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ABSTRACT

The Internet of Things (IoT) is expected to interconnect billions (around 50 by 2020) of heterogeneous 
sensor/actuator-equipped devices denoted as “Smart Objects” (SOs), characterized by constrained re-
sources in terms of memory, processing, and communication reliability. Several IoT applications have 
real-time and low-latency requirements and must rely on architectures specifically designed to manage 
gigantic streams of information (in terms of number of data sources and transmission data rate). We refer 
to “Big Stream” as the paradigm which best fits the selected IoT scenario, in contrast to the traditional 
“Big Data” concept, which does not consider real-time constraints. Moreover, there are many security 
concerns related to IoT devices and to the Cloud. In this paper, we analyze security aspects in a novel 
Cloud architecture for Big Stream applications, which efficiently handles Big Stream data through a 
Graph-based platform and delivers processed data to consumers, with low latency. The authors detail 
each module defined in the system architecture, describing all refinements required to make the plat-
form able to secure large data streams. An experimentation is also conducted in order to evaluate the 
performance of the proposed architecture when integrating security mechanisms.
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INTRODUCTION

In recent years, the forecast of a worldwide network of pervasively deployed heterogeneous networks is 
becoming a reality. The Internet of Things (IoT) involves billions of different devices, connected in an 
Internet-like structure, allowing new forms of interaction between things and people. The actors involved 
in IoT scenarios have extremely heterogeneous characteristics, in terms of processing and communication 
capabilities, energy supply and consumption, availability and mobility, spanning from Smart Objects 
(SOs) - i.e., constrained devices equipped with sensors or actuators, smartphones, wearables and other 
personal devices - to Internet hosts and the Cloud.

In order to allow heterogeneous nodes to efficiently communicate with each other and with existing 
Internet actors, shared and interoperable communication mechanisms and protocols are currently be-
ing defined and standardized. The most prominent driver for interoperability in the IoT is the adoption 
of the Internet Protocol (IP), namely IPv6. An IP-based IoT can extend and operate with all existing 
Internet nodes, without additional efforts. Standardization institutions, such as the Internet Engineering 
Task Force (IETF), and several research projects are contributing to the definition of new mechanisms 
to bring IP to SOs (e.g., 6LoWPAN (Kim, Kaspar, & Vasseur, 2012)). This is motivated by the need to 
adapt higher-layer protocols (e.g., application-layer protocols) to constrained environments. As a result, 
IoT networks are expected to generate huge amounts of data, which can be subsequently processed and 
used to build several useful services for final users. The Cloud has become the natural collection envi-
ronment for sensed data retrieved by IoT nodes, due to its scalability, robustness, and cost-effectiveness. 
Figure 1 shows the hierarchy of different levels involved in data collection, processing and distribution 
in a typical IoT scenario.

Figure 1. Different actors and layers involved in IoT scenarios: sensed data are sent from IoT networks 
to the Cloud, which provides services to consumers. At an intermediate level, preliminary local opera-
tions, such as data collection, processing, and distribution, may be carried out
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Sensed data are collected by SOs, deployed in IoT networks, and sent uplink to the Cloud which 
operates as collection entity and service provider. In some cases, intermediate Local Network Collectors 
(LNCs) can perform some preliminary tasks before sending data uplink, such as temporary data storage, 
data aggregation, and protocol translation. The described model is extremely general, and can be ap-
plied to different IoT scenarios. As an example, LNCs can be implemented by border routers or proxies.

Several relevant IoT application environments (e.g., industrial automation, transportation, and 
monitoring) require real-time performance guarantees or, at least, a predictable latency. Moreover, the 
performance requirements (e.g., in terms of data sources) may change even abruptly. On one hand, the 
large number of data sources represented by IoT nodes, generating a high rate of incoming data, and, 
on the other hand, the low-latency constraints call for innovative Cloud architectures able to handle ef-
ficiently such massive amounts of information.

A possible solution is given by Big Data approaches, developed in the last few years and become 
popular due to the evolution of online and social/crowd services, which are able to address the need to 
process extremely large amounts of heterogeneous data for various purposes. However, these techniques 
typically have an intrinsic inertia (as they are based on batch processing) and focus on the data itself, 
rather than providing real-time processing and dispatching (Zaslavsky, Perera, & Georgakopoulos, 
2013; Leavitt, 2013). For this reason, Big Data approaches might not be the right solution to manage 
the dynamicity of IoT scenarios with real-time processing. In order to better fit these requirements, we 
propose to shift the Big Data paradigm to a new paradigm, denoted as “Big Stream.”

While both Big Data and Big Stream paradigms deal with massive amounts of data, those two para-
digms differ in the following aspects.

•	 The Meaning of the Term “Big:” In Big Data it refers to “volume of data,” while in Big Stream 
it refers to “data generation rate.”

•	 Real-Time or Low-Latency Requirements of Different Consumers: They are typically not 
taken in account by Big Data.

•	 Nature of Data Sources: Big Data deals with heterogeneous data sources in a wide range of dif-
ferent areas (e.g., health, economy, natural phenomena), not necessarily related to IoT. Instead, 
Big Stream data sources are strictly related to the IoT, where heterogeneous devices send small 
amounts of data generating, as a whole, a continuous and massive information stream.

•	 Objective: Big Data focuses on information management, storage and analysis, following the 
data-information-knowledge model (Aamodt & Nygard, 1995); Big Stream, instead, focuses on 
the management of data flows, being specifically designed to perform real-time and ad-hoc pro-
cessing, in order to forward incoming data streams to consumers.

Big Stream-oriented systems should react efficiently to changes, providing smart resource allocation 
and, thus, implementing scalable and cost-effective Cloud services. This also affects the data selected as 
relevant, in different processing steps, for the final consumer. For instance, while for Big Data applica-
tions it is important to store all data in order to be able to perform any successive required computation, 
Big Stream applications might decide to perform data aggregation, filtering or pruning, in order to mini-
mize the latency in conveying the final computation output to consumers, with no need for persistence. 
Eventually, as a generalization, a Big Data application might be a consumer of Big Stream data flows 
and perform storage operations.
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For these reasons, in previous works (Belli, Cirani, Ferrari, Melegari, & Picone, 2014; Belli et al., 
2015) we have designed and implemented a Graph Cloud architecture suited to applications with real-time 
and low-latency requirements (i.e., Big Stream applications) for IoT scenarios. The proposed architec-
ture relies on the concepts of data listener and data-oriented graph processing, in order to implement a 
scalable, highly configurable, and dynamic chain of computation on incoming Big Streams, dispatching 
data with a push-based approach, thus providing the shortest delay between the generation of informa-
tion and its consumption.

