CHAPTER

Simulating wireless and
mobile systems

The Integration of DEUS and Ns-3

M. Amoretti, M. Picone, F. Zanichelli, and G. Ferrari
Universita degli Studi di Parma, Parma, Italy

INTRODUCTION

Mobile and distributed systems are the result of the interconnection of several
nodes, characterized by decentralized goals and control, that as a whole exhibit
one or more properties (i.e., behavior) which are not easily inferred from the
properties of the individual parts. Such systems are complex, because the interac-
tions of the nodes determine their future individual states and that of the system
[1]. Moreover, they usually exhibit high levels of concurrency and asynchrony
and their performance may be highly influenced by the changing environmental
conditions of the environment (e.g., if they move).

For the qualitative and quantitative analysis of such systems, discrete event
modeling and simulation (in which time jumps from event to event) are usually
adopted [2]. In order to choose the proper simulation environment, the following
criteria are taken into account: simulation architecture (the operation and the
design of the simulator), usability (how easy the simulator is to learn and use),
extensibility (the possibility to modify the standard behavior of the simulator in
order to support specific protocols), configurability (how easily the simulator can
be configured and with what level of detail), scalability (the ability to simulate
how a decentralized protocol scales with thousands, or more, nodes), statistics
(how meaningful and easy to manipulate the results are), reusability (the possibil-
ity to use the simulation code to write the real application). Moreover, the design
of mobile ubiquitous applications can be achieved efficiently only by taking into
account multiple aspects: networking, user behavior, environment dynamics.
Depending on the problem to be studied, omitting some of these points of view
may lead to less-than-useful simulation results.

By looking at the state of the art, it is evident that almost every simulation
tool targets a specific problem class. Only a few of them are truly general-
purpose. Among these, in our opinion, the most advanced is CD++ [3], a
modeling environment that enables the definition and execution of Discrete

Modeling and Simulation of Computer Networks and Systems. 465
© 2015 Elsevier Inc. All rights reserved.

466

CHAPTER 16 Simulating wireless and mobile systems

Event System Specification (DEVS) models [2]. OMNeT ++ is another well-
known general-purpose discrete event simulation tool, which has been publicly
available since 1997 [4]. Like CD++, OMNeT++ is based on the concept of
simple and compound modules. The user defines the structure of the model (the
modules and their interconnection) using a topology description language called
NED. OMNeT++ has been used in numerous domains from queueing network
simulations to wireless and ad-hoc network simulations, from business process simu-
lation to peer-to-peer network, optical switch and storage area network simulations.

Unfortunately, all of these simulation tools are not particularly suitable for the
analysis of distributed systems with thousands of nodes, characterized by a high
level of churn (node joins and departures) and reconfiguration of connections
among nodes. Trying to fill this gap, in 2009 we started a project for the develop-
ment of an open source, Java-based, general-purpose discrete event simulation
tool, called DEUS [5]. To simulate a distributed system at the application level,
DEUS is particularly convenient, because of its extreme ease of use and flexibil-
ity. However, it does not provide packages for simulating networking layers, and
we do not foresee implementing them. For this reason, until this point the sched-
uling of application-level events to simulate the exchange of messages among
nodes has been necessarily configured by the user, using reasonable values—
which could be considered a naive approach.

In this chapter, we present a general co-simulation methodology to obtain
realistic DEUS-based simulations of mobile and distributed systems, leveraging
on a highly reliable and complete open source tool for the discrete event simula-
tion of Internet systems, namely ns-3 [6]. Such a tool relies on high-quality con-
tributions of the community to develop new models, debug or maintain existing
ones, and share results. As a proof of concept, we describe our positive experi-
ence in integrating ns-3’s LENA LTE-EPC package (see Section 4) to support
the network-aware simulation of a peer-to-peer overlay scheme called
Distributed Geographic Table (DGT), which allows mobile nodes to efficiently
share geo-referenced information without centralized control. To the best of our
knowledge, OVNIS [7] is the only other tool which integrates ns-3 with a higher
level discrete event platform, namely the SUMO road traffic simulator [8].
However, the only available release of OVNIS is the initial one, which includes
an outdated version of ns-3.

The chapter is organized as follows. Section 2 analyzes related work on wire-
less and mobile systems co-simulation. Section 3 recalls the main features of
DEUS. Section 4 is devoted to ns-3. Section 5 illustrates the methodology we pro-
pose to use ns-3 to improve the realism of DEUS-based simulations. Section 6
describes a challenging case study (regarding mobile nodes that form a peer-to-
peer overlay network operating on top of LTE), and compares the results obtained
with the proposed methodology with those obtained with a naive approach that
models only the application layer. Finally, Section 7 concludes the chapter with a
discussion of open problems and future work.

2 Co-simulation of wireless and mobile systems

CO-SIMULATION OF WIRELESS AND MOBILE SYSTEMS

Although an intuitive way to simulate complex systems is to engineer a new tool
from scratch that would contain building modules for communication components
and others for physical components (such as mobile devices and vehicles), a good
practice and a basic principle in engineering is to avoid reinventing the wheel and
to rely on well-developed ideas as much as possible. Thus, adapting and integrat-
ing existing simulation tools provides a practical and convenient approach. In par-
ticular, co-simulation (cooperative simulation) is a methodology that allows
individual components to be simulated by different simulation tools running
sequentially or simultaneously, and exchanging information in a collaborative
manner. In general, the type of information exchanged during co-simulation may
be boundary conditions such as pressure, flow rate and temperature, or simulation
parameters such as time steps or control signals. In the context of wireless and
mobile systems, co-simulation is implemented by integrating a network simulator,
producing information like accurate packet delays and transmission ranges, with
other simulation tools, either specialized or general-purpose.

