 Yes 2.00
QPSK REC eq. (2) 1.00 0.80 No 2.32

QPSK RRC-0.2 eq. (2) 1.00 1.20 Yes 1.67
QPSK RRC-0.2 eq. (2) 0.80 1.00 No 2.28

QPSK RRC-0.7 eq. (2) 1.00 1.70 Yes 1.18
QPSK RRC-0.7 eq. (2) 0.72 1.10 No 2.27

16-QAM RRC-0.2 eq. (2) 1.00 1.20 Yes 3.33
16-QAM RRC-0.2 eq. (2) 0.95 1.05 No 3.95

QPSK Gauss. eq. (2) 0.88 0.88 No 2.10
QPSK Gauss. eq. (13) 0.88 0.88 No 4.21

16-QAM Gauss. eq. (2) 1.15 1.15 No 5.43

in practice approach that of the algorithm carrying out many
self-iterations. The resulting algorithm will be denoted as no-
message-resetting (NMR) SIC algorithm.

VII. NUMERICAL RESULTS

In this section, the maximal ASE, obtained with a proper
optimization of the spacing parameters 𝑇 and 𝐹 (and 𝛽
when double signaling is considered), is evaluated for several
modulation formats and base pulses. For comparison purposes,
the capacity per unity of bandwidth 𝜂𝐶 = log2(1 + 𝐸𝑆/𝑁0)
of the considered AWGN channel in terms of bit/s/Hz, is also
shown. Note that the above spectral efficiency is achieved by
Gaussian-distributed input symbols and orthogonal signaling.

Table I collects the performance, in terms of asymptotic
(i.e., for vanishing small thermal noise power) maximal ASE,
of a set of modulation formats and base pulses. For all
the considered formats based on REC and RRC pulses, the
performance for orthogonal signaling (i.e., when 𝑇 = 1 and
𝐹 = 1 + 𝛼 for RRC and 𝑇 = 𝐹 = 1 for REC) is shown
for comparison. This Table summarizes the significant gain
in terms of ASE provided by the techniques proposed in this
paper. Note that the asymptotic spectral efficiency, achievable
by modulations based on REC pulse or RRC pulses with
completely different values of the roll-off factor, is almost
the same when optimization of the spacing values is carried
out. This stems from the fact that pulses with a larger roll-
off can be squeezed more in the time-domain, and viceversa.
The product of the optimal 𝑇 and 𝐹 is almost the same
in the considered scenarios, as well as the asymptotic AIR.
Moreover, we point out that the larger the constellation size,
the smaller the performance gain achieved with a suitable op-
timization of the spacing values. An important fact, confirmed
by these simulation results, is that the loss in terms of ASE of
orthogonal signaling with respect to the optimized case rapidly
decreases as the constellation size increases (we remark again
that, when the input symbols are i.u.d. Gaussian, orthogonal
signaling maximizes the ASE).

Similarly, Fig. 4 shows the ASE as a function of 𝐸𝑏/𝑁0,
𝐸𝑏 being the received signal energy per information bit, for a
set of selected cases. We remark again that the same values
of 𝑇 and 𝐹 , optimized for vanishing small values of 𝑁0, have
been employed at each value of the SNR, while in the case
of double signaling, the parameter 𝛽 has been re-optimized
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Fig. 4. ASE, as a function of 𝐸𝑏/𝑁0, for a set of selected cases.

for each value of the SNR. It is worth pointing out the large
gain provided by the double signaling scheme proposed in
Section V, even at low and medium SNRs.

Having previously shown the potential gains in terms of
ASE provided by the proposed technique, we now analyze
the performance of a practical coded scheme in terms of
convergence threshold, by means of the powerful EXIT chart
analysis [11], as well as in terms of BER. In both cases, we
employed the rate-1/2 and rate-3/4 irregular LDPC codes [12]
with codeword length 64800, proposed for the future 2nd
generation Satellite Digital Video Broadcasting (DVB-S2)
standard [19]. A QPSK modulation and a symmetric Gaus-
sian pulse have been used in all cases. The single-signaling
scenario described by (2) have been used, although we point
out that all the results discussed below can be generalized to
the double-signaling scheme (eq. (13)) as well.

First of all, a convergence threshold analysis, when the
LDPC codes described above are used, has been carried out
through EXIT chart analysis, as in [20]. In this scenario,
the receiver can be seen as the serial concatenation of two
component blocks, connected through an interleaver. The outer
block is denoted as Check Node Decoder (CND), and its EXIT
curve can be evaluated in closed form [20]. On the other hand,
the inner block is the composition of the LDPC Variable Node
Decoder (VND) and the employed equalization algorithm,
namely, either the symbol-by-symbol or the proposed SIC al-
gorithm with two self-iterations, and the relevant EXIT curves
have been evaluated by means of numerical simulations. An
automatic procedure has been developed, whose aim is to find
the minimum 𝐸𝑏/𝑁0 for which the EXIT tunnel is open. In
Fig. 5, the convergence thresholds of the considered LDPC
codes are shown, parameterized by the spacings product 𝐹𝑇 ,
for both the symbol-by-symbol and the proposed SIC-based
receiver. For comparison, we also show the capacity curve
𝜂𝐶 and the maximal ASE, obtained by solving (12) for each
value of 𝐸𝑏/𝑁0, in the considered scenario. Note that, for
small enough values of the spectral efficiency (i.e., large values
of the spacing 𝐹𝑇 ), the interference is very small and the
convergence thresholds correspond to those of the employed
LDPC codes on the AWGN channel, namely about 0.5 dB
(for the rate-1/2 code) and 3.8 dB (for the rate-3/4 code).
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Fig. 5. Convergence thresholds for the two considered irregular LDPC codes,
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Moreover, in this low-interference scenario the performance
of the symbol-by-symbol receiver is almost the same as that
of the more involved SIC algorithm. On the contrary, for
large values of the spectral efficiency, corresponding to a large
interference, the use of a SIC receiver allows an exceptional
performance gain. By the way, the performance of the SIC
receiver may even exceed the maximal ASE, since the latter
has been evaluated assuming a symbol-by-symbol receiver.