To fulfill the IoT vision, some issues must be addressed, such as security. Securing the IoT requires 
further research and entails both authentication and authorization mechanisms to address security and 
privacy problem, which is critical in several IoT applications.

As in our previous works (Belli et al., 2015), we assume that streams generated by nodes in the 
proposed Graph Architecture are “open” and potentially accessible by any interested subscriber. How-
ever, this assumption can not meet the security requirements of all consumers or developers accessing 
the architecture. Moreover, security management may become necessary in application scenarios that 
require to control or filter subscribers’ access to one or more streams. For this reason, the architecture 
preliminary proposed in (Belli, Cirani, Ferrari, Melegari, & Picone, 2014; Belli et al., 2015) is now ex-
tended in order to take in account also security aspects. In particular, the extension introduces additional 
modules needed to make the proposed Graph architecture able to handle both secured and “open” data 
streams, focusing, in particular, on solutions able to decouple security roles and management purposes 
(e.g., OAuth protocol, an n-legged authorization protocol).

The rest of this work is organized as follows. In the following section an overview of related works is 
presented. Next, the new concepts and modules needed to “secure” data streams are detailed, analyzing 
how these entities increase platform security. We show some evaluations of the architecture, highlighting 
the differences between the unsecured platform and the secured one. Finally, we draw our conclusions 
and discuss future research directions.

RELATED WORKS

Internet of Things

The huge number of heterogeneous SOs deployed in an IoT system allows the development of ubiquitous 
sensing in most areas of modern living. The outcome of this trend is the generation of a huge amount of 
data that should be treated, aggregated, processed, transformed, stored, and delivered to the final users 
of the system, in an effective and efficient way, by means of traditional commodity services.

Several architectures for IoT scenarios have been proposed in the literature. The European Union 
(EU), under its 7th Framework Program (FP7, 2007-2013), has supported a significant number of IoT-
related projects converging in the “IoT European Research Cluster” (IERC), and addressing relevant 
challenges, particularly from a Wireless Sensor Networks (WSNs) perspective. Among them, we recall 
“Internet of Things-Architecture” (IoT-A) and SENSEI. In the IoT-A project, developers focused their 
work on the design of an IoT architecture, aiming at connecting vertically closed applications, systems 
and architectures, in order to create integrated and open-interoperable environments and platforms. The 
main goal of the SENSEI project was to create a business-driven platform that addresses the scalabil-
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ity problems for an amount of globally distributed devices in Wireless Sensor and Actuator (WS&A) 
networks, enabling an accurate and reliable interaction with the physical environment, and providing 
network and information management services.

“Connect All IP-based Smart Objects!” (CALIPSO) was another EU FP7 project with relevant 
implications on the design of IoT platforms (Medagliani & al., 2014). The main goal of CALIPSO 
was to enable IPv6-based connectivity of SOs to IoT networks with very low power consumption, thus 
providing long lifetime and high interoperability, also integrating radio duty cycling and data-centric 
mechanisms with IPv6.

Cloud Computing for IoT

Many researchers focus their efforts on the definition of Cloud Computing-based IoT architectures, 
where: the Cloud is the infrastructure for data and service management; and the final consumer/user 
drives the use of data and infrastructure to develop new IoT applications.

An interesting framework for IoT-based Cloud systems is OpenStack, an ubiquitous open-source Cloud 
Computing platform for public and private Clouds, aiming at delivering solutions for all types of Clouds 
by being massively scalable, feature-rich, and simple to implement. While OpenStack can be seen as a 
framework following a vendor-driven model, OpenNebula (Moreno-Vozmediano, Montero, & Llorente, 
2012) represents an open-source Cloud platform focused on the user, aiming at delivering a flexible and 
simple feature-rich solution to build and manage virtualized data centers and enterprise Clouds.

An example of an open approach is given by the FI-WARE project, an open Cloud-based infrastructure 
for cost-effective creation and delivery of Internet applications and services. Its API specifications are 
public, royalty-free, and Open Cloud Computing Interface (OCCI)-compliant.

In the realm of Cloud-related IoT user-driven architectures, an innovative concept, known as Fog 
Computing, has been proposed as a novel and appropriate paradigm for a variety of IoT services 
and applications that require low-latency and location awareness (Bonomi, Milito, Natarajan & 
Zhu, 2014).

Fog Computing could be described as a highly virtualized platform that provides networking, pro-
cessing, and storage services, acting on the edge of the constrained network, between endpoint devices 
and traditional Cloud Computing platforms. This can be integrated as an extension of the Cloud, provid-
ing support to the endpoints and services that could comply with low-latency and real-time consumer 
requirements.

Cloud Computing, as well as others paradigms, has to deal with different kinds of sources and data 
amounts; one of these data patterns is Big Data. Big Data architectures generally use traditional process-
ing patterns with a pipeline approach (Hohpe & Woolf, 2003), where the downstream data flow goes, 
following a path, where data are sequentially handled, with tightly coupled predefined processing units. 
In this way, the Big Data paradigm can be defined as “process-oriented:” a central coordination point 
manages the execution of processing units in a given order, and each unit provides a specific output, 
which is created in order to be used only within the scope of its own process, without the possibility to be 
shared among different processes. This approach is representative of a deviation from traditional Service 
Oriented Architectures (SOAs), where primitive units are handled by external web-services, invoked 
by a coordinator process, rather than internal services (Isaacson, 2009), in order to accept, manage, and 
process requested actions onto the platform where web-services act.
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Protocols and Communication Models for IoT

It is a common assumption that, in IoT, the most prominent driver to provide interoperability is IPv6. 
Referring to the IP stack, at the application layer developers find a variety of possible protocols appli-
cable to different IoT scenarios, according to specific application requirements. Among many options, 
the following are relevant.