A brief description of co-simulation tools for network control systems
(NCSs)—e.g., MATLAB®, Jitterbug, TrueTime—has been proposed by Arzén and
Cervin [9]. For wireless network control systems (WNCS) simulations, a network
simulator has been implemented as C MEX S-functions, to execute simultaneously
with the SIMULINK control system [10]. Co-simulation of control and network
based on MATLAB/SIMULINK has been proposed in several research works
[11—14] that investigated NCS performance for various data rates, traffic, loads,
network delays, networked predictive control, and compensation of transmission
delay. However, the MATLAB/SIMULINK environment does not provide suffi-
cient support for simulation of real-time implementation issues. MATLAB is also
limited in simulating important aspects of wireless networks, such as node move-
ment models and wireless signal propagation models. Jitterbug and TrueTime have
been used to investigate the effects on system performance of the sampling period,
communication delay, jitter, control-task scheduling, and blocking of real time
tasks [15,16]. However, TrueTime does not support wireless networks and uses
simplified network models. Moreover, it is not possible to use Jitterbug to evaluate
the performance of a feedback scheduling system where the CPU loads change,
and where the sampling periods of the controllers are changing over time. Another
limitation of Jitterbug is that only linear systems can be analyzed [15].

Other research works [17—20] combined two simulation packages to achieve
a more efficient co-simulation approach. A co-simulation platform that combines
the ns-2 network simulator with the Modelica framework has been presented by
Al-Hammouri et al. [17], where ns-2 models the communication network and
Modelica simulates sensors and actuators. SIMULINK and OPNET co-simulation
for WNCS over MANET has been considered by Hasan et al. [18], to investigate
the situation where the controller communicates with the simulated stationary

467

468 CHAPTER 16 Simulating wireless and mobile systems

MANET and plant nodes, over a real wireless link. In a more recent work [19],
Hasan et al. have presented a SIMULINK-OPNET co-simulation methodology,
with comprehensive simulation results, also considering the impact of different
network sizes with stationary and mobile nodes. Leclerc et al. have developed a
multi-modeling platform called AA4AMM (Agent and Artefact for Multiple
Models) [20]. Its main goal is reusability and interoperability of different simula-
tors with a software architecture that is completely decentralized and based upon
the multi-agent paradigm. Each simulator is controlled by a simulator manager
(formally an agent) which is an autonomous entity. All of these manager/agents
cooperate in order to run the whole simulation and to take care of the interaction
problematics. Such an approach has been validated by coupling a user behavior
simulator (MASDYNE) with a MANET simulator (JANE [21]). The most inter-
esting result of such an approach is the ability to take mutual influences of user
behaviors and network performances into account. However, this is not always
possible. For example, ns-3 is not designed for being used as an on-demand pro-
vider of data items (e.g., the delay of a specific packet transmitted wirelessly in a
complex environment); instead, it is particularly suitable to collect general net-
work statistics. Fortunately, co-simulation can be also implemented by means of
sequential integration of powerful, independent tools. In Section 5 we present our
integration of DEUS and ns-3.

DEUS

DEUS is a multi-platform tool, developed in Java language (the code can be
downloaded from the official site [22]). Its API, by subclassing, enables the
implementation of (i) nodes, i.e. the entities which interact in a complex system,
leading to emergent behaviors such as humans, pets, cells, robots or intelligent
agents; (ii) events, e.g., node births and deaths, interactions among nodes, interac-
tions with the environment, logs and so on; and (iii) processes, either stochastic
or deterministic ones, constraining the timeliness of events.

Once specific Java classes have been implemented, it is possible to configure a
simulation by means of the DEUS graphical user interface, which includes:

» the Visual Editor, for the generation of XML documents describing specific
simulations;

e the Automator, for the execution of parametric simulations and the automatic
generation of statistics in a Gnuplot-compliant format.

Figure 16.1 illustrates how DEUS simulation models are created (using also a
Visual Editor), and then executed by the Engine, which is the core of DEUS,
managing the event queue and the simulation loop. The Automator allows sensi-
tivity analysis to be performed, by setting ranges for node and process
parameters.

3 DEUS

DEUS
Visual
Editor

DEUS
simulation

code

DEUS
Engine

DEUS
Automator

log
files

FIGURE 16.1

Discrete event simulation with DEUS.

A node may represent a dynamic system characterized by a set of possible
states, whose transition functions may be implemented either in the source code
of the events associated to the node, or in the source code of the node itself.
Multi-scale modeling of complex systems can be achieved by defining nodes of
different complexity, and connecting them. DEUS comes with a library of prede-
fined, common processes, and many others can be implemented by the user.

DEUS APl STRUCTURE AND FEATURES

Since DEUS is a general-purpose simulator, basic interfaces and classes are kept
separated from more specific ones. By means of subclassing, it is possible to create
specific modules for the simulation of any type of complex system. An extension
package related to peer-to-peer resource sharing networks is provided by default.
The experience we acquired during the development of other simulation code
(mainly using ns-2 and PeerSim [23]) showed us how difficult it is to manage mem-
ory when it comes to the simulation of systems with a large number of interacting
parts (nodes, if systems are described as graphs). Java is an extremely powerful lan-
guage and the flexibility of its object orientation, plus the reflection mechanism,
make it highly suitable to build such a type of project. However, the difficulties in
managing the garbage collection mechanism require a good design of the memory
management. For these reasons, as we describe in more detail later on, DEUS relies
on an efficient cloning mechanism: the initial process loads configuration objects
into memories and new instances of those objects are obtained through deep cloning.