Although not shown here due to the lack of space, the AIR
corresponding to the maximal ASE curve shown in Fig. 5
intersects the value 1 bit/ch. use, which corresponds to the
information rate of the rate-1/2 code (since it is mapped on
a quaternary alphabet), at 𝐸𝑏/𝑁0 = 1.5 dB, from which an
ASE of 1.11 bit/s/Hz and an optimal spacing 𝐹 = 𝑇 = 0.95
follow. At this value of the ASE, the performance of the
considered rate-1/2 code is excellent, since the convergence
threshold is about 1.9 dB when the symbol-by-symbol receiver
is employed, thus the loss with respect to the maximal ASE
is limited within a few tenths of dB.

We now discuss the EXIT chart, depicted in Fig. 6, corre-
sponding to the rate-1/2 code and two values of the spacing,
namely 𝐹 = 𝑇 = 0.95 as discussed above, and a highly
suboptimal value 𝐹 = 𝑇 = 1.3, for which however an
almost interference-free channel results. The relevant curves,
corresponding to the two scenarios, have been obtained by
means of numerical simulations working at 𝐸𝑏/𝑁0 = 1.9 dB,
which is the convergence threshold when 𝐹 = 𝑇 = 0.95 and
the symbol-by-symbol receiver is employed. From Fig. 6 some
observations can be drawn: first, the use of the proposed SIC-
based receiver, even with just one self-iteration, dramatically
improves the EXIT curve in the strong-interference scenario.
Moreover, by increasing the number of self-iterations from 1
to 2, a further improvement is possible. No improvement has
been observed when performing further self-iterations. On the
other hand, in the weak-interference scenario (i.e., 𝐹𝑇 large),
the improvement stemming from the use of the SIC receiver
is much more limited, since the symbol-by-symbol receiver
almost performs as in the interference-free benchmark case.

In order to confirm the outcomes of the EXIT chart analysis
discussed above, the BER performance is evaluated in the
same scenario. At the receiver, the proposed SIC equalization
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algorithms are iteratively activated along with the LDPC
decoder, for an overall amount of 25 iterations. The process
also stops if, by checking the code syndrome, a valid codeword
is found before the 25th iteration. Fig. 7 shows the BER as a
function of 𝐸𝑏/𝑁0. Note that the convergence thresholds are
in line with the results highlighted by the EXIT chart analysis
of Fig. 5.6 For example, the waterfall region for the strong-
interference scenario and the symbol-by-symbol receiver be-
gins at about 2.4 dB, whereas the convergence threshold was
1.9 dB. Similarly, both the considered SIC-based receivers
outperform the symbol-by-symbol receiver of about 1 dB, that
is exactly the same offset predicted in Fig. 5. We point out that,
in all the BER simulations we carried out, the NMR-SIC with
just one self-iteration always behaved as the SIC with two or
more self-iterations, despite its lower complexity. Finally, we
observe that, in the weak-interference scenario, the NMR-SIC
receiver behaves exactly as the symbol-by-symbol receiver in
the interference-free benchmark case.

6Since the EXIT chart analysis relies on a number of assumptions, namely
infinite block length, infinite number of iterations, and Gaussian-distributed
log-likelihood ratios, the waterfall region of practical systems is usually well
beyond the threshold value predicted by the EXIT analysis.
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VIII. CONCLUSIONS

We have proposed a way to improve the spectral efficiency
of linear modulations with finite order constellations on an
AWGN channel, achievable by a symbol-by-symbol receiver.
This is obtained by reducing the spacing, in both time and
frequency domains, between adjacent signals, hence introduc-
ing controlled interference, but at the same time making a
better use of the available time and frequency resources. With
respect to [8], which pursued a similar approach, a symbol-by-
symbol detection algorithm is employed at the receiver, and
the achievable spectral efficiency is used as a performance
measure.

Moreover, we have shown that when two independent
signals, that suitably span the time-frequency domain with
a proper power allocation, are employed, along with a suc-
cessive interference cancellation receiver, the performance
gain is remarkable. The simulation results clearly pointed
out that, when finite-order constellations (e.g., QPSK) are
employed, orthogonal signaling can be largely suboptimal
from the spectral efficiency point of view. On the contrary,
when higher-order constellations are considered, the gain of
the proposed schemes decreases. In summary, the proposed
techniques can be seen as a low-complexity alternative to
Gaussian shaping [4].

Finally, a low-complexity equalization scheme, based on the
soft interference cancellation principle, has been proposed, and
its performance in an LDPC-coded iteratively-decoded scheme
evaluated in terms of EXIT chart and BER. The proposed
receiver has a computational complexity only slightly larger
than that of the symbol-by-symbol receiver, but allows excel-
lent performance, even in strong-interference scenarios, when
error-correcting codes designed for the AWGN channel are
employed, without the need for a complete redesign of the
coding scheme.
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