•	 HyperText Transfer Protocol (HTTP), is mainly used for the communication with the consumer’s 
devices.

•	 Constrained Application Protocol (CoAP), defined in (Shelby, Hartke, Bormann, & Frank, 2014), 
is built on the top of User Datagram Protocol (UDP), follows a request/response paradigm, and is 
explicitly designed to work with a large number of constrained devices operating in Low power 
and Lossy Networks (LLNs).

•	 Extensible Messaging and Presence Protocol (XMPP), is based on XML, supports decentraliza-
tion, security (e.g., TLS), and flexibility.

•	 MQ Telemetry Transport (MQTT) is a lightweight publish/subscribe protocol running on top of 
TCP/IP. It is an attractive choice when a small code footprint is required and when remote sen-
sors and control devices have to communicate through low bandwidth and unreliable/intermittent 
channels. It is characterized by an optimized information distribution to one or more receivers, 
following a multicast approach. Being based on a publish/subscribe communication paradigm, it 
acts through a “message broker” element, responsible for dispatching messages to all topic-linked 
subscribers.

•	 Constrained Session Initiation Protocol (CoSIP), described in (Cirani, Picone, & Veltri, 2013; 
Cirani, Davoli Picone & Veltri, 2014), is a lightweight version of the Session Initiation Protocol 
(SIP) aiming at allowing constrained devices to instantiate communication sessions in a standard 
fashion, optionally including a negotiation phase of some parameters, which will be used for all 
subsequent communications.

Stream and Real-Time Management

The term Big Stream was first introduced in (Belli, Cirani, Ferrari, Melegari, & Picone, 2014). Since the 
concept is related to platforms abiding by low-latency and real-time requirements, it can be compared 
with other solutions relying on such constraints. Possible examples of such solutions are Apache Storm 
(Mera Pérez, Batko, Zezula, et al., 2014) and Apache S4 (Neumeyer, Robbins, Nair, & Kesari, 2010).

Apache Storm is a free and open-source distributed real-time computation system, oriented to reliably 
process unbounded streams of data. It can be integrated with different queueing and database technolo-
gies, providing mechanisms to define topologies in which nodes consume and process data streams in 
arbitrarily and complex ways. Apache S4 is a general purpose, near real-time, distributed, decentralized, 
scalable, event-driven, and modular platform that allows programmers to implement applications for 
data streams processing. Multiple application nodes can be deployed and interconnected on S4 clusters, 
creating more sophisticated systems.

The works described in (Marganiec et al., 2014; Tilly & Reiff-Marganiec, 2011) address the problem 
to process, procure and provide information related to the IoT scenario with almost zero latency. The 
authors consider, as a use case, a taxi fleet management system, which has to identify the most relevant 
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taxi in terms of availability and proximity to the customer’s location. The core of the publish/subscribe 
architecture proposed in (Marganiec et al., 2014) is the Mediator, which encapsulates the processing of 
the incoming requests from the consumer side and the incoming events from the services side. Services 
are publishers (taxis in the proposed example) which are responsible to inform the Mediator if there is 
some change in the provided service (e.g., the taxi location or the number of current passengers). Thus, 
instead of pulling data at consumer’s request time, the Mediator knows at any time the status of all ser-
vices, being able to join user requests with the event stream coming from the taxis, using temporal join 
statements expressed through SQL-like expressions.

Security Issues in Cloud and IoT Publish/Subscribe Scenarios

In the literature, several methods and strategies to enable confidentiality in publish/subscribe IoT infra-
structures are proposed. IoT systems have to avoid security threats, providing strong security foundations 
built on a holistic view of security for all IoT elements at all stages: from object identification to service 
provision; from data acquisition to stream processing. All security mechanisms must ensure: resilience 
to attacks; data authentication; access control; and client privacy.

In (Collina, Corazza, & Vanelli-Coralli, 2012), IoT systems are expected to bridge the physical and 
the “virtual” worlds, using a novel broker that supports protocols such as HTTP and MQTT, adhering 
to the REST paradigm and allowing developers to easily and responsively expose fundamental entities 
as REST resources. This broker does not address any security issues, claiming that possibles solutions 
could include: plain authentication; Virtual Private Networks (VPNs); Access Control Lists (ACLs); as 
well as OAuth, a new type of authorization which is used to grant access to personal data by third-party 
applications (Hardt, 2012).

In (Lagutin, Visala, Zahemszky, Burbridge, & Marias, 2010), the authors examine roles of different 
actors comprising an inter-domain publish/subscribe network, along with security requirements and 
minimal required trust associations between entities, introducing and analyzing an architecture that se-
cures both data and control planes. The main security goals for a publish/subscribe architecture are: (i) 
integrity; (ii) scalability; (iii) availability, and (iv) prevention of underived traffic. Finally, in (Lagutin, 
Visala, Zahemszky, Burbridge, & Marias, 2010) different actors and security mechanisms are identi-
fied. The main mechanism is Packet Level Authentication (PLA) which, combined with cryptographic 
signatures and data identifiers tied to secured identifiers, creates a strong binding between data and 
traffic, thus preventing Denial of Service (DoS) attacks.

The work of (Wang, Carzaniga, Evans, & Wolf, 2002) treats security issues relying on the require-
ments of a particular application and on an external publish/subscribe infrastructure. General security 
needs of the applications include confidentiality, integrity, and availability. At the opposite the security 
concerns of the infrastructure focus on system integrity and availability. Security issues in publish/sub-
scribe platforms rely on authentication, information integrity, subscription integrity, service integrity, 
user anonymity and information confidentiality, in addition to subscription confidentiality, publication 
confidentiality, and accountability.

In (Raiciu, & Rosenblum, 2006), the authors present a study of confidentiality in Content-Based 
Publish/Subscribe (CBPS) systems, defined as an interaction model storing the interests of subscribers 
in a content-based infrastructure, to guide routing of notifications to interested subjects. In agreement 
with the approach in (Wang, Carzaniga, Evans, & Wolf, 2002), confidentiality aspects are decoupled into 
two facets, namely notification and subscription, suggesting that: a confidential CBPS (C-CBPS) must 
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satisfy correctness and notification; whereas a subscription CBPS must satisfy unforgeability and secu-
rity, and match isolation. A high level approach to obtain C-CBPS relying on notifications using simple 
blocks, that may be controlled and checked better than a whole encryption of those ones, is proposed.