469

470 CHAPTER 16 Simulating wireless and mobile systems

SIMULATION OBJECTS AND BEHAVIOR

The development of DEUS started from the definition of the basic simulation
objects and the design of the configuration procedure, having in mind all the
dynamics of complex systems that one may need to simulate. The goal was to
achieve high flexibility and usability, allowing developers to specify a section
with simulation objects and another one with simulation behavior, maximizing
the possibility to reuse components and providing self-validation constraints so
that the engine could process the configuration file through reflection and without
any further validation. In particular, we have recently demonstrated that DEUS
allows testing of deployment software on simulated devices and environments
[24]. Simulation objects are events, nodes, and resources, while simulation
behavior is managed through processes and engine objects.

An event represents the base simulation unit: i.e., the piece of code that is
going to be scheduled by the system. Moreover, as complex systems are made by
interacting components, we introduced the concept of node, which also corre-
sponds to a data structure collector the event could rely on. Each node can have a
set of resources, a structured way to represent objects the node can share or use
through the event code. The association between events and nodes is given by
process objects, which are responsible for event schedule timing calculation. The
engine object puts everything together by linking events that are scheduled at the
beginning of the simulation.

The simulation behavior follows the standard model of discrete event simula-
tions: initialization of system state variables and clock, scheduling of initial
events and, until the ending condition is true, calculation of next clock time and
processing of the next event in the scheduling queue. However, a few additions
have been made to make the model more flexible. For each event, it is possible to
specify whether its execution is one-shot, so that the event will be removed from
the schedule after its completion, or not, so that the event will be rescheduled
according to the timing given by its associated process. Moreover, each event is
provided with a listening mechanism over the scheduling process so that the latter
will be able to schedule other events, namely referenced events, right after the
event’s execution. The ending condition of the simulator happens once the maxi-
mum simulation time has been reached or the scheduling queue is empty.

DEUS CORE

DEUS has been divided into packages, each one addressing a specific aspect of
the simulation. The root package is it.unipr.ce.dsg.deus, containing the fol-
lowing subpackages:

e core — base system components including simulation object interfaces,
configuration parser and engine;
e schema — object model representing the configuration file;

3 DEUS

SchedulerListener
AutomatorParser
Proces?L—) Resource
——
Engine
Node

FIGURE 16.2
Class diagram of DEUS core package.

* util — support classes for the simulation engine;

* impl.event — reference implementations of the event object;

e impl.node — reference implementations of the node object;

e impl.resource — reference implementations of the resource object;
e impl.process — reference implementations of the process object.

In the following we provide a detailed description of the main classes contained
in each package. A class diagram of the core package is shown in Figure 16.2.

3.3.1 core package

The Event class represents the simulation object being scheduled by the Engine.
Each event is identified by a configuration id, a set of properties, a flag indicating
if the event should be executed only once, a set of referenced events, a parent
process, the triggering time and a listener to handle the execution of referenced
events. In order to keep the simulation memory area as small as possible, each
event is created by cloning the original event obtained from the simulation con-
figuration parser; therefore, each implementing class should provide the code for
cloning the event ensuring that its internal state is consistent, by reinitializing the
event members that do not have to be cloned.

The Node class represents a generic data structure collector inside the simula-
tion, so the main use is to store, read and delete information useful to characterize
the simulation state. Each node is identified by a configuration id, a set of proper-
ties and a set of resources. Similarly to the Event class, there is the same cloning
mechanism to keep the memory requirements small for the simulation execution.

The Resource class represents a generic resource associated to a node, with
getter and setter methods.

The Process class represents the simulation object responsible to determine
the timestamps of the events to be scheduled. Each process is identified by a con-
figuration id, a set of properties, a set of referenced nodes and a set of referenced
events.

471

472

CHAPTER 16 Simulating wireless and mobile systems

The Engine class represents the simulation engine of DEUS. After the config-
uration file has been parsed, the obtained configured simulation objects (nodes,
events and processes) are passed to the Engine, to let it properly initialize the
queue of events to be run. The simulation is a standard discrete event simulation
where each event has an associated triggering time, used as a sorting criteria. The
events inserted into the simulation queue are processed individually one after the
other, each time updating the current simulation virtual time. The run method of
the engine will process each event in the event queue until a maximum virtual
time is reached or the queue is empty. In each cycle the first event of the queue is
removed (the one with the lowest triggering time), the virtual time of the simula-
tion is updated and the event is executed. If the event has some referenced events,
those will be scheduled right after the event execution. If the event is not
one-shot and has a parent process, then it will be scheduled for execution with a
triggering time calculated according to the parent process strategy.

The AutomatorParser class is responsible for handling the simulation configura-
tion file, according to the DEUS XML schema. The configuration can be seen as a set
of nodes, resources, events, processes and engine parameters. The AutomatorParser
class handles the configuration of each simulation object and stores them in a set of
array data structures. Each simulation object has a set of base features, plus refer-
ences to other simulation objects: nodes can have a set of resources, events can have
a set of referenced events, and processes can have references to both nodes and
events. At the end of the configuration file parsing process, the AutomatorParser
initializes the Engine object enabling the simulation execution.

3.3.2 impl.event package
The BirthEvent class represents the birth of a simulated node. During its execu-
tion, an instance of the node associated to the event is created.

The DeathEvent class represents the death of a simulated node. During the
execution of the event the associated node is killed or, if nothing is specified, a
random node is chosen instead.

The LogPopulationSizeEvent class is used to simulate a logging event that
stores the number of nodes in the simulation, each time it is scheduled. It demon-
strates that an event can really be anything, in the context of the complex system
to be simulated.

3.3.3 impl.node package

The BasicNode class is the default implementation of the node abstract class,
without any specific properties. A specific implementation is provided in the p2p
package, which is described later in the chapter.

3.3.4 impl.resource package

The AllocableResource class represents a generic allocable resource,
having a type/amount pair parameter which must be specified through the
configuration file.

3 DEUS

The ResourceAdv class represents a resource advertisement, i.e., a document
that describes a ConsumableResource (with a name and an amount), and the inter-
ested node. Once the resource described by a ResourceAdv has been discovered,
the owner of the resource should be registered into the ResourceAdv, and the
found flag set to true.

3.3.5 impl.process package

The PeriodicProcess represents a generic periodic process. It has a parameter
called period, which is used to generate the triggering time. Each time the process
receives a request to generate a new triggering time, it computes it by adding the
period value to the current simulation virtual time. An extension of this class is
provided through the TwoSpeedsPeriodicProcess class that allows the specifica-
tion of two different periods; the switch between first period and second period is
made using a virtual time threshold.

The PoissonProcess represents a generic Poisson process. It has one parame-
ter called meanArrival, which is used to generate the triggering time. Each time
the process receives a request to generate a new triggering time, it computes it by
adding the current simulation virtual time to the value of a homogeneous Poisson
process with the rate parameter calculated as 1/meanArrival time.

Similarly to the TwoSpeedPeriodicProcess, there is the TwoSpeedPoissonProcess
class to provide a Poisson Process that changes its speed after a virtual time threshold
has been reached. Other classes allow for limiting the event scheduling to a time
period, by specifying a starting time and an ending time.

EXTENSION PACKAGE FOR THE SIMULATION OF PEER-TO-PEER
SYSTEMS

To simulate a particular class of complex systems, namely peer-to-peer resource
sharing networks, we implemented the it.unipr.ce.dsg.deus.p2p package,
which contains the following subpackages:

* node — the model of peer;
* event — the events characterizing a P2P network.

In the following we provide a detailed description of the main classes con-
tained in each package. The related class diagram is illustrated in Figure 16.3.

3.4.1 node package

The Peer class is an extension of the Node class that represents the concept of
peer in a network. Each peer is identified by a unique key generated by the engine
(in the given key space) and is characterized by a list of neighbors, i.e., peers
with whom it has an active link connection, and a status regarding peer connec-
tion to the network (whether is connected or not). Some methods have been
implemented to manage neighborhood and notification messages.

473

474 CHAPTER 16 Simulating wireless and mobile systems

neighbors
Peer i] o

‘ DisconnectionEvent ‘ | SingleConnectionEvent 1

‘ MultipleRandomConnectionsEvent |

| LogNodeDegreeEvent ’

’ ExpTopologyConnectionEvent

FIGURE 16.3
Class diagram of the p2p package.

3.4.2 event package
The SingleConnectionEvent class simulates the connection event of a peer in the
network. The peer can connect to a randomly chosen node, or to a specific one.

An extension of this class is provided through the class called
MultipleRandomConnectionsEvent, which enables a connection to more than one
node, randomly chosen in the network.

The DisconnectionEvent class is used to disconnect a specific node from the
network. Alternatively, it can be used to disconnect a random node from the
network.

The LogNodeDegreeEvent class provides a logger that computes the node
degree distribution for each peer of the network. The result is an array, whose
index represents the node degree, and each value is the number of nodes that
have the node degree corresponding to the considered index.

NS-3

Ns-3 is a discrete-event network simulator for Internet systems. It is a free, open
source software project (with GPLv2 licensing) organized around research com-
munity development and maintenance. Like its predecessor ns-2, ns-3 relies on
C++ for the implementation of the simulation models. However, ns-3 no longer
uses oTcl scripts to control the simulation, thus overcoming the problems which
were introduced by the combination of C++ and oTcl in ns-2. Instead, network
simulations in ns-3 can be implemented in pure C++, while parts of the simula-
tion optionally can be realized using Python as well.

Moreover, ns-3 integrates architectural concepts and code from GTNetS [25],
a simulator with good scalability characteristics. Such design decisions were
made at the expense of compatibility—porting ns-2 models to ns-3 must be done
in a manual way. Besides performance improvements, the simulator has an
extended feature set. For example, ns-3 supports the integration of real

5 Integration of DEUS and Ns-3 475

implementations code by providing standard APIs, such as Berkeley sockets or
POSIX threads, which are transparently mapped to the simulation.

Among the packages being developed for ns-3, the LENA LTE-EPC is partic-
ularly rich and efficient [26]. In the LTE-EPC simulation model, there are two
main components. First, the LTE Model, which includes the LTE Radio Protocol
stack (RRC, PDCP, RLC, MAC, PHY). Such entities reside entirely within the
User Equipment (UE) and the E-UTRAN Node B (eNB) nodes. Second, the EPC
Model, including core network interfaces, protocols and entities, which reside
within the SGW, PGW and MME nodes, and partially within the eNB nodes.

INTEGRATION OF DEUS AND NS-3

As illustrated in Section 3, to simulate a distributed system with DEUS, it is nec-
essary to write the classes that represent nodes, events and processes. Node may
represent devices, servers, virtual machines, applications, etc. Events may be
associated to specific nodes (e.g., start, connection, disconnection, internally/
externally triggered state change, stop, etc.), or involving several nodes (it is the
case of logging events). To simulate a message delivery from one node to
another, it is necessary to define the sender, the destination and to schedule a
“delivered message” event in the future (in terms of virtual time of the simula-
tion). The scheduling time of such an event must be set using a suitable process,
selected among those that are provided by the DEUS API, or defined by the user,
possibly.