In (Fremantle, Aziz, Scott, & Kopecky, 2014) the use of Federated Identity and Access Management 
(FIAM) in IoT is analyzed, following a consumer-oriented approach, where consumers own data col-
lected by their devices, having a control over entities who access these data. Traditional security models, 
based on the concept of roles with a hierarchical structure, are not applicable for IoT scenarios (because 
of the billions of devices involved, the impossibility to adopt a centralized model of authentication, and 
the necessity to support mechanisms for delegation of authority). The authors propose OAuth2 (Hardt, 
2012) as a possible solution to achieve Access Management with IoT devices which support the MQTT 
protocol. The overall system consists of: (i) a MQTT broker, (ii) an Authorization Server supporting 
OAuth2, (iii) a Web Authorization tool, and iv) a device.

The work of (Bacon et al., 2010) tackles the problem of application security in the Cloud, aiming at 
incorporating end-to-end security, so that Cloud providers not only can isolate their clients from each 
other, but can also isolate the data generated by multiple users which access a particular service provided 
by the Cloud. An approach called “application-level virtualization,” which consists of (i) removing from 
applications all the details regarding security and flow control, (ii) placing the security management 
logic in the Cloud infrastructure, and (iii) allowing providers to permit only the interactions that the 
clients specify, is proposed.

BIG STREAM CLOUD ARCHITECTURE

In (Belli, Cirani, Ferrari, Melegari, & Picone, 2014), a Graph-based architecture, explicitly designed to 
fit the Big Stream IoT scenarios, is proposed. In order to minimize the delay between the instant of raw 
data generation (e.g., at sensors) and the instant at which information is notified to the final consumer, 
the proposed platform adheres to the publish/subscribe model and is based on the concept of “listeners.” 
More in detail, the fundamental components of the Graph-based Cloud architecture are the following.

•	 Nodes: processing units which process incoming data, not directly linked to a specific task. A 
Graph node can be, at the same time, a listener of one or more streams, coming from other nodes, 
and a publisher of a new stream, that could be of interest to some other nodes.

•	 Edges: flows of informations (streams) linking together various nodes: this allows complex pro-
cessing operations.

In order to provide a set of common basic functionalities, nodes composing the Graph are divided 
into two groups.

•	 Core Graph Nodes: implement basic processing operations, provided by the architecture, and are 
deployed into inner layers of the Graph.

•	 Application Graph Nodes: represent the building blocks of outer layers, listening and accept-
ing flows coming from nodes belonging to inner Graph layers. This type of nodes always receive 
already processed streams.
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Nodes in the Graph are organized in concentric layers, characterized by an increasing degree of 
complexity. This means that, as shown in Figure 2, data streams generated from nodes in a generic layer 
of the Graph, can be used by nodes in higher-degree layers, to perform more complex processing opera-
tions, generating new data streams which can be used in higher layers, and so on.

As a general rule, to avoid loops, nodes at inner Graph layers cannot be listeners of nodes of outer 
Graph layers. In other words, there can be no link from an outer Graph node to an inner Graph node, but 
only vice versa. Same-layer Graph nodes can be linked together if there is a need to do so. In particular, 
a Core Graph node can be a listener only for other nodes of the same layer and a source both for other 
Core or Application Graph nodes. In other words, we consider only acyclic graphs.

Moreover, the Cloud Graph architecture described in this paper has an optimal resource allocation: 
nodes with no listeners can be switched off and removed from the Graph. At the same time, taking 
advantage from the Cloud platform, nodes which have several listeners can be replicated, in order to 
maintain acceptable system performances.

In (Belli et al., 2015), a first implementation of the Big Stream architecture with open-source technolo-
gies has been presented. Three main modules concur in forming the entire system: (i) the Acquisition 
and Normalization modules; (ii) the Graph Framework module; (iii) the Application Register module.

As the architecture is based on a queue-communication paradigm, the implementation adopts an 
instance of RabbitMQ queue server as publish/subscribe engine.

The first Acquisition step handles raw data coming from external SOs through different application-
layer protocols. The implementation proposed in (Belli et al., 2015) supports: (i) HTTP, through Nginx 
and PHP; (ii) CoAP, by means of the mjCoAP (Cirani, Picone, & Veltri, 2015) library; and (iii) MQTT, 
with the ActiveMQ library. The Normalization block comprises Java processes which work on incoming 
data from the Acquisition dedicated queues, and performing a first optimization, aiming at structuring 
data into a common and easily manageable JSON format.

The Graph Framework module represents the processing block, in which nodes (both Core and 
Application) are implemented with Java processes connected through queues. To ensure proper data 
propagation and avoid loops, layers in the Graph Framework have a dedicated RabbitMQ Exchange and 
are connected, through one-way links, with their own successor Exchange.

Figure 2. Basic processing nodes build the Core Graph Layer, the outer nodes have increasing complexity
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The data flow continues until it reaches the last layer’s Exchange, responsible to manage notifications 
to external entities that are interested in final processed data (e.g., browsers, Data Warehouse systems, 
smart entities, external Cloud Graph processes).

The proposed architecture is managed by the Application Register module, a Java process that coor-
dinates the interactions between Graph nodes and external services. The Application Register module 
has the fundamental responsibility to maintain all the information about the current status of the system. 
More precisely, the Application Register module performs the following operations:

•	 Attach new nodes or consumers, interested in some of the streams provided by the platform;
•	 Detach nodes from the Graph, when they are no longer interested in receiving flows, and, possibly, 

re-attach them;
•	 Handle nodes that are publishers of new streams;
•	 Maintain information regarding topics of data, in order to correctly generate the routing keys, and 

to compose data flows between nodes in different Graph layers.