For example, if the purpose of the simulation is to measure the average delay
of propagating multi-hop messages within a network of nodes (e.g., a peer-to-peer
network), the value of each link’s delay must be realistic, taking into account the
underlying networking infrastructure. In particular, if the communication is wire-
less, estimating the delay of point-to-point communication is a challenging task.

The direct integration of DEUS with ns-3, with the former that “calls” the lat-
ter to compute a delay value every time a node must send a message to another
node, taking into account current surrounding conditions, is unpractical and would
highly increase the duration of the simulation. Instead, a more effective and effi-
cient solution (illustrated in Figure 16.4) includes the following steps:

1. given a complex system to be simulated, identify the main subsystem types,
each one being characterized by specific networking parameters;

2. with ns-3: create detailed simulation models of the subsystems (i.e.,
submodels) and measure their characteristic transmission delays, taking into
account both message payloads and proper headers;

3. with DEUS: simulate the whole distributed system, with refined scheduling of
communication events, taking into account the transmission delays computed
at step 2.

476

CHAPTER 16 Simulating wireless and mobile systems

model definition
sub-model design

DEUS & ; T
Visual / ns-3 (M el '
i simulation
Editor p— Packet Delay e

DEUS Filter

simulation

code ns-3

Engine

DEUS
Automator

log
files

ns-3 logs:
packet delay
PDF

FIGURE 16.4

Discrete event simulation with DEUS and ns-3.

For example, if the overlay network relies on a cellular network, the submodel
to be characterized with ns-3 could be a set of cells. Multicell communication
may be very fast, if base stations are connected by optical fibers [27]. However,
intercell interference and horizontal handover could be taken into account, when
simulating mobile nodes. Moreover, the simulation of each cell should take into
account the presence of other mobile nodes, which are not directly involved in
the distributed application of interest, but consume significant resources. Finally,
the same subsystem could be simulated with different geographic conditions, e.g.,
in a city (with small cells, buildings, and noisy channel), or in a rural area (with
larger cells and a less disturbed channel).

Regarding step 2, with reference to the LTE package, it is necessary to modify
the C++ class that logs the uplink and downlink delays. The modified class must
log a discretized probability density function (PDF) of the RLC packet delay.
Such a discretized PDF is then used to generate realistic packet delays in the
DEUS-based simulations, using the well-known inversion method [28], which is
based on the inverse probability theorem:

¢ choose the cumulative distribution function F(x) of the random variable to be
sampled;

e generate a set of uniform random numbers such that R ~ U(0,1);

e compute the random variate X; = F _I(R,»).

The Packet Delay Filter, illustrated in Figure 16.4, is a Java module that
approximates the discretized PDF by a piecewise constant function, whose

6 Evaluation

numerical inversion is straightforward and computationally inexpensive. The
Packet Delay Filter implements the following algorithm:

put the points of the discretized PDF in a list L

divide L into n sub-lists

for each sub-list, compute the mean value of the points

merge two neighbor sub-lists, if the difference of their mean values is below ¢
repeat from step 2 until the set of sub-lists converges

agbwn =

The algorithm is repeated several times, for different values of ¢, in order to
find the best set of sub-lists—i.e., the one that corresponds to a piecewise constant
function whose integral is closer to 1. An example PDF approximated with the
aforementioned algorithm is shown in Figure 16.7(b).

EVALUATION

We have applied the proposed methodology to model and simulate the
Distributed Geographic Table (DGT), which is a peer-to-peer overlay scheme
with the main objective to provide support for mobile node localization.
Compared to centralized localization approaches, the DGT is more scalable, since
its performance (in terms of responsiveness, completeness and robustness)
remains valuable also for a large number of nodes, and when the nodes’ dynamics
are very high [29]. In a DGT-based system, the responsibility for maintaining
information about the position of active peers is distributed among nodes, for
which a change in the set of participants causes a minimal amount of disruption.

Every peer maintains a set of geo-buckets (GB), each one being a regularly
updated list of known peers, sorted by their distance from the Global Position of
the peer itself. GBs can be represented as concentric circles, each one having a
different (application-specific) radius and thickness. The distance between two
DGT peers is defined as the actual geographic distance between their locations in
the world. The neighborhood of a geographic location is the group of nodes
located inside a given region surrounding that location.

The main service provided by the DGT overlay is to route requests to find
available peers in a specific area, i.e., to determine the neighborhood of a generic
global position (Figure 16.5). The routing process is based on the evaluation of
the region of interest centered in the target position. The idea is that each peer
involved in the routing process selects, among its known neighbors, those that
presumably know a large number of peers located inside or close to the chosen
area centered in the target point. If a contacted node cannot find a match for the
request, it does return a list of closest nodes, taken from its routing table. This
procedure can be used both to maintain the peer’s local neighborhood and to find
available nodes close to a generic target.

Further details about the DGT can be found, for example, in recent articles by
Picone et al. [29,30]. Simulation results presented there were obtained by means

477

478 CHAPTER 16 Simulating wireless and mobile systems

FIGURE 16.5

Propagation of a DGT query between nodes to retrieve the neighborhood of a local or
remote region of interest.

of a DEUS simulation model, integrated with Google Maps to have a realistic
characterization of the urban environment (the city of Parma). However, simplis-
tic assumptions on the packet transmission delay were made. In the following we
illustrate how the methodology illustrated in this chapter has been used to simu-
late the DGT with more realistic packet transmission delays.
The simulation considers a number of vehicles that move over 100 km of realis-
tic paths, generated using the Google Maps API. Each simulated vehicle selects a
different path and starts moving over it. Using the features provided by the Google
Maps API, we created a simple HTML and Javascript control page, which allows
the monitoring of the time progression of the simulated system, where any node
can be selected to view its neighborhood (demo videos are available online [31]).
The simulation covers 10 hours of DGT system life, with 500 to 2000 mobile
nodes, 5 virtual paths with bad road surface (due to either ice, water, snow, or pot-
hole), accident events scheduled during the simulation according to a Poisson sto-
chastic process and with different message types to disseminate information about
sensed data and traffic situation. Simulations with DEUS have been repeated with
20 different seeds for the random number generator, which are sufficient to obtain
a narrow 195 confidence interval (5% of the steady state value, in the worst case).
Obtained graphs consider means and standard deviations obtained by averaging
over the whole set of simulated nodes, and over the 20 different simulation runs.
The considered DGT configuration is the one that gives the best performance in
urban scenarios [29]. Each node has 4 GBs with a 0.5 km thickness and a peer dis-
covery limiting number equal to 10 nodes, covering a region of interest of
12.5 km? and an adaptive discovery period ranging from 1.5 min to 6 min, depend-
ing on the number of new discovered nodes during each lookup process. The period
increases with the knowledge degree of the node neighborhood, corresponding to
the decrement of the number of new discovered peers in the same area of interest.
The transmission delay of a DGT packet has been computed by simulating
with ns-3 the subsystem illustrated in Figure 16.6 (by averaging over 20 simula-
tion runs), using the LTE package illustrated in Section 4 [32]. To match the pre-
viously described DGT configuration (i.e., DGT peers having GBs with radius of
2 km), we defined a square area having side length / =2 km, with a grid of r =10

6 Evaluation

Building

Road

DGT UE e
VolP UE e
eNB @

FIGURE 16.6

Bird’s-eye view of the simulated scenario, with n= 200 DGT nodes and n, =96 other UEs
randomly placed within the buildings. The geo-buckets of the DGT node in the bottom
right corner of the map are also drawn, to show that the side length of the considered
area equals the GB radius.

roads (5 in the N-S direction, and 5 in the W-E direction) and vehicles running
over them (with linear density ¢). The total amount of DGT User Equipments
(UEs) is n=r ¢ 1. Parallel roads are spaced by //4 = 0.5 km. In the map, there are
16 large buildings with square footprint, each one having seven floors. Randomly
located within each building, there are n,/16 other UEs, where n, is their total
amount. The path loss model is ns3::BuildingsPropagationLossModel. On top
of each building, exactly in the middle, there is an eNB, i.e., a base station that
serves a subset of the n + n, UEs. Such a dense deployment of eNBs may appear
to be quite optimistic. We plan to test other models with 500—1000 m radius
cells, and 200 active users each, which should be the best estimates for near-term
LTE deployment.

The configuration of the eNBs includes FDD paired spectrum, with 50
Resource Blocks (RBs) for the uplink (which corresponds to a nominal transmis-
sion rate of 50 Mbps) and the same for the downlink—this is coherent with cur-
rently deployed LTE systems. DGT UEs use UDP to send four types of DGT
packets to each other. The first type, called Descriptor (24 bytes), is for neigh-
borhood consistency maintenance purposes. The second type of packet is the
Lookup Request (20 bytes), which is used to search for remote nodes placed
around a specified location. The third packet type is the Lookup Response

479

480 CHAPTER 16 Simulating wireless and mobile systems

(A) 1 T T T (B) 0.012 T T T T T
‘l‘ sim —+—
0.8 | I i 0.01 i
I
A 0.008 | 1
.06 [1
X i x
EN [o 0006 |]
B - | | |
[0.004 [1
| |
02 || 0.002 1
| |
0 T 0 : . . '
0 5 10 15 20 0 50 100 150 200 250 300
X [ms] x [ms]
FIGURE 16.7

PDFs of the uplink (left) and downlink (right) delays for DGT packets (for the case with
6 = 10 vehicles/km), obtained with ns-3. The downlink PDF produced by means of

ns-3 has 300 points. Its approximation obtained from the Packet Delay Filter has 13
levels > 0.

(500 bytes), which is sent by a DGT node as a reply to a lookup request, if the
node owns the searched resource or information. Finally, there are traffic informa-
tion packets (66 bytes). All packet types have also a 12 byte header. We set an
interpacket interval of 50 ms for all types of DGT messages. Thus, the maximum
rate is about 10 kB/s, while the minimum is 32 X 20 = 0.64 kB/s.

In a dynamic DGT scenario (the one simulated with DEUS), packets are not
sent periodically—descriptors are sent only every ¢ meters; lookup requests are
sent only when necessary, as well as lookup responses; traffic information mes-
sages are sent only when something interesting can be communicated to the other
nodes (for example, a traffic jam or an incident). To simulate the presence of
non-DGT traffic over LTE networks, we also included n, = 96 other UEs, trans-
mitting and receiving VoIP packets (using UDP) with a remote host located in the
Internet. Such packets have a 12-byte header and a 13-byte payload, with inter-
packet interval set to 20 ms (we considered the AMR 4.75 kbps codec). The PDF
of the resulting uplink delay is basically a Dirac delta function, shown in
Figure 16.7a. Instead, the PDF of the downlink delay can be approximated with a
corresponding piecewise constant function, with 13 levels, shown in Figure 16.7b.