The proposed architecture can be deployed on a single server. However, the exploitation on the Cloud 
is preferable, in order to better scale the system and manage the workload in presence of a huge number 
of data sources and processing nodes. Another important benefit is that the Cloud provides a common 
platform in which data streams can be shared among several actors (e.g., IoT data-sources, developers 
or consumers), in order to build useful services for Smart Cities, composing and aggregating different 
data streams.

Although the proposed architecture has not been deployed on the Cloud yet, in our vision this archi-
tecture is oriented to all developers interested in creating new useful services on top of IoT-generated 
data (e.g., Belli, Cirani, Davoli, Gorrieri, et al., 2015). For this reason, the platform will provide user-
friendly tools to upload to the Cloud custom processing units (namely nodes) using currently available 
streams (already processed or not) as inputs, generating a new edge of the Graph which can be potentially 
employed from other developers. In this scenario, the paths are thus automatically generated on the basis 
of the needs and interests of each node.

Therefore, the proposed architecture can be applied to all scenarios in which scalability is required. 
We target IoT Big Stream applications because they represent an innovative field of research, which has 
not been fully explored.

ANALYSIS OF SECURITY ISSUES AND TECHNOLOGIES

Main Security Modules

Addressing the security problem in the above Graph-based Cloud system entails a wide approach, owing 
to different needs of each specific component involved.

In Figure 3, the main building blocks listed above are shown. The main components, in correspon-
dence to which security mechanisms are required, are explicitly indicated.

The enhanced Graph architecture provides security by means of the following two modules.
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•	 Outdoor Front-end Security (OFS) Module: Carries out security operations which could be 
applied a-priori, before receiving data from a generic external source, as well as before a final 
consumer can start interacting with the Graph-based Cloud platform.

•	 In-Graph Security (IGS) Module: Adopts security filters that could be applied inside the heart 
of the Graph-based Cloud platform, in order to make processing nodes able to control accesses to 
the streams generated by internal computational modules.

The OFS module is crucial for infrastructure safety: its role includes monitoring the access to the 
platform and authorizing the information flows coming from or directed to external entities. On one side, 
OFS must verify and authorize only desired external input data sources, allowing them to publish raw 
streams inside the IoT system. On the other hand OFS is required to secure outgoing streams, generated 
by different layers of the Graph platform itself, authorizing external consumers to use, if needed, the 
processed streams.

Consider, as example, the case of the company “C” that owns a set of particular sensors, and wishes 
to become an IoT stream source for the Graph-based Cloud platform. However, this company requires 
(i) to sell sensed data only to a specific subset of customers, in order to protect its commercial interests, 
and (ii) to reach a profit from these sales.

Therefore, the OFS module is strictly related to sensors and devices, at the input side, and to custom-
ers SOs, at the output stage, so that it becomes protocol-dependent and can be adapted to the specific 
technologies supported by the target devices.

The IGS module is not related to the OFS module, as it acts exclusively at the heart of the IoT Graph 
architecture coordinating and managing inner inter-node interactions. The IGS module must be imple-
mented inside single processing nodes enabling them to define a set of rules which describe how entities 
may become listeners of a generated stream.

Figure 3. Main building blocks of the proposed listener-based Graph architecture. Nodes in the Graph 
are listeners, edges between nodes represent dynamic flows followed by information streams. Edges can 
be “open” or “secured”
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Referring to the Graph architecture, shown in Figure 3, edges in the Graph can be classified as follows:

•	 “Open” Edges: Data streams, generated by both Core or Application nodes in the Graph platform, 
that can be forwarded to all interested listeners without the need of isolation or access control.

•	 “Secured” Edges: Data streams that should comply with some specified rules or restrictions, 
which describe all possible consumers of generated data.

As an example, consider company “C,” which provides its sensors as data sources and has notified 
the architecture that the streams produced by its sensors should be secured.

The integration of security modules in the IoT architecture entails modifications in the structure and 
into the modules of the first (not secured) architecture described in (Belli et al., 2015).

In the rest of this section, an analysis of each module composing the Graph architecture is presented, 
in order to explain how security mechanisms can be embedded and managed. In particular, we introduce 
the OFS module which supports the Acquisition and Normalization modules on authorization of external 
entities. Moreover, an enhanced version of the Application Register is described in order to underline 
the management of secure interaction with processing nodes. Finally, an overview inside Graph nodes, 
analyzing how security has been applied in processing stages, is presented.

Normalization after a Secure Stream Acquisition with OFS Module

The Acquisition and Normalization modules, shown in Figure 4, represent the entry point, for external 
sources (e.g., SOs deployed in different IoT networks), to the proposed architecture.

The purpose of the Acquisition block is to receive incoming raw data from heterogeneous sources, 
making them available to all subsequent functional blocks. Since raw data are generally application- and 
subject-dependent, the Normalization block has to “normalize” incoming data, generating a common 
adapted representation, suitable for further processing (e.g., suppression of unnecessary data, informa-
tion addiction, format translation).

Figure 4. The OFS module manages security in the Acquisition and Normalization blocks, interacting 
with an authentication storage entity containing data sources identities
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After the Normalization process, data are sent to the first Core layer. Within each Graph layer, streams 
are routed by dedicated components, denoted as brokers, which are layer-specific and, in the current 
implementation of the architecture, are represented by instances of RabbitMQ Exchanges.

As stated before, SOs can communicate using different protocols. For this reason, the Acquisition 
block has to include a set of different connectors, one for each supported protocol, in order to properly 
handle each protocol-specific incoming data stream.

As shown in Figure 4, these modules must cooperate with the OFS module, which has to be activated 
before an external source becomes able to operate with the Graph platform. At the Acquisition stage, in 
order for the proposed IoT platform to support both “open” and “secured” communications, protocol-
specific security mechanisms have to be implemented at proper layers (e.g., at the network layer through 
IPSec, at the transport layer through TLS/DTLS, at the application layer through S/MIME or OAuth).

As stated before, the current implementation supports different application protocols at the Acquisition 
stage, namely: MQTT, HTTP, and CoAP. In order to secure all communications with these protocols, we 
need to introduce different protocol-specific policies. In the work of (Fremantle, Aziz, Scott, & Kopecky, 
2014), an OAuth-based (Hardt, 2012) secure version of the MQTT protocol is proposed, showing that 
MQTT complies also with n-Legged OAuth protocol.

This means that the proposed IoT platform can provide a good way to authenticate external data 
providers, adopting open-source and well-known solutions. Therefore the OFS module can be secured 
by OAuth, being employed according to specific communication protocols supported by heterogeneous 
IoT SOs.

A suitable solution to provide authorization in IoT scenarios is IoT-OAS (Cirani, Picone, Gonizzi, 
Veltri, & Ferrari, 2015), which represents an authorization framework to secure HTTP/CoAP services. 
The IoT-OAS approach can be applied by invoking an external OAuth-based Authorization Service (OAS). 
This approach is meant to be flexible, highly configurable, and easy to integrate with existing services, 
guaranteeing: (i) lower processing load with respect to solutions with access control implemented in the 
SO; (ii) fine-grained (remote) customization of access policies; and (iii) scalability, without the need 
to operate directly on the device. Although the OFS module has not been implemented yet, provided 
references show that several options are available.

Following the previous example, company “C”, to became a secured IoT data source, selects one of 
the supported protocols (HTTP, CoAP or MQTT) to send raw data stream in the secured version.

Enhancing Application Register with IGS Module

One of the main motivations to secure a system internally is the need to secure some of its operations, as 
well as to isolate some processing steps of the entire stream management. The security features should 
be coordinated by the Application Register module, which maintains and manages interactions between 
inner Graph nodes of the IoT platform using different communication protocols, as requested by the 
architecture itself.

In order to accomplish the operational functionalities listed previously, the Application Register 
module has two main components, as shown in Figure 5.

•	 The Graph State database, responsible to maintain all information about the current Graph sta-
tus. Since this component is not critical from a performance viewpoint, it has been implemented 
through a simple relational SQL database.
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•	 The Node Registration and Queue Manager (NRQM) module, which is responsible to manage 
communications with existing Graph nodes, as well as with external entities that ask to join the 
Big Stream architecture.

To add security features to these modules, the Application Register defines entities and modules 
specifically related to security management and coordination.

As shown in Figure 5, the Application Register is composed by the following additional modules:

•	 The Policy Manager and Storage Validator (PMSV), responsible for managing and verifying 
authorization rules, interacts with a storage element, which persistently keeps updated authoriza-
tion policies;

•	 The Graph Rule Authorization Notifier (GRAN) interacts with publisher Graph nodes and veri-
fies if listener nodes are authorized to receive streams associated with specific topics;

•	 A Persistent Storage Entity (e.g., a non-relational database) maintains authorization rules speci-
fied by publisher Graph nodes.

While a processing node pm asks to register to the IoT platform, requiring to join the Graph, after 
authentication (e.g., using a username/password pair, cryptographic certificates, ACLs, OAuth), there 
are two cases that require the use of security mechanisms and involve the defined modules:

•	 A registration request coming from a node that is willing to become a publisher node for a secured 
stream (e.g, an Application node created by developers of company “C”);

•	 A registration request sent by a node which asks to be attached as a listener for some streams.

In the first case, when an external process pmrequests to register to the Graph architecture, in order 
to secure one or more of its own streams, it updates the PMSV module. After indicating its published 
topics, it specifies some policies and rules, to be stored, together with the assigned operative Graph 

Figure 5. The Application Register module structure with security elements. PMSV and GRAN modules 
interact with a storage entity to manage authorization in the Graph
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layer, into the persistent security storage, by PMSV itself. These rules will be checked in case of future 
subscription requests for the node.

In the second case, an external process pm, upon issuing a request to attach to the Graph platform and 
to become a node, provides information related to its identity and also specifications about its interests, 
on which pm asks to subscribe.

The Application Register, after having identified the Graph layer into which the new node could be 
placed, takes charge of these interests specifications, passing then to PMSV, that acts as follows.

•	 For each provided interestk, the PMSV module interacts with the persistent storage entity, making 
a lookup for a matching between interest and stored publishing policies, and refining this lookup 
with layer matching:

Match layer xORlayer x AND interest
k

= = = +( ){ } ∈{ }� � � �1 Ψ 	

where: x stands for identified listener Graph layer; interestk indicates each single specified interest, 
extracted from attaching request; Ψ  represents the persistent storage element; and Match contains a list 
of publisher nodes that have to authorize subscriptions.

•	 If Matchontains some results (e.g., gm node), these are forwarded to the GRAN module, which 
interacts with discovered publisher nodes, sending them the identity of the requesting listener 
node and asking them to allow or deny the subscription to the requested topics. This response is 
forwarded back to the GRAN, that analyzes it and, in compliance with the Application Register, 
authorizes or rejects the listener Graph node subscription.

In order to better explain the behavior of the Application Register module, in relation to the join op-
eration of an external entity that asks to become a Graph listener, in the following Listing 1 we detail the 
interactions between this external entity and the Application Register, through a pseudocode representation.

The processing nodes in the Graph architecture can be, at same time, listeners as well as publish-
ers, so that the previously detailed mechanisms could be applied together, without any constraint on 
the execution order. The flows shown in Figure 5 represent the interactions related to this mixed case. 
The rule on node authority, restricted to the same layer and to next one, decreases lookup times in rules 
matching execution.

Moreover, external SOs producers could also request a totally “secured” path, from source to final 
consumer. These constraints have a higher priority than policies defined by publisher Graph nodes, being 
forced by the stream generators. In this way, these external priority rules are stored into the persistent 
storage elements as well, and when a new Graph node registers to the proposed IoT platform, its Graph-
related policies are left out, forcing these new nodes to comply with these external rules.

Securing Stream inside Graph Nodes

The Graph Framework is composed by several processing entities, which perform some kind of com-
putation on incoming data, representing a single node in the Graph topology.
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The connection of multiple listeners across all processing units defines the routing path of data 
streams, from producers to consumers. All nodes in the Graph can be listeners for incoming data and 
output producers for other successor Graph nodes.