Such delay profiles scale from small scenarios to larger ones, as they refer to
intra-GB communications only. A DGT message could be propagated across the
whole city, from one peer to another, relayed by intermediate peers. Each mes-
sage propagation would be affected only by the data traffic within the GB of the
forwarding peer, where the obtained delay profiles apply.

Such a packet delay model is a considerable improvement with respect to the
one we used in our previous DEUS-based DGT simulations, which used, for
every transmission, an exponential delay with mean value obtained by considering
the nominal uplink and downlink.

Then, while simulating the whole overlay network with DEUS, we logged the
average packet delay and amount of sent data per node. Figures 16.8 to 16.10

7 Conclusion

02— 71— g 3——r—r——— 7171
& DEUS only —+ X,
2 25 MHHHHHHX
> 045| DEUS+ns3—x— i § HHHFHHTE
o) IS 2L i
© —_
B I DEUS only —+
s 01 1 & 15F DEUS + ns-3 —%— 1
©
Q kel
[0} — 1+ &l
o C
© - " Q
50-05 $05- At
z o - el
O FEE N e e S IS 4 § 0 1 1 E 1 1 1 1 1 1 L
01 2 3 4 5 6 7 8 9 10 < 01 2 3 4 5 6 7 8 9 10
tih] tih]
FIGURE 16.8

Average packet delay (left) and amount of sent data per node (right), measured with
DEUS, for the simulated DGT overlay network with 500 vehicles.

z

02—

DEUS only —
DEUS + ns-3 —%—

D

0.1}

0.05 -

Average packet delay [s]

TSN ST U S WY S ' s

TR

0
01 2 3 45 6
th]

FIGURE 16.9

8 9

10

w

Average sent data per node [KB/s] —

w

i (HAHHHHHRN XK

i DEUS only —+ i

- DEUS + ns-3 —%— -
=

[N s
34

0 1 2 3 45 6 7 8 910

t[h]

Average packet delay (left) and amount of sent data per node (right), measured with
DEUS, for the simulated DGT overlay network with 1000 vehicles.

compare the results obtained with the old simulation model, and those obtained

with the refined one, for different network sizes.

As we expected, in the refined model the average delay is higher than the one
obtained with the naive model, which is based on nominal uplink and downlink
values. Also the average amount of sent data is higher, as the refined model takes
into account also packet headers.

CONCLUSION

In this chapter we have presented an effective and efficient co-simulation solution
for wireless and mobile systems, based on the general-purpose simulation tool
called DEUS, and the network-specific simulation tool called ns-3. With respect

481

482

CHAPTER 16 Simulating wireless and mobile systems

@
0.2 — T T T T T T T o 3 T — T T T T T T T
@ DEUS only —+ % o5l |
E« 015 DEUS +ns-3 —x— 1 3 ’ X
[} c
o© 5 2r A
E Q DEUS only —4—
g 01p 1 S 15F DEUS +ns-3 —x— .
aQ © XX
° =
o)) c 1k _
€ 005} 48
z S 05F T
I At
0 Lot TN . et TR S ReY g 0 1 1 1 L L L 1 L 1 1
01 2 3 4 5 6 7 8 9 10 < 01 2 3 4 5 6 7 8 9 10
t[h] t[h]
FIGURE 16.10

Average packet delay (left) and amount of sent data per node (right), for the simulated

DGT overlay network with 2000 vehicles.

to the state of the art, such a solution has two main advantages. First, ns-3 allows
us to obtain highly detailed statistics, encompassing all network layers. Second,
DEUS is highly flexible, allowing us to simulate any type of mobility model, and
to use deployment software on simulated devices and environments. The proposed
approach has been successfully applied to the simulation of a peer-to-peer overlay
with mobile nodes, associated to vehicles in a urban scenario.

REFERENCES

(1]

(2]
(3]

(4]

(5]

(6]
(7]

(8]

Gershenson C, Heylighen F. How can we think the complex? In: Richardson K, editor.
Managing organizational complexity: philosophy, theory and application. Information
Age Publishing; 2005, Chapter 3.

Zeigler BP, Prachofer H, Kim TG. Theory of modeling and simulation. 2nd ed.
Academic Press; 2000.

Wainer G. CD++: a toolkit to develop devs models. Software — Pract Exp 2002;32
(13):1—46.

Varga A, Hornig R. An overview of the OMNeT ++ simulation environment. In: First
international conference on simulation tools and techniques for communications, net-
works and systems (SIMUTools 2008), Marseille, France, Mar. 2008.

Amoretti M, Agosti M, Zanichelli F. DEUS: a Discrete Event Universal Simulator,
2nd ICST/ACM International conference on simulation tools and techniques
(SIMUTools 2009), Roma, Italy; March 2009. ISBN 978-963-9799-45-5.

NS-3 Consortium. ns-3. Official website. Available from: <http://www.nsnam.org>;
2014.

University of Luxembourg. The OVNIS platform. Website. Available from: <http://
ovnis.gforge.uni.lu>; 2014.

Behrisch M, Bieker L, Erdmann J, Krajzewicz D. SUMO — simulation of urban
mobility: an overview, in SIMUL 2011. In: Third international conference on
advances in system simulation, Barcelona, Spain; October 2011. p. 63—8.

http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref1
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref1
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref1
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref2
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref2
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref3
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref3
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref3
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref3
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref3
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref3
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref3
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref3
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref3
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref3
http://www.nsnam.org
http://ovnis.gforge.uni.lu
http://ovnis.gforge.uni.lu

(9]

(10]

[11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

[25]

References

Arzén KE, Cervin A. Control and embedded computing: survey of research direc-
tions, presented at the 16th IFAC World Congress, Prague, Czech Republic; 2005.
Colandairaj J, Irwin GW, Scanlon WG. An integrated approach to wireless feedback
control, presented at the UKACC international control conference, Glasgow, UK;
2006.

Colandairaj J, Irwin GW, Scanlon WG. Analysis and co-simulation of an IEEE
802.11B wireless networked control system, in 16th IFAC world congress, Prague,
Czech Republic; 2005.

Chen Z, Liu L, Zhang J. Observer based networked control systems with network-
induced time delay. In: IEEE International conference on systems, man and cybernet-
ics, Hague, The Netherlands; 2004. p. 3333—7.

Liu GP, Rees D, Chai SC. Design and practical implementation of networked predic-
tive control systems. In: International conference on networking, sensing and control,
Arizona, USA; 2005. p. 336—41.

Yang Y, Wang Y, Yang SH. A networked control system with stochastically varying
transmission delay and uncertain process parameters. In: 16th IFAC world congress,
Prague, Czech Republic; 2005.

Cervin A, Hanriksson D, Lincoln B, Eker J, Arzen KE. How does control timing
affect performance? Analysis and simulation of timing using Jitterbug and TrueTime.
IEEE Control Syst Mag 2003;23(3):16—30.

Andersson M, Henriksson D, Cervin A, Arzén KE. Simulation of wireless networked
control systems, presented at the 44th IEEE conference on decision and control and
European control conference (ECC); 2005. p. 476—81.

Al-Hammouri A, Liberatore V, Al-Omari H, Al-Qudah Z, Branicky MS, Agrawal D.
A co-simulation platform for actuator networks. In: Fifth international conference on
embedded networked sensor systems, Sydney, Australia; 2007. p. 383—4.

Hasan MS, Yu H, Griffiths A, Yang TC, Interactive co-simulation of MATLAB and
OPNET for networked control systems. In: 13th international conference on automa-
tion and computing, Stafford, UK; 2007. p. 237—42.

Hasan MS, Yu H, Carrington A, Yang TC. Co-simulation of wireless networked con-
trol systems over mobile ad hoc network using SIMULINK and OPNET. IET
Commun 2009;3(8):1297—310.

Leclerc T, Siebert J, Chevrier V, Ciarletta L, Festor O. Multi-modeling and
co-simulation-based mobile ubiquitous protocols and services development and
assessment. In: Seventh international ICST conference on mobile and ubiquitous
systems — mobiquitous 2010. Sydney, Australia; 2010.

Gorgen D, Frey H, Hiedels C. Jane - the Java Ad hoc network development environ-
ment, In: ANSS 07; 2007. p. 16376, USA.

Deus: a simple tool for complex simulations. Official website. Accessed at: <https://
code.google.com/p/deus/>; 2015.

Montresor A, Jelasity M. PeerSim: a scalable P2P simulator. In: Ninth IEEE interna-
tional conference on Peer-to-Peer (P2P’09), Seattle, WA, USA; September 2009.
Brambilla G, Grazioli A, Picone M, Zanichelli F, Amoretti M. A cost-effective
approach to software-in-the-loop simulation of pervasive systems and applications, in
PerCom 2014, WiP Session, Budapest, Hungary, March 2014.

Riley G. Large scale network simulations with GTNetS. In: Winter simulation con-
ference, New Orleans, Louisiana, USA; Dec. 2003.

483

http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref4
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref4
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref4
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref4
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref5
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref5
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref5
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref5
https://code.google.com/p/deus/
https://code.google.com/p/deus/

484 CHAPTER 16 Simulating wireless and mobile systems

[26]

(27]

(28]
[29]

[30]

[31]

(32]

Baldo N, Requena-Esteso M, Nin-Guerreo J, Miozzo M. A new model for the simu-
lation of the LTE-EPC data plane, in fifth ICST/ACM international conference on
simulation tools and techniques (SIMUTools 2009), Sirmione, Italy; Mar. 2012.
Nagate A, Hoshino K, Mikami M, Fujii T. A field trial of multicell cooperative trans-
mission over LTE system. In: IEEE international conference on communications
(ICC 2011), Kyoto, Japan; Mar. 2011.

Papoulis A. Probability, random variables, and stochastic processes. 3rd ed. McGraw
Hill; 1991.

Picone M, Amoretti M, Zanichelli F. Proactive neighbor localization based on dis-
tributed geographic table. Int J Pervasive Comput Commun 2011;7(3):240—63.
Picone M, Amoretti M, Zanichelli F. Evaluating the robustness of the DGT approach
for smartphone-based vehicular networks. In: Fifth IEEE workshop on user mobility
and vehicular networks, Bonn, Germany; Oct. 2011.

Distributed Systems Group (DSG). DGT — Distributed Geographic Table. Demo
videos. Available from: <http://dsg.ce.unipr.it/?q=node/38#media>; 2015.

Amoretti M, Picone M, Zanichelli F, Ferrari G. Simulating mobile and distributed
systems with DEUS and Ns-3, international conference on high performance comput-
ing and simulation 2013, Helsinki, Finland; July 2013. Proceedings published by
IEEE.

http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref6
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref6
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref7
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref7
http://refhub.elsevier.com/B978-0-12-800887-4.00016-X/sbref7
http://dsg.ce.unipr.it/?q=node/38
http://dsg.ce.unipr.it/?q=node/38
http://dsg.ce.unipr.it/?q=node/38
http://dsg.ce.unipr.it/?q=node/38