Since each Graph node is owner of the stream generated by its processing activity, it is reasonable to 
assume that it could decide to maintain its generated stream “open” and accessible to all its interested 
listeners, instead of applying securing policies, isolating its own information and defining a set of rules 
that restrict the amount of authorized listeners nodes. In this latter case, a “secured” stream should be 
created and encrypted using the algorithms selected by the owner. Each listener is thus required to de-
crypt incoming data before performing any processing. These encryption/decryption operations could be 
avoided if listeners adopt homomorphic encryption (Gentry, 2009), that allows to carry out computations 
on ciphertext, instead of on plaintext, generating an encrypted result that matches with one performed 
on the plaintext, without exposing the data to each of different steps chained together in the workflow. 
Homomorphic encryption allows to execute computation in the Encrypted Domain, providing end-to-
end security, avoiding encryption/decryption hop-by-hop needs.

In Figure 6, the modules inside a Graph node are shown: the broker of the Core layer n forwards 
streams to interested Graph nodes, forwarding these data into the input queue of the single node. The 
output stream, generated by the processing of this node, will be sent to the same broker of the Core layer 

Listing 1. Pseudocode representation of the operations done by the Application Register, when an ex-
ternal process pm asks to become a Graph listener in the Big Stream architecture
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n, which is linked to the broker of the next Graph layer, that “spreads” generated streams to all interested 
nodes. Some of these modules will be activated only in specific situations. In particular, the illustrated 
node acts as listener of a “secured” data stream, so it has to decrypt an incoming message, activating the 
decryption module. Moreover, this Graph node acts also as a producer of a “secured” stream and, then, 
it has to encrypt its processed streams with the encryption module before forwarding it, thus hiding the 
stream from other unauthorized listener Graph nodes. Referring to the previously described example, 
this is the case in which a Graph node, that is already a listener of the secured stream owned by company 
“C,” wants to secure the stream generated by its processing.

It is important to point out that each Graph node controls its generated flow with a visibility of only 
one step. This means that a listener of a “secured” flow can publish an “open” stream, and vice versa, 
thus producing “hybrid” path combinations, that across a flow from IoT source to final consumer produce 
a combination of “secured” and “open” steps.

Referring to the example of company “C,” which generates a “secured” stream with data coming from 
its sensors, an IoT developer can decide to create a new Graph node listening from both the secured stream 
of company “C” and the stream of another company “D.” In the processing unit of the new Graph node, 
the developer can aggregate and transform input streams, generating new and different output streams, 
which can be published in an “open” mode, since the developer is the owner of this new produced stream.

According to the inner organization of the IoT architecture, there could exist a parallelism between 
actors enrolled in Graph Framework and OAuth roles, as illustrated in Table 1.

Figure 6. Detail of the structure of a single Graph node: the decryption module is activated when the 
node is a listener of a secured stream, while the encryption module is activated if the node generates a 
secured stream

Table 1. Comparison between Graph Framework actors and OAuth roles

Graph Framework Actor OAuth Role

Publisher Graph node, owner of the outgoing data stream Resource Owner

Listener Graph node, willing to subscribe to interested topics Consumer

Infrastructure routing element (Broker in a pub/sub paradigm) Provider
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More precisely, OAuth roles could be detailed as follows.

•	 Resource Owner: The entity which owns the required resource and has to authorize an applica-
tion to access it, according to authorization granted (e.g., read/write permission).

•	 Consumer: The entity that wants to access and use the required resource, operating in compliance 
with granted policies related to this resource.

•	 Provider: The entity that hosts the protected resource and verifies the identity of the Consumer 
that issues an access request to this resource.

As previously stated, each Graph node can apply cryptography to its streams, using encryption and 
decryption modules. The security mechanisms leave a few degrees of freedom to developers, who can 
adopt self-made solutions (e.g., using OAuth tokens) to secure streams, as well as rely on already se-
cured protocols, thus adopting well-known and verified solutions. An overall view of the envisioned IoT 
architecture is shown in Figure 7, showing all component modules and their interactions.

EVALUATION OF THE PROPOSED ARCHITECTURE

Deployment Setup

In (Belli et al., 2015) a first implementation of the architecture, without security modules, has been pre-
sented, deploying it on a Virtual Machine and through the definition of a real use case, represented by 

Figure 7. Complete IoT Cloud architecture, including proposed security modules and showing different 
interactions, from incoming stage to final consumer notification
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a Smart Parking scenario. The dataset used for the evaluation contains more than 600k parking events, 
related to the spots status (free/busy), but lacks geographical information (namely, geographic coordinates 
of the spots). Thus, in order to create a realistic scenario, parking spots have been located into 7 clusters.

Thus, in order to stress enough the proposed Big Stream platform, the evaluations have been conducted 
by varying the data generation rate in a proper range, forcing a specific frequency for incoming events, 
without taking into account real parking spots timestamps gathered from the dataset.

The evaluation involves a Java-based data generator, which: simulates events arrivals from IoT sen-
sors networks; randomly selects an available protocol (HTTP, CoAP, MQTT); and periodically sends 
streams to the corresponding interface in the Acquisition Module. Once received, data are forwarded 
to the dedicated stage into the Normalization module, which enriches them with parking membership 
information, retrieving this association from an external SQL database, thus structuring the stream into 
a JSON schema compatible with the architecture. Once the Normalization module has completed its 
processing, it sends the structured data to the Graph Framework, that forwards the stream following paths 
based on routing keys, until final external listener is reached. The Graph considered in our experimental 
set-up is composed by 8 Core layers and 7 Application layers, within which different graph topologies 
(from 20 to 50 nodes) are built and evaluated.

Experimental Results

The proposed architecture has been evaluated by varying the incoming data stream generation rate be-
tween 10 msg/s and 100 msg/s. The first evaluation, which represents a benchmark for our performance 
analysis, has been made using the platform without security mechanisms. Then, we have introduced 
security mechanisms in the Graph Framework Module, in order to assess the impact of a security stage 
on the overall architecture.

The first performance evaluation has been conducted by measuring the delay (dimension: [ms]) 
between the instant at which normalized data are injected into Graph Framework and the instant at 
which the message reaches the end of its routes, becoming available for external consumers/cus-
tomers. In order to consider only the effective overhead introduced by the architecture, and without 
taking into account implementation-specific contributions, performance results were obtained by 
subtracting the processing time of all Core and Application Nodes. Finally, these times have been 
normalized over the number of computational nodes, in order to obtain the per-node overhead in-
troduced by the architecture, in a way that is independent of the implemented routing and topology 
configurations.

The second performance evaluation has been conducted adopting the same structure of the unse-
cured implementation, but introducing security mechanisms inside Graph nodes, through the adoption 
of symmetric encryption to encrypt/decrypt operations mentioned in the previous section. In order to 
guarantee a trade-off between security-level and reliability, we choose to use Advanced Encryption 
Standard (AES) which is a symmetric cryptosystem, in its 256-bit key version (Daemen & Rijmen, 
2002). AES is a block cipher based on a substitution and permutation (SP) combination, working on 
128-bits blocks. The chosen key size specifies the number of repetitions of transformation rounds that 
convert the input, applying several processing stages and depending on the encryption key. The strength 
of AES256 is derived by its key space, with 1077 possible 256-bit keys, which affects the time needed 
to made a successful brute-force attack to a system implementing this cipher.
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Moreover, in order to perform the second evaluation, we have implemented a new version of the 
processing Core and Application nodes, applying security at both input and output stages of the single 
Graph node, implementing the following behavior:

•	 If the processing node has received an AES 256-bit decryption key from the Application Register, 
it then uses this key to decrypt incoming messages, returning a plaintext useful for processing 
operations;

•	 If an AES 256-bit encryption key was provided by the Application Register to the Graph node, 
it then encrypt the processed stream before forwarding it to its proper Exchange, using this sym-
metric key as encryption secret.

This security model is applicable also to the previously described example, in which the company 
“C” would like to secure its paths into the Graph Framework. The second evaluation has been made 
providing encryption and decryption keys to all Graph nodes, in order to secure all the intermediate 
routes followed by streams owned by that company.

The results of the performance evaluations outlined above, carried out using different topologies 
obtained by varying the subset of nodes deployed, from 20 to 50, and the data generation rate Rgen, from 
10 msg/s to 100 msg/s, are shown in Figure 8.

Figure 8. Average stream delay (dimension: [ms]) related to Graph Framework processing block, show-
ing per-node time, in the case of unsecured communication as well as the case of adoption of symmetric 
encryption
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The stream delay can be given using the following expression:
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where: Tout is the instant (dimension: [ms]) at which parking data reach the last Application processing 
node; Tin indicates the instant (dimension: [ms]) in which normalized data comes to the first Core layer; 
and GPk is the processing time (dimension: [ms]) of a Graph node k∈{1,…,N}.

Moreover, in order to investigate the benefits and drawbacks of the adoption of other security solu-
tions, different from symmetric encryption, we have implemented an asymmetric-cryptography version 
of the Graph processing nodes, adopting RSA (Rivest, Shamir, & Adleman, 1978) with 512-bit key, 
which represent a private-public key cryptosystem.

In Table 2, the performance results, in terms of stream delay, retrieved from a third evaluation scenario, 
obtained by replacing symmetric cryptosystem adoption with private/public RSA certificates provided 
to the Graph nodes by the Application Register module, are shown.

The obtained results shown in Table 2 highlight how the adoption of an asymmetric cryptosystem 
represents a bad choice for the Graph inter-node security. Asymmetric solutions might be adopted out-
side of the Graph nodes, when an external node is willing to become an operating entity of the Graph 
Framework, challenging an authentication transaction with its signed certificate, that allows to verify 
its identity by the Application Register. Therefore, in the joining phase the asymmetric solutions could 
also be motivated by the evidence that time consumption is not the main constraint of this step.

In order to better highlight this final analysis of the evaluation results, in Figure 9 a logarithmic-scaled 
version of previously carried results is shown, evaluating the logarithm of the stream delay as a function 
of the number of nodes in the Graph: (i) evaluation without encryption, (ii) evaluation with symmetric 
encryption (AES256), and (iii) evaluation with asymmetric encryption (RSA512), considering only, for 
comparison purpose, two values of data generation rate Rgen: 50 msg/s and 100 msg/sec.

The obtained results allow us to highlight that it seems possible to identify 3 main performance 
regions, in which the proposed Big Stream platform could work:

•	 “Working” region, tentatively identified around the “NoEncryption” curves, on which the system 
has the benchmark results, and where processing do not introduce heavy delays;

Table 2. Average stream delay related to the adoption of asymmetric encryption solution (RSA) into the 
Graph Framework processing block

Number of 
Nodes

Stream Delay 
(Rgen = 50 msg/s)

Stream Delay 
(Rgen = 100 msg/s)

20 128.7453 ms 10890.7263 ms

25 156.909 ms 12962.2934 ms

30 2783.8599 ms 13841.4744 ms

35 10104.7272 ms 14048.8625 ms

40 11283.9916 ms 14515.0021 ms
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•	 “Warning” region, limited around the “AES256” curves, in which delays introduced by security 
adoptions degrade performances in a little way, while maintaining good Quality of Service (QoS);

•	 “Forbidden” region, around the “RSA512” curves, in which the system incurs high delays, that 
may cause crashes and drop services, invalidating QoS and any Service Level Agreements (SLAs) 
signed with data stream producers and consumers.

CONCLUSION

In this paper, we have analyzed security issues in a Cloud architecture for the management of Big 
Stream applications in IoT scenarios. After defining characteristics of the Big Stream paradigm, we 
have described the basic concepts of a recently proposed Graph-based Cloud architecture for IoT. Then 
the implementation of each module of the platform (Acquisition module, Normalization module, Graph 
Framework, Application Register) is detailed taking particularly into account security issues. The OAuth 
protocol, adapted to the specific needs of each module, complies with proposed publish/subscribe plat-
form and is expedient to carry out all security tasks. Unlike traditional authorization methods, based 
on role hierarchies, as a future work, we plan to implement the proposed security modules and evaluate 
how OAuth-based components, acting both at the boundaries (OFS module) and inside (IGS module) of 
the Graph-based Cloud platform, may impact the overall system performance, knowing that a solution 
based on symmetric cryptosystem is feasible, with little impact on the processing times.

Figure 9. Logarithmic representation of the stream delay as a function of the number of nodes of the 
Graph, evaluated both without security mechanisms, as well as with cryptographic features
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